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Abstract: The presence of a high ripple in the inductor current of a DC-DC converter in a photovoltaic
converter chain leads to a considerable decrease in the energy efficiency of the converter. To solve this
problem, we consider a current-mode control and for economic reasons we used a single inductor
current sensor with a low-pass filter. The purpose of the low-pass filter is to minimize the effect
of ripple in the inductor current by taking only the DC component of the signal at the output of
the sensor for tracking the maximum power point. The objective of this paper is therefore to study
the stability of the photovoltaic system as a function of the filter frequency while maintaining a
good power level. First, we propose a general modeling of the whole system by linearizing the PV
around the maximum power point. Floquet theory is used to determine analytically the stability of
the overall system. The fourth-order Runge–Kutta method is used to plot bifurcation diagrams and
Lyapunov exponents in MATLAB/SIMULINK when the filter frequency varies in a limited range
and the ramp amplitude is taken as a control parameter. Secondly, the PSIM software is used to
design the device and validate the results obtained in MATLAB/SIMULINK. The results depicted
in MATLAB/SIMULINK are in perfect agreement with those obtained in PSIM. We found that not
only is the energy level maintained at the maximum power level of 85.17 W, but also that the stability
range of the photovoltaic system increased with the value of the filter cut-off frequency. This research
offers a wider range of parameters for stability control of photovoltaic systems contrarily to others
found in literature.

Keywords: current-mode control; photovoltaic system; bifurcations diagrams and Lyapunov exponent
graphics; Runge–Kutta method; Matlab and PSIM software

1. Introduction

In the difficult energy and economic context, expectations in terms of renewable
energies in general and solar Photovoltaic (PV) energy in particular is increasing [1–3].
Reducing the costs of PV systems, improving their performance and increasing their
efficiency are major concerns for researchers, in order to make them as competitive as
possible [4]. PV generators an interesting renewable energy source because it is not only
renewable but also inexhaustible and non-polluting. The ability to achieve the maximum
energy output is crucial for the optimization of generation system [5]. The output power of
a PV generator varies with weather conditions. A Maximum Power Point Tracking (MPPT)
controller is needed to force the PV system to operate at its optimal operating point [6–10].
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In general, a PV system consists of a PV generator, a DC-DC converter and a control system
that regulates certain electrical variables in order to extract the maximum energy from the
PV generator and transfer it to the load. The boost converter is the most used in small
PV systems as it converts the relatively low voltage of the PV panels and raises it to a
higher level, appropriate for the load [11]. To achieve MPPT, direct duty cycle control [12],
voltage mode control [13] and two-loop current-mode control [14–17] have been used.
In direct duty cycle control, the MPPT algorithm directly dictates the desired duty cycle
for MPPT (Figure 1a). The advantage of this approach is the simplicity of the scheme.
However, the performances of this strategy are very poor and severe oscillatory behavior
may be produced after any step change due to the MPPT P&O algorithm. Furthermore,
none of the previous structures provide an over-current protection, making impossible the
paralleling of converters in a PV system. To overcome this problem, voltage regulation can
be used as shown in (Figure 1b). The oscillatory behavior due to MPPT step changes may
be damped. However, the settling time could still be large. Under current-mode control,
the PV voltage regulation is conventionally carried out by means of cascaded feedback
loops, where the inner loop controls the inductor current and the outer loop regulates the
PV voltage (Figure 1c). With this control scheme, two current sensors are used—one for the
PV current and one for the inductor current [15] or the input capacitor current [13]. In [18],
the inductor current used for the current loop control is also used for estimating the PV
power and performing MPPT (Figure 1d).
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Figure 1. Different MPPT control strategies. (a) direct duty cycle control, (b) single-loop voltage
mode control, (c) two-loop current mode control with voltage loop closed and (d) current mode
control with voltage loop open with a single current sensor for both current and MPPT controls.

In single-loop voltage mode control and two-loop current-mode control, voltage
regulation has been always used to attain predetermined closed-loop performance in
terms of the system settling time due to changes in the weather conditions and/or MPPT
parameter step changes [14,19,20]. In both control schemes, PI controllers have been
used with the aim to make steady state error zero. This dynamic controller may slow
down the system response. In reality, the main objective in a PV system is to track the
maximum power and not to regulate the voltage. Thus, the two-loop current-mode control
strategy is not necessary. In this paper, instead of using single loop voltage control and
two-loop involving both voltage and current control, the single-loop current control is
used. It offers many advantages in a PV system such as fast response among others [21].
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Furthermore, peak current-mode control is used without the need for an integrator which
may slow down the system response. However, a noticeable ripple (up to 30%) is present
in the inductor current of a switching DC-DC converter. Since we only need the DC
component of the current to perform MPPT, a low-pass filter Hi(s) is necessary for the
current loop. The technique prevents from sensing the PV generator current. A shunt
sensor is placed at the input of the power converter and used for both current-mode control
and PV power estimation. It is worth noting that this low-pass filter is naturally existing in
some current sensors with limited cut-off frequency. These results are simple but efficient
and feature a fast-tracking capability. The proposed technique will be validated with
numerical simulations, showing that the transient duration under irradiance variations
or step changes due to the P&O MPPT controller is greatly reduced as compared to other
existing techniques, thereby realizing the fast current response and MPPT under current
mode control.

Figure 2 shows a boost converter under a single-loop current-mode control for MPPT
with two sensors and with a single sensor with pre-filtering. The scheme of Figure 2b
depicts the proposed solution for the control of the DC-DC converter which is based on pure
peak current-mode control without an outer voltage loop. This control method provides
an efficient cycle by cycle over current protection. The concept can be extended to any
topology of DC-DC converter and another advantage of peak current-mode control in PV
systems is that the transfer function to be compensated is non-minimum phase for all the
converter topologies.
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Figure 2. Boost converter fed by a PV generator with MPPT and current mode controller. (a) the
MPPT control is performed by using the PV current. (b) The MPPT control is performed by using the
filtered inductor current.

It is well known that DC-DC converters under current model control may exhibit a rich
variety of nonlinear phenomena [22]. In particular, when filtering is added to the current
loop, the conventional results are widely known in the power electronics community [23]
to become inaccurate in predicting the onset of period-doubling bifurcation [11]. Thus,
it is necessary to use an appropriate model that allows to predict mathematically the
onset of this bifurcation. Such a model would also offer useful physical insights into the
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behavior of the system without the need for excessive numerical simulations. In this paper,
we propose to use the single-loop control scheme for DC-DC converters when used in
a PV system. We suggest to use the inductor current both for controlling the converter
to a reference provided by a P&O MPPT algorithm as well as to estimate the average
value of the PV source power which is used by the same algorithm. It is shown that
period-doubling bifurcation arises from the instability of the inner current loop of the
DC-DC converter and is not significantly related to the nonlinearity of the PV generator.
Therefore, linearizing appropriately the PV generator model does not affect the accuracy of
the model in predicting the period-doubling bifurcation of the system. This is especially
beneficial for modeling PV systems and analytically predicting their period-doubling
bifurcation behavior. Circuit-level simulations from a switched model verify the theoretical
findings. As an example, we present a study of a PV-fed boost converter used in micro-
inverter applications.

The scope of this work falls into the DC-DC converter technology. We recall that
the current-mode control is a predominant strategy in controlling DC-DC switched-mode
power electronic converters for different applications. This is due to many advantages such
as fast system response, better system performances and inherent over current protection,
the easy parallel operation but it is rarely used in PV applications. A PV system under
study consists of a PV generator interlinked to a DC-DC boost converter which is subject
to various nonlinear phenomena under the current-mode control. Facing the challenges
previously established, the main contribution of this paper are as follows:

1. Propose a flexible control based on the inductor current filtered by a low-pass filter
integrating a relevant MPPT P&O algorithm to estimate the average value of the PV
source power;

2. Propose suitable orbital stability tools such as Floquet theory to study the stability of
the overall system under consideration as a function of the cut-off frequency of the
low-pass filter and the amplitude of the ramp signal;

3. Develop a bifurcation analysis of the DC-DC power system with MATLAB/SIMULINK
based on the fourth-order Runge–Kutta numerical method for a deep study of
the stability;

4. Develop a bifurcation analysis of the DC-DC power system with the PSIM software
that is close to experimental interpretation of the DC-DC system dynamic.

The rest of the paper is organized as follows: Section 2 presents materials and methods.
Section 3 presents Results and Discussions and finally, concluding remarks are presented
in Section 4.

2. Materials and Methods
2.1. System Evaluation

Let us consider the boost converter under current-mode control shown in Figure 2b.
As far as the converter is concerned, it plays the role of an interface, for matching the energy
flow between the source and the load [24]. The input capacitor with capacitance C1 is used
to smooth the voltage supplied by the PV to avoid ripples due to the nonlinearity of the PV
generator. An LC filter is also used at the output to reduce switching ripples due to the
switching nature of the converter and to provide a smooth output current to the DC output.
Another function of our DC-DC converter is to track the maximum power point (MPP)
by controlling the reference signal Rsiref, using the perturbation and observation (P&O)
algorithm, which increases or decreases the value of the reference signal Rsiref in order to
position the PV operating point at its MPP at all times. The signal RsiL is low-pass-filtered
using Hi(s) to obtain the signal RsiL f , where Rs is the sensor resistance. Considering a
unity gain first-order filtering effect of the current sensor, the equation relating iL f to iL in
the Laplace domain is

IL f (s)
IL(s)

=
ωc

s + ωc
, (1)



Sustainability 2023, 15, 6097 5 of 19

where ωc is the cut-off frequency of the filter. In time domain, this equation can be expressed
as follows

diL f

dt
= −ωciL f + ωciL. (2)

The filtered signal iL f is used both for current-mode control and for obtaining the aver-
age PV power after multiplying it by the PV voltage vpv. For current-mode control, the sig-
nal RsiL f is compared with the reference signal Rs Iref − vramp, where vramp = mat mod T
is the ramp compensating signal, ma = VM/T is its slope, VM is its amplitude and T is its
period. The control logic compares the signal RsiL f with the signal Rs Iref − vramp in such
a way that at the beginning of each switching cycle with the period dictated by the clock
signal CLK, the switch S is turned ON and OFF whenever the signal RsiL f reaches the signal
Rs Iref − vramp. The binary signal u is a result of this switching decision and it takes the
value 1 when the switch is turned ON and 0 when it is turned OFF. The current reference
Rs Iref is provided by the MPPT.

A flowchart for current-mode control proposed in this work is shown in Figure 3.
The program loop starts with the initialization of the voltage at the PV terminal, the current
through the inductor and the voltage at the load (Block 2). These initial values are used
to set the initial value of the reference voltage. In practice, the initial reference voltage
is imposed by Vref,init = 0.85× VMPPT,max [18]. Therefore, the choice of the initial values
in the system must be made taking into account this condition on the reference voltage.
When the irradiation is uniform, the P&O MPPT algorithm and CMC keep operating at
the MPP (Block 3, Block 4, and Block 5). The P&O algorithm verifies fluctuations of power
and voltage of PV array and determines the set-point voltage Vref constantly. To maximize
the output power from the PV array, its output voltage needs to be maintained at the
level determined by the P&O algorithm. The resulting reference current Iref from the
reference voltage will produce the control signal that will be used by the pulse width
modulation (PWM) for the boost converter switch. During the switching of the boost
converter, the fourth-order Runge–Kutta algorithm is used to determine the dynamics
taken by the converter (the values of the converter states and the values of the duty cycle)
over time (Block 7, Block 8, Block 9). It should be noted that all numerical simulations
in this paper are performed using MATLAB/SIMULINK. Other software such as C++,
Fortran or Python could also be used because it is the simulation of ordinary differential
equations [25–29].

2.2. Mathematical Modeling

Considering the system shown in Figure 2, applying Kirchhoff’s laws, we obtain the
following system of equations:

dvpv

dt
=

ipv

C1
− iL

C1
, (3)

diL
dt

=
vpv

L
− r

L
iL −

v2

L
(1− u), (4)

dv2

dt
=

E− v2

RC2
+

iL
C2

(1− u), (5)

where vpv and ipv represent the voltage and current of the PV source, respectively. These
two variables are related with a highly nonlinear and implicit Equation (3). iL is the current
of the inductor, and u is the state of the switch. C1 is the capacitance directly connected
to the PV and its role is to smooth the voltage at the output of the PV. L represents the
inductance, VCC the output voltage of the battery. r is the equivalent resistance in series
with the coil and the equivalent resistance that can be felt at the output of the converter
is R.
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Figure 3. Flowchart of the proposed technique.

A PV generator represents a fundamental power source of a PV system. The output
current/voltage characteristics depend on the solar irradiance and temperature. The PV
generator has nonlinear electrical model with a single maximum power point (MPP).
The performance of a PV generator is evaluated under standard test conditions, where the
irradiance is normalized at 1 kW/m2 and the temperature is defined at 25 ◦C. A PV gener-
ator is characterized by its current–voltage characteristic (I–V) which can be subdivided
into three operating zones, a linear zone with a practically constant current, a concave zone



Sustainability 2023, 15, 6097 7 of 19

with almost constant voltage and an MPP which is the desired point for operation. Since
this is the optimal point, the nonlinear characteristic (I–V) is linearized close to the MPP
using Taylor’s series expansion and ignoring high-order terms. The (I–V) equation of the
PV model can be approximated by the following linear Norton equivalent model [11]:

îpv ≈ 2impp −
Impp

Vmpp
v̂pv + 0(v̂2

pv). (6)

Although numerical simulations could be performed using the nonlinear PV model,
the linear model is useful to perform steady-state analysis, for controller design, stability
analysis and for prediction of bifurcations. The state-space model of the power stage (3)–(5)
together with (2) describing the current sensor and the switching logic determining the
value of the binary control signal u appearing in (4) and (5) represent the closed-loop model
of the PV system. While the nonlinear model of the PV generator can only be used for
performing numerical simulations, the switched model with linearized PV generator model
can be used for mathematically predicting the onset of period-doubling bifurcation in
the system.

2.3. Steady-State Analysis

Obtaining the steady-state duty cycle D requires performing steady-state analysis.
Under MPPT conditions and in steady-state operation, the following equalities hold

V2(1− D) = Vmpp − rImpp, V2 = E + RImpp(1− D). (7)

Solving both equations for the steady-state duty cycle D, one obtains

D = 1− 1
2RImpp

(√
4RImpp(Vmpp − rImpp) + E2 − E

)
. (8)

Note that when the parasitic resistance r and R are negligible, one has which is the
well-known expression of the duty cycle of an ideal boost converter with input Vmpp and
output E. Since, under MPPT control and steady-state operation, the PV current will be
equal to Impp and since the average capacitor voltage at the input port of the converter
is zero, the inductor current average value in steady state will be also equal to Impp.
For this reason, the reference current under steady-state operation must be given by the
following expression

Iref = Impp + (
ma

Rs
+

m1

2
)DT − 1

Rs

m1(1− e−DTωc)

ωc
, (9)

where

m1 =
Vmpp − rImpp

L
, ma =

VM
T

. (10)

Note that if ma = 0 (no ramp compensation) and ωc → ∞ (ideal current sensor),
the previous expression becomes

iref = Impp +
m1

2
DT = Impp + ∆iL, (11)

where ∆iL = m1DT/2 is the ripple amplitude of the inductor current. Since iref is the peak
value under the previous conditions, this guarantees that the average value of the inductor
current will coincide with Impp in steady state and will also ensure the PV current in the
sense of the average steady-state input capacitor current is zero.

Figure 4 shows the evolution of the reference current ire f in terms of the ramp ampli-
tude VM and for two values of the output voltage E.
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(a) (b)

Figure 4. The evolution of the current reference ire f in terms of the ramp amplitude VM according
to (9). (a) E = 60 V. (b) E = 48 V.

We notice from the above tables, that, whatever the value of ωc, the reference current
increases with the amplitude of the ramp VM. Moreover, as ωc increases, the curves ire f in
terms of VM tend to be confused.

It is good to note that to maintain the same average inductor current and to make it
equal to the MPP current, the current reference in the peak of the current loop control has
been adapted according to (9).

2.4. Floquet Theory
2.4.1. The Piecewise Linear State-Space Switched Model Close to the Maximum
Power Point

The periodic equation to be considered for our purposes will be expressed in the
state-space representation (or matrix representation). This form lends itself well to the
calculation of the solution of a differential equation system. The dynamics will be expressed
as a function of a vector of variables, which we will call the state vector. Assuming that our
subsystem is linear and time-invariant, the evolution of each subsystem is defined by:

ẋ = A1x + B1W if u = 1,
ẋ = A0x + B0W if u = 0.

(12)

where x = (x1x2x3x4)
T , A1, B1, A0, B0 are the state and input matrices correspond-

ing to the different switch states and the external input parameters vector are given by:

A1 =


− 1

RpNC1
− 1

C1
0 0

1
L − 1

L r 0 0
0 0 − 1

RC2
0

0 wckp 0 −wc

, (13)

A0 =


− 1

RpNC1
− 1

C1
0 0

1
L − 1

L r − 1
L 0

0 1
C2

− 1
RC2

0
0 wckp 0 −wc

, (14)
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B1 =


2

C1
0

0 0
0 1

RC2
0 0

, (15)

B0 =


2

C1
0

0 0
0 1

RC2
0 0

, (16)

W =

(
impp

E

)
. (17)

The switching condition in Figure 2 is given by:

h(x, t) = Rs

(
ire f − Kx

)
− VM

T
t, (18)

with VM
T t = Vramp, the vector K is given by:

K =


0
0
0
−1


T

. (19)

2.4.2. Stability Analysis Using Floquet Theory

The differential equations describing the dynamics of switching converters are time-
periodic with the switching period T determining the periodicity of solutions at the fast
switching scale. Floquet theory has been widely used in the analysis of the stability of
dynamical systems [30] in general and in switching converters in particular [11,31,32].
For DC-DC converters, the stability dynamics at the fast switching cycle can be accurately
predicted by analyzing the stability of the fixed points of the Poincare map of the system
using its Jacobian matrix or using Floquet theory combined with the Filippov method
which leads to the same results as the Poincare map [33]. The main tool for studying the
stability of periodic orbits using Floquet theory is the principal fundamental matrix or the
monodromy matrix M. This matrix plays a key role in the accurate stability analysis of
switching systems [34–36]. The dynamics in the vicinity of a quasi-static periodic orbit can
be expressed in the monodromy matrix as follows:

x̂(t + T) = Mx̂(t) ∀t, (20)

where the overhat stands for small signal variations. Its eigenvalues are called the charac-
teristic multipliers or Floquet multipliers and it can be seen that they determine the amount
of contraction or expansion near a periodic orbit and hence they determine the stability of
these periodic orbits. It can be obtained by computing the state transition matrices before
and after each switch and the saltation matrix that describes the behaviors of the solution 7
switching [24] which are described in the following.

Let X(DT) = (I −Φ)−1Ψ be the steady-state value of X at time instant DT, where
Φ = Φ1Φ0, Φ1 = eA1DT , Φ0 = eA0(1−D)T ,

Ψ = eA1DT A0
−1
(

eA0(1−D)T − I
)

B0W + A1
−1
(

eA1DT − I
)

B1W. (21)

The monodromy matrix use [11] can be expressed as follows P = Φ0 S Φ1

P = Φ0 S Φ1, (22)
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where S is saltation matrix and is given by:

S = I +
(A0X(DT)− A1X(DT)) KT

KT (A1X(DT) + B1W) + ma
. (23)

Equations (22) and (23) will allow us to determine the Floquet multipliers. According
to Floquet’s theory, if only one multiplier has a value equal to −1, then the dynamics of
the system presents period doubling bifurcation. In general, the occurrence of the critical
point of this bifurcation has two regions: a region of subharmonic oscillation and a region
of periodic oscillation of period-1. The second region described above is the stability region
in power systems [24].

3. Results and Discussions
3.1. Floquet Theory on the Stability
3.1.1. Simulations Results in MATLAB/SIMULINK Software

The monodromy matrix is explained in Equation (23). Using a code developed in
the MATLAB software, we find the eigenvalues noted as λ of this monodromy matrix.
These eigenvalues are solutions of equation det(P− λI) = 0. Figure 5 is the representation
in the complex plane of the Floquet multipliers when the amplitude VM varies from 0.0
to 3, for three values of the cut frequency fc = fs

2 , fc = fs, fc = 2 fs with fs = 50kHz and
for two values of the output voltage (E = 60 VandE= 48 V). It should be noted that the
period-1 orbit will lose stability and bifurcate into period-2 (sub-harmonic oscillation) if
the system has the phenomenon of smooth period-doubling when a control parameter
varies. Moreover, at this value of the control parameter, period-1 is destroyed and period-2
is created. Indeed, one of the Floquet multipliers is approximately equal to 1, which allows
us to say that at this value of the amplitude VM the period-1 orbit destabilizes and gives
way to a sub-harmonic oscillation of period 2. In Figure 5, the followings remarks can
be noticed:

Remark 1. We find that for several values of the gain VM, the moduli of the Floquet multipliers are
located in the circle of unit radius synonymous with the stability of the period-1 orbit. In addition,
for other ranks of the parameter VM, the Floquet multipliers are located outside the circle of unit
radius, which is synonymous with destabilization of the periodic orbit of period-1.

Remark 2. We observe that when for E = 60 V, E = 48 V, fc is increasing, i.e.,
(

fc =
fs
2

)
<

( fc = fs) < ( fc = 2 fs), the critical values VM (allowing us to set the boundary between period-1
oscillations and subharmonic oscillations) evolve in a decreasing manner, i.e., VM fs

2

> VM fs
>

VM2 fs
. We can conclude that the stability zone increases with the cut-off frequency, this conclusion

justifies once again the bifurcation diagrams in Figure 6.

3.1.2. Simulations Results in PSIM Software

Figure 7 shows the results of the stability study of our system in the PSIM software.
The PSIM software is a power electronics simulation software. We notice a similarity
between the results obtained with PSIM and those obtained with MATLAB/SIMULINK.
In the following, we will use the bifurcation diagrams for a more detailed study.
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Figure 5. MATLAB simulation of evolution of the Floquet multipliers of the PV system by taking
the amplitude of the carrier signal amplitude VM as a bifurcation parameter for different values
of the current sensor bandwidth ωc and DC output voltage E. The critical values of VM at which
period doubling bifurcation takes place are indicated. (a) fc =

fs
2 , E = 60 V; (b) fc = fs, E = 60 V;

(c) fc = 2 fs, E = 60 V; (d) fc =
fs
2 , E = 48 V; (e) fc = fs, E = 48 V; (f) fc = 2 fs, E = 48 V.

(a) (b) (c)

(d) (e) (f)

Figure 6. Bifurcation diagrams in MATLAB software by taking the amplitude of the carrier signal
amplitude VM as a bifurcation parameter for different values of the current sensor bandwidth ωc and
DC output voltage E. (a) fc =

fs
2 , E = 60 V. (b) fc = fs, E = 60 V. (c) fc = 2 fs, E = 60 V. (d) fc =

fs
2 ,

E = 48 V. (e) fc = fs, E = 48 V. (f) fc = 2 fs, E = 48 V.
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Figure 7. PSIM software simulation of Evolution of the Floquet multipliers of the PV system by taking
the amplitude of the carrier signal amplitude VM as a bifurcation parameter for different values
of the current sensor bandwidth ωc and DC output voltage E. The critical values of VM at which
period doubling bifurcation takes place are indicated. (a) fc =

fs
2 , E = 60 V. (b) fc = fs, E = 60 V.

(c) fc = 2 fs, E = 60 V. (d) fc =
fs
2 , E = 48 V. (e) fc = fs, E = 48 V. (f) fc = 2 fs, E = 48 V.

3.2. Bifurcation Behavior from the Nonlinear Circuit-Level Switched Model with the Linear Model
of the PV Generator from MATLAB/SIMULINK Software

Bifurcation diagrams constitute appropriate means of recapitulating different tran-
sitions to chaos in the system in terms of different parameter values. The maximum
Lyapunov exponent is complementary with bifurcation diagram, it is the tool that allows
us to conclude if the system is chaotic or not and there are computed following the well-
known Wolf algorithm [37]. In this section, the numerically dynamics behavior of our
system is performed in MATLAB/SIMULINK software by integrating system (3) using
the most frequent fourth-order Runge–Kutta scheme [38] adapted to DC-DC converters
which offers a better accuracy for solving single-step differential equations unlike the dis-
cretization method developed in the literature. First, the system has been carefully studied
through simulations using the linear model of the PV generator in MATLAB software. We
used a fixed time step equal to h = 5× 10−8, a total number of iterations N = 106 and
a transient phase-cut to N′ = 8× 105 The bifurcation diagram and graphs of maximal
Lyapunov exponents presented below are obtained for three values of the cut-off frequency,
i.e., fc = fs

2 , fc = fs, fc = 2 fswith fs = 50 kHz , and for two values of DC output voltage
(E = 60 V and E= 48 V), we use ramp amplitude VM as a bifurcation parameter. The local
maximas of the duty cycle and the local maximas of the output power of the generator
made it possible to plot bifurcation diagrams. The dynamics of the MPPT algorithm is
neglected because it is usually much slower than the converter dynamics. The values of the
parameters used for this study are shown in Tables 1 and 2.
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Table 1. Boost converter parameters.

Parameters Values

C1 10 µF
L 200 µH
r 100 mΩ
E 48 V and 60 V
R2 200 mΩ
Rs 1 Ω
C2 47 µF
iref updated according to (9)
fs 50 kHz
fc variable

VM Variable

Table 2. Parameter of the PV generator (BP 585 module).

Parameters Values

Maximum power Pmpp 85.17 W
Voltage at maximum power Vmpp 18.28 V
Current at maximum power Vmpp 4.66 A

Maximum power Pmax 85.17 W
Short-circuit current Isc 5 A
Open-circuit voltage Voc 21.1 V

Figure 6 shows the bifurcation diagrams when the VM parameter varies for different val-
ues of cut-off frequency and output voltage. For E = 60 V and

(
fc =

fs
2 , fc = fs, fc = 2 fs

)
,

we can observe in Figure 6a–c inverse period-doubling phenomena from chaos to period-
1 chaos → period − 8 → period − 4 → period − 2 → period − 1 and when the ordinate
axis is a representation of the local maxima of the duty cycle. For a representation of the
local maxima of the power output of pv on the ordinate axis of the same figure Figure 3
(a1, b1, c1) show that we start directly from chaos in period-1, we also remark that the
system stabilizes at the maximum power point, which shows that our MPPT controller
used is good. In the same figure, we can see that when the cut-off frequency increases, i.e.,(

fc =
fs
2

)
< ( fc = fs) < ( fc = 2 fs) the critical value VM represents the boundary between

the periodic oscillations of period-1 and the subharmonic oscillations decrease. In other
words, when the cut-off frequency increases, the system tends to lose its subharmonic
behaviour. Thus, the cut-off frequency increases with the stability range, which is inter-
esting for this study since the desired behavior for a pv energy conversion chain is the
periodic behavior.

For E = 48 V and fc ∈
(

fs
2 , fs, 2 fs

)
, Figure 3 (d1, e1, f1), we can also observe inverse

period-doubling phenomena from chaos to period 1 and a faster loss of chaos. We can,
therefore, conclude in this part that it is desirable to choose E = 48 V as the output voltage
of the battery instead of E = 60 V because it is at this value and for different values of the
cut-off frequency that the system tends to quickly lose subharmonic behaviors since the
desire behavior for this type of application is the periodic behavior.

Figure 8 shows the Lyapunov exponent graphs complementary with the bifurcation
diagrams in Figure 6. These graphs are obtained for three values of the cut-off frequency
and for two values of the output voltage and in the VM zone between 0 ≤ VM ≤ 1,
in this area, we observe in Figure 8 negative values of the maximum Lyapunov exponent
which correspond to regular oscillations in the system and positive values corresponding
to subharmonic oscillations. We can also remark that the cut-off frequency increases with
stability, which justifies the bifurcation diagrams of Figure 8.
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Figure 8. Lyapunov exponent diagrams in MATLAB/SIMULINK software by taking the amplitude
of the carrier signal amplitude VM as a bifurcation parameter for different values of the current sensor
bandwidth ωc and DC output voltage E. (a) fc =

fs
2 , E = 60 V. (b) fc = fs, E = 60 V. (c) fc = 2 fs,

E = 60 V. (d) fc =
fs
2 , E = 48 V. (e) fc = fs, E = 48 V. (f) fc = 2 fs, E = 48 V.

The bifurcation diagrams Figure 6 and Lyapunov exponent in Figure 8 show an
overlap between regular and irregular behaviors in the subharmonic oscillation zone.
In addition, the bifurcation diagrams in Figure 6 show border collision [39–41] respectively
to the critical values VM = 1.42 V, VM = 1.31 V, VM = 1.25 V (see Figure 6a–c) and
VM = 0.93 V, VM = 0.74 V, VM = 0.65 V (see Figure 6d,e,f).

Remark 3. We note that for E = 60 V, the critical values VM, Figure 6a–c, are superior to those of
E = 48 V Figure 6d–f; this means that the range of stability is greater when E = 48 V compared
with E = 60 V. Therefore, it is desirable to choose E = 48 V as the battery output voltage instead of
E = 60 V because it is at this value and for different values of the cut-off frequency that the system
tends to quickly lose the subharmonic behaviours and increases the stability range.

3.3. Bifurcation Behavior from the Nonlinear Circuit-Level Switched Model with the Nonlinear
Model of the PV Generator from PSIM Software

The circuit diagram for the current-mode-controlled boost converter is constructed
using the PSIM simulation software. The selection of component parameters is consistent
with the numerical simulation in Tables 1 and 2. In this part, nonlinear phenomena such as
bifurcations are exhibited, using the nonlinear and linear models of the PV generator, the VM
bifurcation parameter, the different values of the output voltage (E = 60 V and E= 48 V)

and the different values of the cut-off frequency fc =
fs
2 , fc = fs, fc = 2 fs with fs = 50 kHz

being equal to those used in numerical simulations in MATLAB. Comparing the simulation
bifurcation of the nonlinear model of the pv generator in Figure 9 ( PSIM simulation)
with that in Figure 6 (MATLAB simulation), it can be seen that the results are in almost
perfect agreement.

Note here that the results presented in these two figures are identical, for example, for
E = 60 and

(
fc =

fs
2

)
, the critical value obtained is the same in both cases and is equal to

VM = 1.42 V. We want to show through these two graphs that linearizing appropriately
the PV generator model does not affect the accuracy of the model in predicting the period-
doubling bifurcation of the system. The aim is to study the linear model of PV generator,
which is going to help us to study the stability of our system, as it is very difficult to study
stability with the nonlinear model of PV.
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𝑉𝑀 = 1.42 V 𝑉𝑀 = 1.31 V 𝑉𝑀 = 1.25 V

𝑉𝑀 = 0.93 V 𝑉𝑀 = 0.74 V 𝑉𝑀 = 0.65 V

Figure 9. Bifurcation diagrams obtained by taking the amplitude of the carrier signal amplitude VM

as a bifurcation parameter for different values of the current sensor bandwidth ωc and DC output
voltage E. The linearized model of the PV generator close to the MPP was used.

Remark 4. Figure 9 shows the bifurcation with the nonlinear model of the PV generator substituted
by its linearized model constituting a linear resistance Vmpp/Impp and a current source 2Impp. It
can be observed that the matching between these bifurcation diagrams and those obtained in Figure 6
is excellent. It is widely believed among the power electronics community that with values of steady-
state duty cycles of less than 0.5, no external ramp is needed to achieve a stable system. However,
from the previous bifurcation diagrams, it is clear that the system is still prone to period-doubling
bifurcation even for D < 0.5 if the cut-off frequency of the current sensor is relatively low. Therefore,
a ramp slope compensation is also necessary for duty cycle values less than 0.5.

3.4. Stability Boundaries in the Parameter Space

Now that the nonlinear behaviour of the PV system under peak current-mode control
is understood and the mechanisms of losing stability are known, the stability boundary for
useful practical design will be determined.

The focus of this paper is on the period-doubling bifurcation boundary. The results
helps in setting the design parameters as they show the stable region in the paramet-
ric space.

One of the ways to locate the subharmonic oscillation boundary is by using the
expression of the characteristic equation det(P− λI) = 0, imposing the period-doubling
condition in the eigenvalue λ and solving the resulting equation together with the steady-
state condition. Therefore, at the boundary of this bifurcation, the following conditions hold

det(P + I) = 0, (24a)

x(DT)− x((D + 1)T) = 0, (24b)

where 0 ∈ R4 is a null vector. Note that the integral state variable can be determined
by (24b).

Figure 10 presents the stability study in two dimensions of the photovoltaic system
obtained in MATLAB/SIMULINK. It clearly shows the regions of stability (period-1 oscilla-
tions) and instability (subharmonic oscillations) of the system in the E-plane for three values
of the cut-off frequency: blue fc = fs/2, red fc = fs and yellow fc = 2 fs. The other system
parameters are taken as in Tables 1 and 2. We see on this map that when 20 V ≤ E ≤ 30 V,
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the system does not show period-doubling phenomenon except for fc = fs/2. In this case,
this map is not sufficient to conclude on the system stability. Moreover, for 30 V ≤ E ≤ 70 V,
the stability domain of the photovoltaic system increases with the filter cut-off frequency.
Finally, for 70 V ≤ E ≤ 90 V, the filter cut-off frequency has no influence on the stability of
the PV system. These results are more complete than the results obtained in the previous
sections, so this map will be a crucial tool in the decision-making process for engineers
in industries.

Figure 10. Stability boundaries in the plane E − VM for different values of cut-off frequency in
MATLAB/SIMULINK software. fs is fixed at fs = 50 kHz. Where: A(60v,1.42v), B(60v,1.42v),
C(60v,1.25v), D(48v,0.93v), E(48v,0.74v), and F(48v,0.65v) are the period splitting type bifurcation
occur in the system. A and D are for fc = fs/2 ; B and E are for fc = fs ; and C and E are for fc = 2fs

Figure 11a shows the critical curves in the plane D − VM for different values of fc.
The conventional boundary with ωc → ∞ is also shown. Figure 11b shows the critical
curves in the plane E− VM for different values of fc. The critical points for E = 48 and
E = 60 are indicated in the figure. The critical values of the ramp amplitude for the different
values of E and fc remarkably coincide with the critical values obtained by the bifurcation
diagrams in the previous section. For instance, for point A, one has E = 60 V and fc = fs/2
and the critical point of VM is 1.42 V agreeing with the bifurcation diagram of Figure 6a.
Above the curves, the system is stable and below it, it exhibits period-doubling bifurcation.
The critical curve in the plane D − VM passes very close to the point (0, 1

2 ) as long as
fc is relatively small. This curve becomes concave in this plane when VM is increased.
By increasing the ramp amplitude VM, the region of stability is widened for D > 1

2 and is
reduced for D < 1

2 . Furthermore, the stable region becomes wider when increasing the
cut-off frequency. These last results obtained with PSIM software are in perfect agreement
with those of Figure 10 obtained with MATLAB/SIMULINK software.
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Figure 11. Stability boundaries for different values of cut-off frequency in PSIM software: (a) in the
plane D−VM; (b) in the plane E−VM. Where: A(60v,1.42v), B(60v,1.42v), C(60v,1.25v), D(48v,0.93v),
E(48v,0.74v), and F(48v,0.65v) are the period splitting type bifurcation occur in the system. A and D
are for fc=fs/2 ; B and E are for fc = fs ; and C and E are for fc = 2fs.

4. Conclusions

This paper focuses on the nonlinear behaviour and stability of the current-mode-controlled
boost converter with the battery load. First, numerical analysis of its state equations, bifurca-
tion diagrams and Lyapunov exponent was conducted in MATLAB/SIMULINK Software
using a linear model of PV. Secondly, analogy simulations using PSIM were performed using
a nonlinear models of the PV generator. The stability of a boost converter supplied by a
PV panel was studied. To make an analytical study possible, the nonlinear PV generator
has been linearizing around its MPPT. The simulation results considered three values of the
cut-off frequency and two values of the output voltage. They showed through the bifurcation
diagrams and the Lyapunov exponent that the system presents nonlinear phenomena such
as chaos and periodic motion, which are influenced by system parameters and topological
structure. The numerical results obtained in MATLAB/SIMULINK software are remarkable
in their agreement with the analogy simulations in PSIM. We can also mention that linearizing
appropriately the PV generator model does not affect the accuracy of the model in predicting
the period-doubling bifurcation of the system. In general, we have seen that the stability
increases with the frequency of the cut which is interesting about this study since the type of
behaviour desired for a PV is the period-1.
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