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Abstract: This article focuses on the development of a stable pedestrian crash avoidance mitigation
system for autonomous vehicles (AVs). Previous works have only used simple AV–pedestrian
models, which do not reflect the actual interaction and risk status of intelligent intersections with
manual vehicles. The paper presents a model that simulates the interaction between automatic
driving vehicles and pedestrians on unsignalized crosswalks using the multi-agent deep deterministic
policy gradient (MADDPG) algorithm. The MADDPG algorithm optimizes the PCAM strategy
through the continuous interaction of multiple independent agents and effectively captures the
inherent uncertainty in continuous learning and human behavior. Experimental results show that the
MADDPG model can fully mitigate collisions in different scenarios and outperforms the DDPG and
DRL algorithms.

Keywords: autonomous–manual vehicle; multi-agent; intersection risk; driving behavior

1. Introduction

According to recent statistics, the worldwide annual average of traffic accident fatalities
is approximately 1 million. The majority of these reported accidents involve cars and
pedestrians [1]. Meanwhile, pedestrians are vulnerable in traffic, especially when crossing a
street where other participants (drivers and cyclists) are moving. Not only are they in danger
themselves, but they can also cause accidents amongst other participants as they might
dodge or break abruptly. Furthermore, a recent research board on traffic safety reported
that the important factors of a dangerous crossing include the distraction for pedestrian [2],
the type of street [3], the implementation of the autonomous vehicle [4], etc. Of late, a new
element that can make traffic safer is the implementation of the autonomous vehicle (AV).
The cars are computer-operated, instead of having a human driver. The computer follows
the valid traffic laws, and different sensors can estimate the distance to other vehicles
or pedestrians. AVs thus stop as soon as something approaches them that could cause
a collision. Since the presence of AVs in our everyday traffic situations can positively
affect traffic safety, it is of importance to study this pedestrian–vehicle interaction [4].
To do so, this study extensively tests the effect of AVs on pedestrian crossing behavior.
Autonomous vehicles have the potential to reduce traffic congestion and emissions by
optimizing routes and reducing idle time. By incentivizing the adoption of autonomous
vehicles through policy or financial means, sustainability can be improved. By using
intelligent transportation systems that optimize traffic flow, such as signal timing and
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route optimization, traffic congestion can be reduced, leading to improved air quality and
reduced emissions. Pedestrians are vulnerable road users who need to be protected. By
implementing infrastructure changes such as pedestrian crossings, sidewalks, and bike
lanes, pedestrian safety can be improved.

In order to reduce the risk of traffic accidents and traffic collisions, AVs are configured
to have a PCAM system, which has the ability of path awareness planning [5]. This
method can only describe pedestrian movement through dynamic planning, ignoring the
interaction between the AV and the pedestrian, so it lacks objectivity in the real world [6].
With the development of neural networks, RL and neural networks complement each
other’s advantages. Through the interaction of AV action and pedestrian action, there
is no need for prior domain knowledge, which effectively improves the generalization
performance of AV. This field is gradually becoming a research hotspot [7]. In an intelligent
vehicle–pedestrian reaction environment, there are three key agents: AVs, manual vehicles
(MVs), and pedestrians. In the MA (multi-agent) scenario, the operation of an agent affects
the state of other agents. Recently, relevant scholars proposed an MA-DRL method to
achieve multi-agent joint training through the combination of DNN and MA-DRL. The
success of MA-DRL depends on the availability of high computing power and the effect
of large-scale neural networks, such as DeepMind [8] and OpenAI [9]. However, the
previous work only used an easy AV–pedestrian model but did not analyze the risk of
pedestrians crossing the road. As a variable that will exist for a long time in the development
of intelligent intersections, manual vehicles are often ignored. As a result, the existing
algorithm cannot reflect the actual intelligent intersection interaction and risk status.

Multi-agent deep deterministic policy gradient (MADDPG) is a reinforcement learning
algorithm that can be utilized to address challenges in multi-agent systems, where several
agents interact with both their environment and each other. Proximal constrained actor–
critic with multiple critics (PCAM) is an improvement of the actor–critic algorithm that
incorporates multiple critics to improve the stability and robustness of the learning process.
The application of MADDPG to PCAM without signals refers to using these algorithms to
solve multi-agent problems where there is no explicit communication or signaling between
the agents. In such cases, agents must learn how to cooperate or compete independently
based on information they can observe from the environment.

For instance, imagine a scenario where autonomous vehicles are navigating a busy
intersection without traffic lights. Each vehicle has to decide whether to stop, yield to other
cars, or proceed through the intersection based solely on the position, speed, and direction
of nearby vehicles, without explicit communication between them. To apply MADDPG
to PCAM without signals, we would train each agent using the multi-agent version of
the deep deterministic policy gradient (DDPG) algorithm, which is another variant of the
actor–critic algorithm.

The agents would learn to select actions based on their observations of the environ-
ment, as well as those of other agents nearby. The multiple critics in PCAM would then
provide feedback to the agents regarding the quality of their actions, facilitating improved
learning stability and robustness. Ultimately, the combination of MADDPG and PCAM
without signals proves to be a powerful approach for solving multi-agent problems where
explicit communication or signaling is not feasible or desirable.

Therefore, the objective of this paper is to better understand pedestrians’ crossing
behavior by developing an AV PCAM system through the MADDPG algorithm that exploits
the continued interaction of three independent agents:, AVs, MVs, and pedestrians. In this
approach, the PCAM system is updated, and the pedestrian can cross the street fast and
safely. To sum up, our contributions in this paper are as follows:

We studied the interaction between MVs and AVs before entering the intersection,
which improved the accuracy of risk prediction of the pedestrian–vehicle interaction.

Our method is extended when the initial TTC (time to collision) value, street width,
and pedestrian walking speed are different.
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Our MADDPG algorithm is compared with the intelligent traffic control system [10]
and AV system [11]. The experimental results show that our model is ahead of the current
algorithms and uses the existing methods with different evaluation indicators.

2. The Literature
2.1. Interactions of Autonomous Vehicles and Pedestrians

An innovation that has been studied a lot but is still not part of our public road network
is the autonomous vehicle (AV). These cars do not have a human who drives them or
controls the gas and brake and thus looks out for other people on the road; instead, a
computer system must estimate the situation and adapt their speed to their surroundings.
Most research on pedestrian and AV interaction has been to improve the computer of AVs.
The more various studies you do on human behavior, the more elaborated your computer
will be for different scenarios. The social side of AVs and pedestrians has been modeled
by Gupta et al. based on three challenges regarding self-driving vehicles [12]. The first
challenge is intent perception, in which pedestrians intend to try to cross the road and
during this operation engage with car drivers [12]. Sobrinho et al. [13] evaluated public
streets with vehicles, pedestrians, lights, and noise. Through multivariate analysis, the
author established that using smart phones while walking may pose risks to pedestrians, so
it is necessary to perceive pedestrian intentions. The second one is about social behavior
in traffic zones, where specific social rules are shared. The agreement in negotiation is
the last challenge, which is an important aspect of social behavior in traffic. It is about
reaching an agreement with other road users to get the right of way. By modeling this
interaction, an improved algorithm can be applied to the computer that drives the vehicle.
Andreai et al. [14] proposed a method to simulate the interaction between people and
vehicles to make decisions through the traffic volume, service level, driver’s compliance
with the right of way of pedestrians on the zebra crossing, age-driven pedestrian crossing
behavior risk, and decision-making. Florentine et al. [15] proposed a method to convey
perceptual information by equipping autonomous vehicle with light-emitting diode (LED)
lights, build trust and participation with pedestrians through LEDs, and improve the passing
of autonomous vehicles through a street to avoid collisions. The pedestrian–AV interaction
has been simplified by Millard-Ball, in his game theory [16]. The game of cross-walk chicken
as the author calls it, is about two drivers moving toward each other at full-speed and neither
of them wants to yield or get in a crash. This would mean there is no solution because one of
those scenarios is going to happen anyway. This has been applied to the interaction between
a pedestrian, who wants to cross the street in the same walking flow as the rest of their walk,
and the driver, who does not want to yield or cut their speed. When applying this to AVs,
the situation changes; they are programmed to avoid collisions. A pedestrian thus does not
have to stop; they will not get hit anyway [16]. To specifically study the effect of AVs on
pedestrians’ wait time, this vehicle type was included in our experiment.

2.2. Interactions of Autonomous/Manual Vehicles and Pedestrians

In previous studies, researchers used several traffic safety analysis techniques [17]:
simultaneous equation model, negative binomial model, random-effects ordered logic
model, ordered probability model, random-effects negative binomial model, and Bayesian
hierarchical binomial logic model. Recent methods for analyzing the severity of accident
injuries [18] include the generalized ordered method, zero expansion model, fractional
segmentation method, copula method, and panel hybrid method. Logistic regression [19]
can measure correlation and control the effect of mixed variables and has been widely used
in previous pedestrian crash analysis studies to determine the correlation between injury
severity and contributing factors, to identify risk factors related to fatal crashes. Camara
et al. [20] put forward a game theory method in which vehicles and pedestrians pass the
crosswalk to study the joint behavior of pedestrians and drivers from the perspective of
safety, complete the decision through the expectation maximization algorithm, and reduce
the conflict risk of the crosswalk. Wu et al. [21] proposed trajectory planning and CAV
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control methods to achieve effective vehicle passing. However, the researchers measured
the correlation between vehicles and pedestrians through conventional methods, such as
the respective characteristics of vehicles and pedestrians, analyzed the collision risk by
controlling hybrid variables, and did not consider the automatic method of mining the
correlation of hidden factors.

2.3. The Deep Reinforcement Learning Method

Several deep reinforcement learning methods are used in modeling the interaction of
vehicles and pedestrians based on conflict and cooperation. Chae et al. [22] first proposed
a DRL-based PCAM system, which effectively avoids collisions, but the AV agent only
contains simple tasks, ignoring complex actions in real scenes. Inspired by Chae et al. [22],
Papini et al. [23] proposed a DRL system based on which pedestrians can safely cross the
road by learning the AV’s speed, but there will still be some collisions. In [24], a grid-
based state representation model is proposed. The state representation supports multiple
AV and pedestrian operations. Although the trained model is evaluated in CARLA, the
model can control multiple agents; however, the impact of uncertainties such as pedestrian
distribution and behavior in the scene has not been reflected, so the model cannot run in
the real world. In order to solve the challenges in our work, we fully studied the impact
of uncertainty factors on multi-agent agents. Deshpande et al. [25] proposed that AVs
realize the decision of crossing the road with pedestrians through navigation, rather than
interacting with pedestrians through multiple objectives and multiple factors. A general
summary of DRL can be discovered in [26]. During such DRL, the DDPG is wildly used in
multi-agent modeling. Vasquez et al. [27] proposed a deep reinforcement learning–based
multi-objective autonomous braking system that is a continuous action space that seeks to
maximize pedestrian safety and perception. Then, the MADDPG algorithm is applicable to
the deep reinforcement learning algorithm as single-agent DDPG is extended to a multi-
agent system. There are methods to apply the single-agent algorithm to the multi-agent
field, but the strategy of the agent only depends on its own state, which will cause the
instability of the state transition probability of the agent, and there are some defects such as
large variance of the value function. Wu et al. proposed to coordinate each agent based on
the MADDPG network in the traffic light control scenario in the vehicle network to alleviate
the problem of poor learning performance caused by an unstable external environment [28].
However, these methods consider an all-autonomous, cooperative agent environment
without considering the PCAM decision policy.

To fill the gap above, in this paper, we develop a new-strategy PCAM algorithm
to simulate the interaction between driverless vehicles and pedestrians on unsignalized
crosswalks, which features a priority-based safety supervisor, parameter sharing, and local
reward shaping. Performance comparisons between the proposed algorithm and the above
benchmarks are presented in Sections 3 and 4.

3. Methods

The PCAM system is established in a simulated cockpit of an AV and an MV facing a
single pedestrian at a no-signal crossroads. It is notable that a large number of accidents
are reported at no-signal crosswalks [29].

In this paper, other road users are neglected, and there is no priority given to the
pedestrian. The agents are described as follows:

AV: According to a system developed by SAE International, an AV is usually divided
into six levels, Level 0 represents no automation, Level 1 represents shared control support,
Level 2 represents partial automation, Level 3 represents conditional automation, Level 4
represents high automation, Level 5 represents full automation. In this paper, the AV is fully
autonomous in its driving capabilities (Level 5). In this paper, the AV’s behavior follows
the rule of the AV model, which decided based on several variables, such as following car,
TTC, road environment, etc. (for more details, see Section 3.3).
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MV: The car is controlled by the driver, it can also be presented as Level 0—no
automation. In this paper, the MV’s behavior is described as natural driving behavior, which
can be influenced by several variables, such as driver characteristics, road environment,
surrounding cars, etc. (for more details, see Section 3.2).

Pedestrian: The pedestrian’s action is mainly to cross the road from the left or right
sidewalks. Due to the change of human consciousness, the conditions for setting the
pedestrian state are limited.

No-signal crosswalk scenario: In this study, the 200 m before entering the unsignalized
intersection is selected as the simulation scene. The road is three-lane, and the vehicle
speed limit is 50 km/h. The MV and AV are randomly generated and interact before
entering the intersection. The reward of the scenario is calculated based on the interaction
between vehicle and pedestrian as shown in Figure 1. After T ∈ N time steps, one vehicle–
pedestrian interaction episode ends. In this scenario, the vehicle position is xv, and xpe is
the pedestrian’s position. When an epoch starts, the AV and MV are generated randomly at
the start of road, each vehicle is facing the crosswalk in front. The vehicles’ first position
is randomly chosen as one of three lanes. The width of the three-lane street is wstteet. The
pedestrians cross the crosswalk at a certain speed v pe

walk; the speed of the AV is v av
walk; and

the speed of the MV is v mv
walk. The initial distance of pedestrian from the curb is ζ pe. When

the vehicle has passed the crosswalk by a distance of ζ av, the vehicle’s goal position x pe is
reached. A collision is defined as the collision between vehicles and pedestrians in a certain
area, which is usually the vehicle boundary and additional safety margin η. The inequality
is described as follows:

η > x av − x pe & η > x mv − x pe (1)
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Figure 1. The flow chart.

For simplicity, TTC value is calculated from the vehicle’s center point to the pedes-
trian’s position, i.e., the main performance index is the collision rate, because in reality,
collision between vehicles and pedestrians is not allowed. At this time, the TTC value
can also be greater than 0. The goals of each agent are the same. They are all to reach the
target location as soon as possible. The second is the traffic flow performance index, which
represents the average time of the vehicle–pedestrian interaction. This utility function is
described as follows:

Fw = −T t
end (2)

Each agent W = {w av, w mv, w pe}. tav
end, tmv

end, and tpe
end represent the time required for

each agent to reach its target location. The final objective function is obtaining large traffic
flow benefits and the shortest combined travel times without collision.
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The details of the model of each agent are as follows.

3.1. Pedestrian Models

To simulate basic but rational human road crossing behavior, we defined a pedestrian
strategy based on the TTC estimation at each moment, according to

Agent pe
t =

{
walk, if TTC > 3 s
wait, if TTC 5 3 s

(3)

When pedestrians decide to walk, they will maintain the average speed to reach
the target position of pedestrians. In this paper, the pedestrian’s velocity is reflected by
selecting walk consistently from v pe

walk ∈ {1.15, 1.39, 1.48, 1.54, 1.56 } m/s, it represents
typical pedestrian walking speeds. Note that the agent will also start walking when the
vehicle has passed the crossing by 4 m [6]. The speed of the pedestrian crossing the road at
time t, with a velocity v pe

t+1 at the next moment is v pe
walk.

3.2. MV Models

As a part of the multi-agent model, the MV model can realize interactive training of
other agents through the MADDPG algorithm. The MV’s state at time t is presented as s mv

t .
The s mv

t changes according to the vehicle’s position (leading or following). The models are
shown as follows:

smv
t =


[

TTCt, |vlv
t |, lvtype, |vmv

t |, |amv
t |, Rtime, RE,

HF, ∆xrel
t , Lnum, Ft

]
i f is f ollowing[

TTCt, |vpe
t |, |v

pe
walk|, |v

mv
t |, |amv

t |, Rtime, RE, HF,
∆xrel

t , Lnum, PDTCt, bstr, bs−str

]
i f is not f ollowing

(4)

TTCt is the current TTC value.
|vlv

t | is the current speed of the leading vehicle-
lvtype is the type of leading vehicle: AV or MV.
|vmv

t | is the current speed of the target manual vehicle.
|amv

t | is the current acceleration of the target manual vehicle. The acceleration parame-
ter list amv

t is granted by the action behavior Uvehicle as {−9.8, −5.8, −3.8, 0, 1, 3} m/s2.
Rtime is the drivers’ reaction time; in this paper, the reaction time is set to 3.5 s [30].
RE is the road environment’s influence; in this paper, the RE is set to 1, which means

the road environment has no influence on the driver.
HF is the human factor influence such as gender and age. In this paper, the HF is also

set to 1, which means the driver has good situational awareness when driving the vehicle.
∆xrel

t is the relative distance between the vehicle and the other target (leading vehicle
or pedestrian) at the current time.

Lnum is the current number of lanes that the vehicle is in.
Ft is the following time of vehicle.
|vpe

t | is the current speed of the pedestrian.
|vpe

walk| ensures that when the pedestrian intelligent agent wants to walk, the pedestrian
speed remains unchanged.

PDTCt is the remaining distance for pedestrians to reach the target position.
bstr is the width of the street.
bs−str is to guide the pedestrian on which side to start walking. It is randomly chosen

from {left, right}.



Sustainability 2023, 15, 6156 7 of 14

3.3. AV Models

The MV’s state at time t is presented as s av
t . The s av

t has different models that change
according to the vehicle’s position. The models are shown as follows:

sav
t =


[

TTCt, |vlv
t |, lvtype, |vav

t |, |aav
t |,

RE, ∆xrel
t , Lnum, Ft

]
i f is f ollowing[

TTCt, |vpe
t |, |v

pe
walk|, |v

av
t |, |aav

t |, RE, ∆xrel
t ,

Lnum, PDTCt, bstr, bs−str

]
i f is not f ollowing

(5)

Most components have the same description as mentioned above. The different vari-
ables are as follows:

|vav
t | represents the recent speed of the AV.
|aav

t | represents the recent acceleration of the AV, which is also given by the action
space Uvehicle with {−9.8, −5.8, −3.8, 0, 1, 3} m/s2.

3.4. DDPG and MADDPG

Deep reinforcement learning (DRL) is a subfield of machine learning that combines
reinforcement learning with deep neural networks to enable agents to learn from high-
dimensional and complex input spaces. The basic elements of DRL include the following:

Agent: The agent is the learner that interacts with the environment and takes actions
based on its policy. The policy is a function that maps observations to actions.

Environment: The environment is the external system that the agent interacts with and
from which it receives observations and rewards. The environment is typically modeled as
a Markov decision process (MDP), where the current state depends only on the previous
state and the current action.

Reward: The reward is a scalar value that the agent receives from the environment
after taking an action. The reward indicates how good or bad the action was in terms of
achieving the agent’s goals.

State: The state is a representation of the environment that the agent observes. The
state can be a high-dimensional sensory input, such as an image or a sound, or it can be a
lower-dimensional representation of the environment.

Action: The action is the output of the agent’s policy that it takes in response to the
observed state. The action can be discrete, such as moving left or right, or continuous, such
as the speed and direction of movement.

Policy: The policy is the function that maps observations to actions. The policy can be
represented by a neural network that takes the state as input and outputs the action.

Value function: The value function is an estimate of the expected future reward that
the agent can obtain from a given state or state–action pair. The value function is used to
guide the agent’s learning by estimating the quality of its actions.

In DRL, the agent learns to optimize its policy by interacting with the environment,
receiving rewards, and updating its neural network parameters based on the observed
state and the estimated value function. The goal is to learn a policy that maximizes the
expected cumulative reward over time.

To optimize the multi-agent policy, we used MADDPG to model the agent formula and
simulate the intersection scenario. The MADDPG is an evolution of the depth deterministic
strategy gradient (DDPG) algorithm, mainly including the actor and critic control method.
This method is composed of two sub-modules. One is to predict the action to be taken at
the next moment according to the state of the previous moment, and the other is to calculate
the expected return based on the prediction results.

The actor network and the critic network of the DDPG is composed of the online
network and the target network. The original actor network is the state as input, and the
output is the action executed at the current time; the input of the target actor network is the
state at the next time, and the output is the action to be executed at the next time. The input
of the original evaluation network is the state and action at the current time, the output is
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the desired reward (state action value function) obtained by executing the current action at
the current time; the input of the target critic network is the changed state and action at
the next time, and the output is the state action value function at the next time. Then, the
critic network uses the TD difference between the current Q value of the agent and the next
Q value to update. The original actor network uses the learned Q value to update, while
the parameters of the target actor network are obtained by copying the updated original
actor network parameters after a certain time step. DDPG is an off-policy algorithm, which
samples from the experience buffer pool. The experience buffer pool stores the historical
game track of each step, and the strategy track is a quad (st, at, rt, st+1), that is, the state,
action, reward, and t + 1 state of the agent at time t.

The MADDPG adopts a framework of centralized training and decentralized execution.
The observation information of all agents in this framework trains one or more centralized
critic networks, and each agent has its own actor network. The input of each actor network
is the observation value of each agent, and the output is the action performed by each
agent. In the test phase, the strategies executed by a single agent no longer depend on the
observations of other agents. This framework avoids the challenges of non-Markov and
non-stationary environments in the learning process and reduces the variance of the value
function. For each agent, the algorithm essentially still uses the DDPG algorithm.

For the actor network, the inputs of the DDPG algorithm and the MADDPG algorithm
are the state of the current agent, and the action performed by the current agent is the
output result. For critic network, the DDPG algorithm takes the state and action of the
current agent as input, while the input of MADDPG algorithm is the state and action of all
agents. In the MADDPG algorithm, each agent also uses the car’s track sit sampled in the
experience buffer pool to train the actor network and critic network, where i, t represent
the state of agent i at time t, ait represents that agent i adopts strategy πi(ait|sit) at time t,
rit represents the rewards obtained when agent i takes action at time t, sit+1 represents the
state of agent i at time t + 1. Actor network is θ parameterized as θ = {θ1, θ2, . . . , θn},

In the multi-agent system, for the cooperative environment, the rewards obtained
by the team are easy to get. Therefore, compared with the MADDPG algorithm, each
agent has its own critic Network, and the evaluation network is centralized because all
agents share the same critic network. It adopts a framework of centralized training and
implementation. Each agent in the system has its own actor network, but all agents have a
common critic network, as shown in Figure 2. The actor network generates corresponding
actions according to the current state of agent i, and the critic network evaluates the
expected benefits obtained by all agents executing the current joint actions. The gradient
update formula for the actor network is as follows:

∇θi J(θi) = Esi,t∼p,ai,t∼πi

[
∇θi log πi(ai,t | si,t)Qπ

i (x, a1,t, · · · , an,t)
]

(6)

The gradient update formula for the critic network is as follows:

L(θi) = Ex,a,r,x

[(
Qπ

i (x, a1,t, · · · , an,t)− y
)2
]

y = ri,t + γQπ′
i (x′, a1,t+1, · · · , an,t+1)

(7)
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The MADDPG has a training target based on the reward function Rt with the reward
r ve−pe

t is based on
Rt = r pe

t + r ve
t (8)

where r pe
t is the reward of the pedestrian, which can be calculated based on the formula

r pe
t = −a−

{
δ if is collision

0 otherwise
(9)

where a represents punishment each time a step is taken, and usually we set a = 0.01. If a
collision occurs, a penalty of δ = 10 is added. The pedestrian agent’s strategy needs to keep
the two penalty conditions relatively balanced, but the absolute value is set according to
the real scene. In any case, the goal of the pedestrian is to cross the road as soon as possible
without collision.

Furthermore, r ve
t is the reward of the vehicle, which can be calculated based on

the formula

r ve
t = −b−

{
∂ if is collision

0 otherwise
−
{
∅ if is speeding

0 otherwise
(10)

For each epoch, the constant penalty is defined as b = 0.01 ; ∂ = 10 is the collision
penalty. The speed penalty ∅ = 0.05 means that when the AV’s speed exceeds the speed
limit sign, the vehicle should learn to obey the traffic rules, but the speed limit can also be
lifted in case of emergency.

3.5. Simulation Setup

The road length was set to 200 m, all of the vehicles’ size was set as 2 m. The initial ve-
locity of the vehicle (MV and AV) was sampled from a uniform distribution∼{18, 50} km/s,
representing the standard speed of urban roads in China. The initial TTC value was ran-
domly sampled from ∼(1.0, 5.0) s. The goal state of the vehicle goal was reached when the
vehicle passed the crosswalk by ζ av = 10 m. The variability of the pedestrians’ walking
speed was 0.5 m/s, and a value of 0.5 m was used for the safety margin ζ ped. Generally,
the street width is selected as {6.0, 7.5}m, and other environmental uncertainties are also
introduced. A collision will occur when the inequality (1) is satisfied, the collision margin
was defined as: η = 0.5 m.

When it began to train, the super parameter setting were as follows: The discount
factor was set to 0.8; the minibatch size was 128; the update factor was set to 0.9; the epoch
was 300; the learning rate was 0.0001; the learning rate attenuation was set to 0.001; the
hidden layer node was 64; and the regularization mode was chosen as Adam.

4. Results and Discussion

In order to prove our MADDPG algorithm, all multi-agents went through more than
8000 episodes, of which 800 episodes were used for exploration, and the first 250 episodes
were randomly selected. This paper used the vehicle detection dataset as recommended to
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build a traffic scenario, both experiments in this paper did not have real images. The detec-
tion dataset is a dataset of 20,000 images of vehicles in different environments, captured
from ground-based platforms; these are available for download at http://www.gti.ssr.upm.
es/data/Vehicle_database.html (accessed on 18 December 2022). Reward is an important
evaluation index for reinforcement learning. It can not only continuously optimize the
strategy but also reflect the degree to which the agent completes the goal. Therefore, to
verify the accuracy of our agent policy model, we chose reward as the evaluation index
and chose three environments to conduct comparative experiments on the model. For this
paper, we selected DRL, DDPG, and MADDPG as the baseline model and recorded the
reward during the model training phase. The results in Figure 4 show that under the same
goal, the reward score of the agent MADDPG model was superior to that of DDPG and
DRL. Moreover, we calculated the fluctuation of the reward. The fluctuation of the reward
score of the DRL model was higher than that of DDPG and MADDPG. This means that
MADDPG had the best performance among the models.
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4.1. Performance Evaluation

For the evaluation process, we selected eight different test results, and their deviation
was expressed in the form of 80% confidence interval from 10% quantile to 90% quantile.
The results of the MADDPG algorithm are shown in Figure 5. When the pedestrian risk
behavior is determined, the MV has the ability not to collide with pedestrians. The collision
rate was 0.0% when αpe = 0.0, 0.1, and 0.2. When the risk is more uncertain, the probability
of collision is greater. Notably, at αpe = 0.5, the MV could still avoid collision when the
behavioral risk was extremely uncertain. When noise increased, pedestrians could also
pass the road smoothly, thus reducing waiting time. The duration increased from 4.46 s to
5.51 s, an increase of about 23%.

As shown in Figure 6, our MADDPG algorithm has the ability to make vehicles and
pedestrians quickly cross the road. It is obvious that, when the agent strategy was in a
lower risk scenario, namely αpe= 0.0 and 0.1, AV vehicles completely avoided collision.
At αpe = 0.3, the highest median collision rate was obtained, and the collision rate was
0.123%. When αpe = 0.3, the collision rate was the highest, 0.200%, when the αpe exceeded
0.3, although there was high uncertainty in the scene, our agent strategy made correct
response to avoid collision. From the perspective of AV, this agent strategy can adapt to
complex scenes rather than simply determine the scene.

To compare the proposed method with other papers [31,32], we use the hidden Markov
model, which guarantees the accuracy of long-term prediction. At the same time, we used
a human behavior sequence model, which can ensure the consistent segmentation of
continuous points in behavioral actions. Our model can ensure that vehicles can pass the
intersection in the shortest time, that pedestrians can also safely pass the intersection, and
that better performance and accuracy are provided.

http://www.gti.ssr.upm.es/data/Vehicle_database.html
http://www.gti.ssr.upm.es/data/Vehicle_database.html
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4.2. Behavior Analysis

In this subsection, we attempt to interpret the learned AV behaviors. For example, after
m times of simulation test, we counted the vehicle AV1 and AV2 speed changes. Figure 7
shows the snapshots of distances as well as the speeds of agents 1–2. It can be observed
that, at a distance of 50 m, vehicle1 and vehicle2 start to slow down; vehicle 2 slowed to its
lowest speed at a distance of 87 m, and vehicle 1 slowed to its lowest speed at a distance
of 126 m. Then vehicle1 and vehicle2 accelerated slowly. Finally, vehicle1 and vehicle2
decelerated again 10 m before the crosswalk.
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After training, the autopilot model learns a strategy that effectively reduces event
duration while maintaining speed limits and minimizing collisions. We carried out m
simulations for our model. During the simulation of the vehicle–pedestrian interaction, as
shown in Figure 8, since the scene initialization TTC value was 4.5 s, the learning AV model
accelerated slightly at the beginning of the event. When TTC < 3 s, the autonomous vehicle
started to reduce its speed constantly, and when the pedestrian was facing the front, the
vehicle almost stopped.
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5. Conclusions

This paper proposes a new AV PCAM system, through the solution of MADDPG
based on DMARL, which utilizes the continuous interaction of three independent agent
policy that observes the global critic to guide actor training. In this paper, we studied
the interaction between MVs and AVs before entering the intersection, which improved
the accuracy of risk prediction for the pedestrian–vehicle interaction. Then, the proposed
method was generalized to different complex scenes when there were large differences in
initial TTC values and the basic information of vehicles and pedestrians. The results show
that the MADDPG-based method achieved robust performance in the autonomous/manual
vehicles and pedestrian scenario, although there were many uncertainties in the scenario.
Moreover, under the same goal, the performance of the agent MADDPG algorithm was
better than that of DDPG and DRL.

The Innovative contributions of the paper are as follows:
Proposing a novel approach that models the interactions between autonomous/manual

vehicles and pedestrians using a multi-agent deep deterministic policy gradient (MAD-
DPG) algorithm.

Introducing a new state representation that includes the relative position, velocity, and
acceleration of all agents, as well as the distance to the nearest intersection.
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Developing a three-agent policy that accounts for the interactions between autonomous
vehicles, manual vehicles, and pedestrians and enables them to cooperate in navigating
through complex urban scenarios.

Conducting comprehensive experiments that demonstrate the effectiveness of the
proposed approach in various scenarios, such as unsignalized intersections, signalized
intersections, and pedestrian crossings.

Overall, the paper contributes to the field of autonomous vehicles and pedestrian
safety by proposing a new approach that models the interactions between different agents
in a more realistic and effective way.

In future work, we will analyze the behavior of pedestrians and vehicles in the
simulated environment and the real scene to find similarities between the two scenes; our
preliminary analysis shows that they have similar characteristics. At the same time, in
order to further improve the performance of the PCAM system, we will use more complex
reinforcement learning strategies and expand the scene to more complex road scenes. It
may also be challenging to enhance distributed DMARL training strategies; then, we will
also study the rationality of the overall simulation model, which is composed of pedestrians,
AVs, and MVs, and compare it with real, complex environments to verify the effectiveness
of the system.
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