Study on Utilization of Biochar Prepared from Crop Straw with Enhanced Carbon Sink Function in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Collection and Processing
3. Results and Discussion
3.1. Crop Straw Yield and Distribution
3.1.1. Changes in the Cultivation Area of Crop Straw Crops
3.1.2. Trends in Crop Straw Yield
3.2. Forecast and Analysis of Future Crop Straw Yield
3.3. Carbon Sequestration Effect Analysis of Biochar Prepared from Straw
3.4. Economic Analysis of Straw Biochar Utilization
3.4.1. Analysis of Environmental Economic Conditions
3.4.2. Analysis of Industrial Economic Situation
3.4.3. Analysis of Economic Expectations
3.5. Analysis on Industrialization Model of Biochar Preparation from Straw
3.5.1. Agricultural Carbon Sink Cycle Model
3.5.2. Biochar High-End Product Development and By-Product Treatment
3.6. Development Prospect Forecast
4. Conclusions and Recommendations
- (1)
- The northeast biochar industry was rich in raw materials. From 2017 to 2020, the annual yield of straw in Northeast China was about 7.0 × 107 tons, which showed an increasing trend year by year. Among the main crop straw yield, the growth rate of soybean straw was the largest in Heilongjiang Province The overall growth rate of straw yield in Jilin and Liaoning Province was relatively small (≤1%);
- (2)
- As the largest grain yield base was in China, the straw resources were widely distributed in Northeast China. Straw was used steadily and sustainably as a raw material for biochar. The development of the biochar industry in Northeast China reduced carbon emissions and environmental pollution caused by straw incineration, and this also obtained a huge benefit of 7.0 × 1010 RMB. The future development space of the biochar industry will be huge;
- (3)
- Northeast China’s industry had a great demand for technical labor, and the development of the biochar industry required the introduction of high-end talents and advanced technology. The biochar industry in Northeast China will have a broad prospect, and a large amount of demand for the biochar industry involves farmland soil improvement and winter heating fuel utilization needs. The development of the biochar industry will slow down the pressure of industrial carbon emission reduction. The carbon emission reduction model of straw biochar production in Northeast China will provide an important reference for other regions;
- (4)
- At present, the development of the biochar industry in Northeast China is in its early stage. As a new industry serving food security, environmental security, and sustainable development, the biochar industry promotes the sustainable development of the regional economy. Relying on the advantages of agricultural resources, carbon emission reduction requirements, economic benefits, and environmental benefits will gradually increase the emphasis on agricultural carbon sinks, and the biochar industrial chain system will be gradually improved;
- (5)
- In the future, the purpose of improving the accuracy of straw yield calculation based on field surveys and unmanned aerial vehicle technology is to achieve improved straw resource utilization. At present, the development of the biochar industry is limited by the shortcomings of backward industrial technology, slow economic growth, aging population, etc. It is suggested to make full use of local industrial enterprises to develop the biochar industry. The cooperation model with high-tech enterprises in the preparation of high-end biochar products and the utilization of biochar by-products can promote the development of the biochar industry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cherubin, M.R.; Oliveira, D.M.S.; Feigl, B.J.; Pimentel, L.G.; Lisboa, I.P.; Gmach, M.R.; Varanda, L.L.; Morais, M.C.; Satiro, L.S.; Popin, G.V.; et al. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Sci. Agric. 2018, 75, 255–272. [Google Scholar] [CrossRef][Green Version]
- Zhang, X.; Wang, Z.; Can, M.; Bai, H.; Ta, N. Analysis of yield and current comprehensive utilization of crop straws in China. J. China Agr. Univ. 2021, 26, 30–41. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, Y.; Gao, C. Straw resource quantity and its regional distribution in China. J. Agric. Mech. Res. 2010, 32, 1–7. [Google Scholar] [CrossRef]
- Liu, K.; Lu, S.; Zhang, G. Regional difference in global unified efficiency of China—Evidence from city-level data. Sci. Total Environ. 2020, 713, 136355. [Google Scholar] [CrossRef]
- Li, P.; Chen, W.; Han, Y.; Wang, D.; Zhang, Y.; Wu, C. Effects of straw and its biochar applications on the abundance and community structure of CO2-fixing bacteria in a sandy agricultural soil. J. Soils Sediments 2020, 20, 2225–2235. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Sheng, L. Preparation of straw activated carbon and its application in wastewater treatment: A review. J. Clean. Prod. 2021, 283, 124671. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L. Preparation of straw biochar and application of constructed wetland in China: A review. J. Clean. Prod. 2020, 273, 123131. [Google Scholar] [CrossRef]
- Bai, N.; Zhang, H.; Zhou, S.; Sun, H.; Zhao, Y.; Zheng, X.; Li, S.; Zhang, J.; Lv, W. Long-term effects of straw return and straw-derived biochar amendment on bacterial communities in soil aggregates. Sci. Rep. 2020, 10, 7891. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Teng, H.; Xu, J.; Sheng, L. Purification mechanism of city tail water by constructed wetland substrate with NaOH-modified corn straw biochar. Ecotoxicol. Environ. Saf. 2022, 238, 113597. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, D.; Nie, M.; Wang, H.; Li, L. Adsorption of Cr6+ on Polyethyleneimine-functionalized straw biochar from aqueous solution. Chem. J. Chin. Univ. 2020, 41, 155–161. [Google Scholar] [CrossRef]
- Wang, H.; Teng, H.; Wang, X.; Xu, J.; Sheng, L. Physicochemical modification of corn straw biochar to improve performance and its application of constructed wetland substrate to treat city tail water. J. Environ. Manag. 2022, 310, 114758. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qiu, C.; Zhao, J.; Wang, C.; Liu, N.; Wang, D.; Wang, S.; Sun, L. Properties of biochars prepared from different crop straws and leaching behavior of heavy metals. Environ. Sci. 2023, 44, 540–548. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L.; Teng, H. Study on treatment of city tail water by constructed wetland with corn straw biochar substrate. Environ. Technol. Innov. 2022, 28, 102855. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Bushra, B.; Remya, N. Biochar from pyrolysis of rice husk biomass—Characteristics, modification and environmental application. Biomass Convers. Bior. 2020, 1–12. [Google Scholar] [CrossRef]
- Lai, Z.; Wu, S.; Li, H.; Wu, D. Adsorption mechanism research of Cd2+ by rice straw biochar at different pyrolysis temperatures. J. Nanchang Univ. (Nat. Sci.) 2022, 46, 446–453. [Google Scholar] [CrossRef]
- Dong, Z.; Rene, E.R.; Zhang, P.; Hu, Q.; Ma, W. Design and preparation of carbon material catalyst modified with metal framework and sulfonate for biochar generation from low-temperature directional pyrolysis of kitchen waste: Mechanism and performance. Bioresour. Technol. 2023, 371, 128616. [Google Scholar] [CrossRef]
- Xie, T.; Zhao, L.; Yao, Z.; Huo, L.; Jia, J.; Zhang, P.; Tian, L.; Fu, G. Progress in co-pyrolysis technology of agricultural biomass and plastics. Chem. Ind. Eng. Prog. 2022, 41, 5306–5315. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Z.; Mao, W. Characteristics of adsorption of ammonia nitrogen, Cd2+ and Cu2+ on porcine-bone/bamboo co-pyrolysis biochar. Environ. Sci. Technol. 2022, 45, 29–37. [Google Scholar] [CrossRef]
- Guo, X.; Li, R.; Zhang, R.; Liu, B.; Chen, G.; Hou, L. Research advances in biomass gasification based on bibliometric analysis. Environ. Eng. 2022, 40, 232–239+131. [Google Scholar] [CrossRef]
- Jia, W.; Xiao, Z.; Li, C.; Li, Q.; Zhang, A. Study on purification and decolorization of wood vinegar from pyrolysis of agricultural and forestry biomass. Hunan Forest. Sci. Technol. 2022, 49, 34–38. [Google Scholar] [CrossRef]
- Ma, J.; Islam, F.; Ayyaz, A.; Fang, R.; Hannan, F.; Farooq, M.A.; Ali, B.; Huang, Q.; Sun, R.; Zhou, W. Wood vinegar induces salinity tolerance by alleviating oxidative damages and protecting photosystem II in rapeseed cultivars. Ind. Crops Prod. 2022, 189, 115763. [Google Scholar] [CrossRef]
- Yuan, Y.; Kong, Q.; Zheng, Y.; Zheng, H.; Liu, Y.; Cheng, Y.; Zhang, X.; Li, Z.; You, X.; Li, Y. Co-application of biochar and pyroligneous acid improved peanut production and nutritional quality in a coastal soil. Environ. Technol. Innov. 2022, 28, 102886. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Wang, Z.; Sun, G.; Li, J. Greenhouse gas reduction and nitrogen conservation during manure composting by combining biochar with wood vinegar. J. Environ. Manag. 2022, 324, 116349. [Google Scholar] [CrossRef]
- Fan, F.; Li, H.; Xing, X. Effect of temperature on preparation and characteristics of corn straw pellets torrefaction biochar. Trans. CSAE 2019, 35, 220–226. [Google Scholar] [CrossRef]
- Guo, S. Progress in preparation and properties of biochar for soil remediation. Chem. World 2022, 63, 123–128. [Google Scholar] [CrossRef]
- Ye, Y.; Lu, P.; Wang, Y.; Liu, K. Influence of torrefaction temperature and residence time on biochar characteristics during biomass torrefaction. J. Shanghai Univ. Electric. Power 2018, 34, 239–244. [Google Scholar] [CrossRef]
- Zan, Y.; Zhang, Y.; Zhao, X.; Kong, L. Preparation and application of carbon materials from primary biomass by hydrothermal carbonization. J. Liaoning Shihua Univ. 2020, 40, 70–79. [Google Scholar] [CrossRef]
- Li, C.; Feng, Y.; Zhong, F.; Deng, J.; Yu, T.; Cao, H.; Niu, W. Optimization of microwave-assisted hydrothermal carbonization and potassium bicarbonate activation on the structure and electrochemical characteristics of crop straw-derived biochar. J. Energy Storage 2022, 55, 105838. [Google Scholar] [CrossRef]
- Ren, Y.; Ma, T.; Zhou, Y.; Ji, W.; Deng, H. Effect of temperature on the properties of solid-liquid products based on cotton stalk pyrolysis. J. Shihezi Univ. (Nat. Sci.) 2020, 38, 668–674. [Google Scholar] [CrossRef]
- Youn, H.S.; Kim, S.J.; Kim, G.H.; Um, B.H. Enhancing the characteristics of hydrochar via hydrothermal carbonization of Korean native kenaf: The effect of ethanol solvent concentration as co-solvent and reaction temperature. Fuel 2023, 331, 125738. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, H.; Liu, J.; Wang, X.; Li, J.; Shi, E.; Wang, C.; Yang, J.; Zhang, Z. A study on and adsorption mechanism of ammonium nitrogen by modified corn straw biochar. R. Soc. Open Sci. 2023, 10, 221535. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, M.; Zheng, X.; Chen, W.; Liao, Y. Progress of using biochar in remediation of heavy metal polluted soil. Appl. Chem. Ind. 2022, 51, 1729–1735+1740. [Google Scholar] [CrossRef]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review. Sustainability 2022, 13, 14041. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, T.; Wang, D.; Guo, Z.; Zhu, L.; Hua, K. Effects of straw biochar application on organic phosphorus fractions and distribution in lime concretion black soil. J. Anhui Agric. Univ. 2022, 49, 454–461. [Google Scholar] [CrossRef]
- Cui, H.; Ou, Y.; Wang, L.; Yan, B.; Li, Y.; Bao, M. Dissolved organic carbon, a critical factor to increase the bioavailability of phosphorus during biochar-amended aerobic composting. J. Environ. Sci. 2022, 113, 356–364. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Qi, Y. Effects of corn straw-based biochar amount on pores and water holding capacity of sandy soil. Ecol. Environ. Sci. 2022, 31, 1272–1277. [Google Scholar] [CrossRef]
- Feng, J.; Sun, J.; Xu, J.; Wang, H. Degradation of acetochlor in soil by adding organic fertilizers with different conditioners. Soil Till. Res. 2023, 228, 105651. [Google Scholar] [CrossRef]
- Zhu, X.; Shao, J.; Zhao, P. Effect of biochar addition on sewage purification efficiency of subsurface flow wetland. J. Chongqing Norm. Univ. (Nat. Sci. Ed.) 2021, 38, 121–129. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H.; Liu, H.; Lin, H.; Li, X.; Lu, Y. Research progress on the adsorption property of biochar for cationic dyes. Ind. Water Treat. 2022, 42, 27–33. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, K.; Jiao, Z.; Zhan, W.; Ge, S.; Ning, S.; Fang, S.; Ruan, X. Simultaneous removal of Cu2+, Cd2+ and Pb2+ by modified wheat straw biochar from aqueous solution: Preparation, characterization and adsorption mechanism. Toxics 2022, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Islam, I.U.; Ahmad, M.; Rukh, S.; Ullah, I. Preparation of iron-modified biochar from rice straw and its application for the removal of lead (Pb2+) from lead-contaminated water by adsorption. Chem. Pap. 2022, 76, 3789–3808. [Google Scholar] [CrossRef]
- Wang, H.; Zang, S.; Teng, H.; Wang, X.; Xu, J.; Sheng, L. Characteristic of KMnO4-modified corn straw biochar and its application in constructed wetland to treat city tail water. Environ. Sci. Pollut. Res. 2023, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Tang, H.; Wang, J. Comprehensive utilization status and development analysis of crop straw resource in Northeast China. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–21. [Google Scholar] [CrossRef]
- Mo, F.; Wang, G.; Hu, M. Analysis of soybean production status in northeast China based on cost. Soybean Sci. 2020, 39, 947–953. [Google Scholar] [CrossRef]
- Ma, Y.; Cai, H. Analysis on the substitution effect of multiple temporary storage policy on soybean acreage in northeast China. J. HIT (Social Sci. Ed.) 2017, 19, 116–122. [Google Scholar] [CrossRef]
- Cheng, W.; Gao, X.; Ma, T.; Xu, X.; Chen, Y.; Zhou, C. Spatial-temporal distribution of cropland in China based on geomorphologic regionalization during 1990–2015. Acta Geogr. Sin. 2018, 73, 1613–1629. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y. Investigation of transgenic soybean components in soybean from an area of China. J. Sci. Food Agric. 2016, 96, 3169–3172. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef][Green Version]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef][Green Version]
- Wang, P.; Feng, X.; Wang, M.; An, Q.; Yang, R.; Zhao, M. The Characteristics of carbon emission and its classification at provincial level in China. Environ. Sustain. Dev. 2021, 46, 31–36. [Google Scholar] [CrossRef]
- Yu, X.; Lou, F.; Tan, C. A simulation study of the pathway of achieving the ‘dual carbon’ goals in China’s industrial sectors based on the CIE-CEAM Model. China Popul. Resour. Environ. 2022, 32, 49–56. [Google Scholar] [CrossRef]
- Huo, L.; Yao, Z.; Zhao, L.; Luo, J.; Zhang, P. Contribution and potential of comprehensive utilization of straw in GHG emission reduction and carbon sequestration. Trans. Chin. Soc. Agric. Mach. 2022, 53, 349–359. [Google Scholar] [CrossRef]
- Lonappan, L.; Rouissi, T.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Adsorption of diclofenac onto different biochar microparticles: Dataset–characterization and dosage of biochar. Data Brief 2018, 16, 460–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Z.; Margni, M.; Bulle, C.; Hua, H.; Jiang, S. Intensive carbon dioxide emission of coal chemical industry in China. Appl. Energy 2019, 236, 540–550. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.; Zhang, Y.; Zhang, D.; Song, J. Estimation of carbon sequestration potential of rice straw pyrolyzing to biochar. Environ. Sci. Technol. 2015, 38, 265–270. [Google Scholar] [CrossRef]
- Jia, J.; Xie, Y.; Li, T.; Wang, L. Effect of the straw and its biochar on active organic carbon in reclaimed mine soils. China J. Appl. Environ. Biol. 2016, 22, 0787–0792. [Google Scholar] [CrossRef]
- Jiang, M.; Cheng, J.; Lee, X.; Gao, W.; Cai, K.; Zeng, Y.; Jiang, C. The effect of biochar on the farmland soil CO2 emission: A review. Earth Environ. 2021, 49, 726–736. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, K.; Pan, G. Impact of biochar amendment on deep soil organic carbon pool. J. Nanjing Agric. Univ. 2020, 43, 589–593. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Li, Y.; Yang, W.; Yin, X.; Yin, L.; Deng, X. Effects of biochar levels on winter wheat yield and water-use efficiency in Loess Plateau. Agric. Res. Arid Areas 2018, 36, 159–167. [Google Scholar] [CrossRef]
- China Carbon Accounting Database (CEADs). Available online: https://www.ceads.net/data/province/ (accessed on 31 December 2019).
- Wang, S.; Gu, M.; Chang, X. The deconstruction of policy system and response of regional economy of Northeast Revitalization. Acta Geogr. Sin. 2022, 77, 2548–2565. [Google Scholar] [CrossRef]
- Zou, X.; Yang, H.; Zhang, Y.; Wang, H. Changes of meteorological factors in Shenyang City during 1951–2012 and its relationship with air pollution. Ecol. Environ. Sci. 2015, 24, 76–83. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Wang, J.; Liu, J.; Wei, X.; Mo, Z.; Zhang, Y.; Xu, W.; Shi, F.; Pei, Z.; et al. Technology path of carbon neutrality based on the survey of rural life energy usage baseline in severe cold region of northeast China. Chin. Agric. Sci. Bull. 2021, 37, 97–102. Available online: https://www.casb.org.cn/CN/Y2021/V37/I36/97 (accessed on 25 December 2021).
- Wu, D.; Zhang, Z.; Wang, Z. Application research of solidworks in modeling of straw carbonization preparation plant. J. Phys. Conf. Ser. 2019, 1303, 012048. [Google Scholar] [CrossRef]
- Qiu, F.; Zhang, C.; Guo, M.; Zheng, Z.; Shan, Y. Heterogeneity of the coupling relationship between the innovation capacity and industrial transformation of renewable resource-based cities in China. Sci. Geogr. Sin. 2020, 40, 1092–1103. [Google Scholar] [CrossRef]
- Wang, C.; Gao, C.; He, Y.; Wang, T.; Zhao, Y. Evaluation of industrial land in northeast China under the high-quality development. Low Temp. Arch. Technol. 2022, 44, 62–67. [Google Scholar] [CrossRef]
- Li, Y. A study of the mechanism of the aging population structure’s influence on economic development in northeast China. J. Northeast. Norm. Univ. (Philos. Soc. Sci.) 2022, 319, 127–138. [Google Scholar] [CrossRef]
- Qi, W.; Liu, S.; Jin, F. Calculation and spatial evolution of population loss in northeast China. Sci. Geogr. Sin. 2017, 37, 1795–1804. [Google Scholar] [CrossRef]
- Liu, B.; Yang, X.; Guo, J. Spatial correlation characteristics between urbanization development and land health utilization. Res. Soil Water Conserv. 2018, 25, 386–392+396. [Google Scholar] [CrossRef]
- Zhong, Z.; Jiang, L.; He, L.; Wang, Z.; Bai, L. Global carbon emissions and its environmental impact analysis based on a consumption accounting principle. Acta Geogr. Sin. 2018, 73, 442–459. [Google Scholar] [CrossRef]
- Denisov, V.A.; Kataev, Y.V.; Gerasimov, V.S.; Mishina, Z.N.; Ilmukhametov, A.F. Problems of the formation of resource-saving and environmentally oriented system “Agricultural recycling” in the agro-industrial complex. IOP Conf. Ser. Earth Environ. Sci. 2022, 981, 032003. [Google Scholar] [CrossRef]
- Seesaard, T.; Goel, N.; Kumar, M.; Wongchoosuk, C. Advances in gas sensors and electronic nose technologies for agricultural cycle applications. Comput. Electron. Agric. 2022, 193, 106673. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, Y.; Liu, Y. Food waste to biofertilizer: A potential game changer of global circular agricultural economy. J. Agric. Food Chem. 2020, 68, 5021–5023. [Google Scholar] [CrossRef]
- Shen, Y. On the necessity of legislation and practical path of agricultural circular economy. J. Shandong Agric. Eng. Univ. 2022, 39, 18–22. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Kwon, E.E.; Aminabhavi, T.M.; Dewil, R. Biochar in water and wastewater treatment—A sustainability assessment. Chem. Eng. J. 2021, 420, 129946. [Google Scholar] [CrossRef]
- Lyu, H.; Yu, Z.; Gao, B.; He, F.; Huang, J.; Tang, J.; Shen, B. Ball-milled biochar for alternative carbon electrode. Environ. Sci. Pollut. Res. 2019, 26, 14693–14702. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wang, S. Biochar preparation technology and the new application progress of biochar in ecological environment. J. Fudan Univ. (Nat. Sci.) 2022, 61, 365–374. [Google Scholar] [CrossRef]
- Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 2017, 237, 57–63. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L. Regime complex for international carbon trading and China’s role. Glob. Rev. 2021, 13, 42–57+153–154. [Google Scholar] [CrossRef]
Crop | Corn | Wheat | Sorghum | Soybean | Potato | Sunflower | Rice Grain |
---|---|---|---|---|---|---|---|
Grass Grain Ratio | 1.2 | 1.19 | 1.2 | 1.5 | 0.5 | 1 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Chen, X.; Guo, Y.; Wang, H. Study on Utilization of Biochar Prepared from Crop Straw with Enhanced Carbon Sink Function in Northeast China. Sustainability 2023, 15, 6104. https://doi.org/10.3390/su15076104
Huang X, Chen X, Guo Y, Wang H. Study on Utilization of Biochar Prepared from Crop Straw with Enhanced Carbon Sink Function in Northeast China. Sustainability. 2023; 15(7):6104. https://doi.org/10.3390/su15076104
Chicago/Turabian StyleHuang, Xinyi, Xue Chen, Yunzhi Guo, and Hanxi Wang. 2023. "Study on Utilization of Biochar Prepared from Crop Straw with Enhanced Carbon Sink Function in Northeast China" Sustainability 15, no. 7: 6104. https://doi.org/10.3390/su15076104