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Abstract: Due to the special internal and external dynamic action of the Qinghai-Tibet Plateau,
the high and cold valleys are typically characterized by high-steep terrain, dry and cold climate,
lithologic diversity, complex geological structure, and frequent occurrence of earthquakes. In this
study, the types of special geotechnical structures of bank slope deposits in high and cold valleys
are summarized based on field investigation, field and laboratory tests, and numerical simulation.
These special deposits include colluvial-deluvial deposits, terrace deposits, early debris flow deposits,
and landslide deposits. The formation mechanism, physical and mechanical properties, and stability
analysis of these deposits were studied. The results show that the formation mechanism of various
deposits is different, which is closely related to the intense geological tectonic action, the weathering
and unloading action intensified by freezing and thawing cycles, and the special rock and soil
structure in the high and cold valleys. Different material compositions have obvious effects on the
physical and mechanical properties of the deposits, thus affecting the stability and deformation
characteristics of the deposits. Under natural and saturated conditions, the stability of different types
of the deposits is different, which is mainly related to the special geotechnical structure of various
deposits. Compared with that before the reservoir impoundment, the stability factor of various
deposits after the reservoir impoundment is significantly reduced. The performances can be provided
as a reference for evaluating the stability of bank slope deposits in high and cold valleys.

Keywords: high and cold valley; special geotechnical structure; deposits; stability analysis;
reservoir impoundment

1. Introduction

The Qinghai-Tibet Plateau is regarded as the Earth’s third pole characterized by intense
tectonic activities, a dry and cold climate, deeply incised valleys, and frequent occurrence
of earthquakes [1,2]. Various deposits in high and cold valleys are widely distributed on
both banks of the river due to complex and adverse geological environments, which have
large burial depths and large volumes [3,4]. In particular, since the construction of the
hydropower project in the southeast of the Qinghai-Tibet Plateau, the change of the physical
and mechanical parameters and stability of the bank slope deposit after impoundment
is the biggest change in the geological environment of the hydropower station area [5,6].
In the complex topographic and geological background of the high and cold valleys, the
change of the geological environment has more particularity, which is very likely to lead to
the revival, deformation and destruction of the special deposits, bringing new challenges
to the project construction [7,8].

Colluvial-deluvial deposits have numerous gravel, sand, and loose materials, char-
acterized by a weak structure, high erodibility, low cohesion, and poor stability [9–13].
The deposits disintegrate rapidly when they are immersed, then abundant sediments are
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generated and flow out of the gully through scour channels [14–17]. Therefore, numerous
sediments released from the colluvial-deluvial deposits can destroy the area downhill of a
collapsing gully [18,19]. The erosion of the colluvial-deluvial deposits should be taken into
consideration. However, the special characteristics and formation mechanism by which the
deposits are eroded have not been thoroughly investigated and still need in-depth study
on the high and cold valleys. In the high and cold valleys, fluvial terraces that can supply
information about the response of a river system to tectonic and climate changes are impor-
tant landforms [20,21]. However, the influences of the tectonic and climate changes on the
spatial distribution of the terrace deposits remain unclear [22]. The greatest challenge is to
interpret terrace records from regions where climate changes are overlaid on spatial and
temporal variations in tectonically driven rock uplift [23]. Furthermore, the investigation
on the thickness of the terrace deposits is not detailed in high and cold valleys. In the
Qinghai-Tibet Plateau, numerous debris flow deposits are developing from the erosion of
the colluvial-deluvial deposits and landslide deposits [24–26]. These deposit materials are
in an understable state in the dry season while they can offer source materials for debris
flow deposits in the wet season [27]. Due to high-steep terrain in the valleys, a large land-
slide movement with high velocity can easily transform into high-speed and long-distance
debris flow [28]. Complex geological environments cause large landslides in the Three Par-
allel Rivers (including Jinsha River, Lancang River, and Nujiang River) area at the junction
of Tibet and Sichuan in the Qinghai-Tibet Plateau, and complex formation mechanism of
landslide deposits in different regions [1,2]. These landslide deposits are mainly distributed
along major rivers due to the existence of steep deeply incised valleys [1]. The instability of
these landslides will destroy everything that they encounter, and results in catastrophic
consequences [2]. However, few studies are paying attention to the distribution of the
landslide deposits in the high and cold valleys and their formation mechanism.

In China, more and more hydropower stations are being built in the high and cold
valleys of the Qinghai-Tibet Plateau. Numerous deposits and unstable slopes exist in the
construction process of the hydropower stations and during the reservoir impoundment. A
good understanding of the unstable deposit distribution and corresponding deformation
and failure characteristics is helpful for the prevention and reduction of the unstable
deposits. In this study, the formation mechanism, physical and mechanical properties,
and stability analysis of the bank slope deposits with the special geotechnical structure
in the high and cold valleys on the Qinghai-Tibet Plateau are presented based on the
field investigations of several hydropower stations, field and laboratory tests of soil mass,
and numerical simulations of the deposits. Furthermore, the influences of the reservoir
impoundment on the stability of bank slope deposits in the high and cold valleys are
also revealed.

2. Study Area
2.1. Location of the High and Cold Valleys

The research objects in this study are the special geotechnical structures in high and
cold valleys in the Qinghai-Tibet Plateau. These special structures including colluvial-
deluvial deposits, terrace deposits, debris flow deposits, and landslide deposits are located
in the Three Parallel Rivers area at the junction of Tibet and Sichuan in the Qinghai-Tibet
Plateau, as shown in Figure 1. These deposits are mainly in the reservoir area of the RM,
GD, and CB hydropower stations. The Qinghai-Tibet Plateau is located in the western part
of China. Being squeezed by the Indian plate to the north-northeast (NNE) and constrained
by the eastern and north-eastern boundaries, the Tibetan Plateau is rising continuously. The
valleys in this region have some unique characteristics, such as high-steep terrain, dry and
cold climate, lithologic diversity, complex geological structure, and frequent occurrences
of earthquakes.



Sustainability 2023, 15, 6090 3 of 24

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 25 
 

 

as high-steep terrain, dry and cold climate, lithologic diversity, complex geological 

structure, and frequent occurrences of earthquakes. 

In the Three Parallel Rivers and Mangkang region on the south-eastern margin of the 

Qinghai-Tibet Plateau, the average elevation is about 4500 m, and most summits are 

higher than 5000 m. The elevations of valley bottoms are within the range of 2300–2600 m, 

and the depths of valleys are generally greater than 2000 m. The slopes of valley sides are 

within the range of 40–70°, and the annual mean temperature is 5–10°. The highest 

temperature is 25°, and the lowest temperature is −23°. The annual precipitation is 575 

mm, and the maximum daily rainfall is 55 mm. 

 

Figure 1. Location of the high and cold valleys. 

2.2. Materials Composition 

The strata in this region are subdivided into three strata. The western part is the Basu-

Zhayu strata, which is dominated by the clastic sedimentary rocks and volcanic rocks 

deposited in the late Palaeozoic and the late Triassic. The middle part is the Wuqi-

Figure 1. Location of the high and cold valleys.

In the Three Parallel Rivers and Mangkang region on the south-eastern margin of the
Qinghai-Tibet Plateau, the average elevation is about 4500 m, and most summits are higher
than 5000 m. The elevations of valley bottoms are within the range of 2300–2600 m, and the
depths of valleys are generally greater than 2000 m. The slopes of valley sides are within
the range of 40–70◦, and the annual mean temperature is 5–10◦. The highest temperature
is 25◦, and the lowest temperature is −23◦. The annual precipitation is 575 mm, and the
maximum daily rainfall is 55 mm.

2.2. Materials Composition

The strata in this region are subdivided into three strata. The western part is the
Basu-Zhayu strata, which is dominated by the clastic sedimentary rocks and volcanic
rocks deposited in the late Palaeozoic and the late Triassic. The middle part is the Wuqi-
Zuogong strata, which is dominated by volcanic rocks deposited from the late Palaeozoic
to the Mesozoic. The eastern part is the Changdu-Mangkang strata, which is dominated
by the continental red beds formed during the Jurassic and Cretaceous periods of the
Mesozoic Era.
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2.3. Structural Geological Characteristics

The tectonics in the study area are very complex, with strong structural deformation
and developed fault structures. The distribution of major faults in the region is shown
in Figure 2, mainly in the NNW-NS direction and the NW-NWW direction, followed by
the NE-NNE direction. There are obvious differences in the regional structural attributes,
scale, activity age, activity intensity, etc. The NNW-NS direction fault is the main fault
in the area, which is large in scale, mainly including the Nujiang fault zone, the Lancang
River fault zone, and the Jinshajiang fault zone. The activity of the fault is characterized
by segmentation, which can be divided into south and north segments. The latest activity
age of the north segment of the fault is mainly the late Pleistocene, and the latest activity
age of the south segment of the fault is mainly the middle Pleistocene. The NW-NWW
direction faults are large in scale, some of them are deep and large faults, and thrust and
thrust strike-slip faults. The latest active ages of these faults are different periods of the
Quaternary period, especially in the late period, and large earthquakes with a magnitude
above 7 have occurred many times. The Jiali fault, Bianba-Luolong fault, Xieba fault,
Semuxiong fault, Deqin-Zhongdian fault, and Litang fault are all Holocene active faults.
The NE-NNE direction fault is mainly distributed in the northeast of the region and belongs
to the Holocene active fault. The fault zone has experienced an earthquake of magnitude 7
or above. The typical representative of the fault zone is the Batang fault.
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3. Case Studies

According to the results of field engineering investigations performed in many hy-
dropower station areas, most of the typical slope deposits in the high and cold valley
region are not composed of materials from a single origin but have been formed by the
accretion of mixed materials from multiple origins. These typical deposits have certain
special geotechnical structures and formation mechanisms. Herein, there are mainly four
types of bank slope deposits with special geotechnical structures that are most closely
related to reservoir water storage. These four deposits include colluvial-deluvial deposits,
terrace deposits, early debris flow deposits, and landslide deposits, which are described
and discussed in this study separately.
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3.1. Colluvial-Deluvial Deposits
3.1.1. Characteristics of Deposits

Figure 3 presents a typical remote sensing image of colluvial-deluvial deposits in
high and cold valleys. According to geological investigations, Rongsong (RS) deposit is
distributed along the Lancang river over a distance of about 1.4 km, with a width of 700 m
perpendicular to the river direction, and a top-bottom elevation difference of 500–600 m.
The maximum depth of the deposit is about 100 m, and the volume is about 4700 × 104 m3.
The formation mechanism is summarized as follows, as shown in Figure 3b:
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neering geological profile; (c) Surface deposits; (d) Deep deposits.

The rock mass of the bank slope is affected by its structure to form fissured rock mass.
The valley is cut down to form a high and steep free face. At the same time, the stress is
released, causing the rock mass to be unloaded and pulled apart. The alternating action
of weathering, rainfall, and freezing–thawing aggravates the loosening and deformation
of the rock mass. Under the action of a rainstorm, ice and snow melting, and earthquake
triggering, the rock mass produces a large deformation. This causes the rock mass to col-
lapse and roll down, and it accumulates at the foot of the slope, forming colluvial deposits
mainly composed of rubble. The surface flow is formed by surface rainfall and melting of
snow and ice on the slope surface, and the upper rock blocks are transported downward to
form slope deposits dominated by gravelly soil. The colluvial-deluvial deposits alternately
and intermingled accumulate to a certain thickness to form accumulations.

The colluvial-deluvial deposits contain rubbles of varying sizes and with apparent
edges and corners. Compared with the colluvial-deluvial deposits in warm and humid
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regions at low altitudes, those in the high and cold valley regions have more special
characteristics in terms of rock-soil structure as described below.

(a) The high and cold valley region is characterized by high regional in-situ stress, strong
unloading, freezing–thawing, and weathering effects. Broken rock mass has great
depth and wide range. The collapse point at the top of the slope has a wide range and
high elevation. The collapse volume of colluvial-deluvial deposits is large.

(b) Under tectonic and seismic actions, the rock masses are fractured noticeably and have
many small and hidden joints. For this reason, the rock masses tend to be broken and
decomposed in the slumping process, which greatly reduces the sizes of deposited
rubbles. As shown in Figure 3c, the grain sizes of most rubbles in this deposit are
smaller than 50 cm, and the grain sizes of most broken stones in the deposit are within
the range of 6 mm–2 cm.

(c) Due to the scouring and leaching effects of streams formed by seasonal rainfall and
melting ice and snow at the slope surface, the fine grain content and the degree of
cementation in the upper and middle layers of the slope are different. The layer in
the RS deposit can be divided into two main types. The first type is a well cemented,
fine-grained muddy gravel layer with high silt and clay content. The second type
is a poorly cemented broken gravel layer with low silt and clay content. Due to the
existence of these two types of layers, multistage colluvial-deluvial deposits contain
inclined, rhythmically deposited layers, as shown in Figure 3d. According to the drift
exploration statistics, there are 14 inclined, rhythmically deposited layers in the upper
section of this deposit.

3.1.2. Physical and Mechanical Properties

To accurately evaluate the stability of various special deposits under natural conditions
and water storage conditions, field and laboratory tests were conducted to obtain the
physical and mechanical parameters of the rock and soil mass. The samples of colluvial-
deluvial deposits were from the RS deposit, No.7 deposit in the RM Hydropower Station
area. In general, these deposits are composed mainly of soil mixtures with giant grains and
coarse-grained soil based on grain size and field density tests.

Field shear tests were performed on various deposits from different origins and
compositions under natural (2–5% of water content) and saturated (lasts for 24 h) conditions.
The tests were conducted through drifts or vertical shafts drilled from the surface. The
shortest bottom edge of the samples is no less than 50 cm in length, and the ratio of height
to the length of the bottom edge is about 1/2. The deposits performed in the field shear tests
include broken gravels in early colluvial-deluvial deposits, fine-grained muddy gravels in
early colluvial-deluvial deposits, and sandy gravels in recent colluvial-deluvial deposits.
Each deposit has been tested under natural and saturated conditions. For broken gravels
in early colluvial-deluvial deposits. The test under the natural condition was conducted
at 48–58 m of No.3 drift in the RS deposit, while the test under the saturated condition
was conducted in the weakly cemented middle and lower sections of the No.7 deposit.
Figure 4a,b present the σ-τ scatter diagrams for field tests in broken gravels in the early
colluvial-deluvial deposits. For fine-grained muddy gravels in early colluvial-deluvial
deposits, the test under the natural condition was conducted at 25–35 m of No.3 drift in the
RS deposit, while the test under the saturated condition was conducted in certain cemented
middle and lower sections of the No.7 deposit. Figure 4c,d present the σ-τ scatter diagrams
for field tests in fine-grained muddy gravels in the early colluvial-deluvial deposits. For
sandy gravels in recent gravels in early colluvial-deluvial deposits, the test under the
natural condition was conducted in the upper section of the No.4 deposit. The test under
the saturated condition was conducted in the relatively loose surface layer of the No.6
deposit. Figure 4e,f present the σ-τ scatter diagrams for field tests in sandy gravels in recent
colluvial-deluvial deposits.
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Figure 4. σ-τ scatter diagrams for field tests in colluvial-deluvial deposits: (a) Natural conditions on
broken gravels; (b) Saturation conditions on broken gravels; (c) Natural conditions on fine-grained
muddy gravels; (d) Saturation conditions on fine-grained muddy gravels; (e) Natural conditions on
sandy gravels; (f) Saturation conditions on sandy gravels.

For each gravel, the shear strength parameters under saturated conditions are less
than those under natural conditions. For fine-grained muddy gravels, especially, cohesion
c’ is reduced by approximately 60%. Furthermore, for sandy gravels, internal friction angle
f’ is reduced by approximately 28%. By comparing the broken gravels with the fine-grained
muddy gravels with good early cementation, it can be seen that the gravel content of the
former is about 8% higher on average, but the fine grain content is 7% less, as shown in
Table 1. Under natural conditions, the f’ value is generally equivalent, and the c’ value of
the former is 65% of the latter. In addition, the parameters of the two are basically the same
under saturated conditions. By comparing the broken gravels with the sandy gravels, their
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c’ values are almost the same under the two conditions, while the f’ value of sandy gravels
is smaller than that of broken gravels.

Table 1. The strength parameters of field tests under natural and saturated conditions.

Parameters

Broken Gravels Fine-Grain Muddy Gravels Sandy Gravels

Natural
Condition

Saturated
Condition

Natural
Condition

Saturated
Condition

Natural
Condition

Saturated
Condition

c’ (kPa) 49 35 76 36 49 36
f’ (◦) 36.1 32.2 36.5 31.8 32.2 23.3

Gravel content 10% - 3% - - -
Fine grain content 2% - 10% - - -

Laboratory tests for comparison were conducted using remolded soil samples because
it was difficult to obtain the undisturbed samples of coarse-grained soil. The samples for
laboratory tests were made of materials taken in the field after rubbles larger than 60 mm
were sieved out. Density measurements were performed to control the densities of samples
made in the laboratory and to ensure that the moisture contents of samples were close to
those of natural deposits. Quick direct shear tests were conducted using samples with a
diameter of 500 mm and a height of 300 mm. The shear strength parameters determined by
laboratory tests are listed in Table 2.

Table 2. The strength parameters of laboratory shear tests under natural conditions.

Parameters Broken Gravels Fine-Grain
Muddy Gravels Sandy Gravels Terrace Deposits Early Debris Flow

Deposits

c’ (kPa) 44 59 39 38 49
f’ (◦) 35.8 35.3 30.5 36.5 31.4

By comparing the field test results with the laboratory test results in Tables 1 and 2, it
can be seen that the values from laboratory tests are close to those from field tests, thus,
the results of these two types of tests are mutually verifying. However, most values from
laboratory tests are slightly smaller than those from field tests, and the c’ values of fine-
grained muddy gravels determined by laboratory tests are apparently smaller than those
determined by field tests, except for the early debris flow deposits. This is because the
large particles in the remolded soil samples are removed, and the relatively stable structure
formed by the deposit under long-term accumulation is destroyed.

3.1.3. Stability Analysis

(a) Stability analysis of the deposits before reservoir impoundment

Figure 5 presents a sectional view of the typical rock and soil structure of RS colluvial-
deluvial deposits. The Rongsong deposit (RS) photos in Figure 3 are in correspondence with
the profile of the numerical model in Figure 5. A computational analysis was performed
using the Slide software from RocScience company. The Slide software is used to analyze
the stability and failure mode of the deposits using the rigid body limit equilibrium method
and the finite element strength reduction method based on the Mohr-Coulomb criterion.
The bedrock is considered to have infinite strength, and each overburden layer is considered
as homogeneous isotropic material. Therefore, the boundary on both sides of the numerical
model is considered as horizontal constraint, and the bottom boundary is considered as
fixed constraint. The 6-node triangular isoparametric element under plane strain condition
is used for mesh generation. Herein, the f’ values from field tests are used in the model, and
the c’ values used in the model are equal to 0.7 times the values from laboratory tests. The
results show that the stability of the colluvial-deluvial deposit varies at different sliding
surfaces, as shown in Figure 5b. For the mode of general slip with the boundary between
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bedrock and overburden as the bottom slip plane, the stability factor is 1.30. For the mode
of central slip with a poorly cemented broken gravel layer as the bottom slip plane, the
stability factor is 1.27. For automatically searched circular slip, the minimum stability factor
is 1.16, which occurs in the shallow surface layers of recent colluvial-deluvial deposits.
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Figure 5. Numerical calculation results of the RS deposits in the high and cold valley: (a) Numerical
model of the deposits; (b) Stability results of the RS deposit.

The reasons for the difference in the stability of the deposits in the high and cold
valleys in different sliding surfaces are as follows. Firstly, there is little clay and vegetation
on the original slopes on both sides of high and cold valleys. Moreover, weak clay layers
or humus layers with good continuity are rarely seen in the bottom sections of colluvial-
deluvial deposits, which is difficult to form a sliding surface. Therefore, the stability of
the deposits is relatively good in general, such as the stability of the sliding surface 1© in
Figure 5b. According to the field investigations on more than 20 deposits in the upper
reaches of the Lancang River, there is no large deformation or landslide under natural
conditions. Secondly, the deposits in the middle and upper part of the slope are formed
by multiple accumulations. The fine gravelly soil gravels with more fine-grained soil and
the crushed gravel layers with less fine-grained soil are distributed alternately, forming an
obvious rhythm. At the same time, their shear strength is also different. The c’ value of the
latter is lower than that of the former. The slope of the slope surface in the upper part is
close to the natural angle of repose of crushed gravel. The cementation of these soil layers
is weak and their stability is relatively low.

(b) Stability analysis of the deposits after reservoir impoundment

Taking the RS deposit as an example, Figure 6 presents a sectional view of the typical
rock and soil structure of the deposit. A computational analysis of the stability was
performed using the Slide software from RocScience company, and finite element numerical
simulation calculation of the deposit was conducted using the Phase2 software. The
stability of the deposit is presented in Figure 6a. For the mode of general slip with the
boundary between bedrock and overburden as the bottom slip plane, the stability factor
is 1.07. For the mode of central slip with a poorly cemented broken gravel layer as the
bottom slip plane, the stability factor is 1.05. For automatically searched circular slip, the
minimum stability factor is 1.03. Therefore, most sections of the deposit are unstable, and
the stability becomes lower and lower from the inside to the surface of the slope. After
reservoir impoundment, the main form of the deformation of the deposit is progressive
creep deformation from the surface to the inside. The results of finite element numerical
simulation calculation are shown in Figure 6b,c. The maximum displacement occurs in the
shallow surface. The shallow and middle weakly cemented gravel layer and the boundary
plane between bedrock and overburden are the main areas of the shear deformation and
failure of the accumulation.
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Figure 6. Numerical simulation results of the RS colluvial-deluvial deposits: (a) Stability; (b) Maxi-
mum shear strain; (c) Total displacement.

3.2. Terrace Deposits
3.2.1. Characteristics of Deposits

Terrace deposits are usually distributed in a belt-shaped pattern. However, in the
high and cold valley regions, the terrace deposits are intermittently distributed, and many
relatively independent and concentrated terrace deposits have been formed, as shown in
Figure 7a. The reason is that the slopes in this region are generally steep and have been
cut by many gullies, and few early fluvial deposits have been preserved. A near-parallel
sedimentary rhythm can be observed in these deposits, as shown in Figure 7b. Compared
with the terrace deposits in warm and humid regions at low altitudes, those in the high
and cold valley regions have more special characteristics in terms of rock-soil structure as
described below.

(a) There are many colluvial deposits on both banks of the riverbed in Figure 7c. In
addition to sand gravel, there are a large number of rubble or gravel mixed in the
riverbed deposits;

(b) As a terrace deposit, colluvial-deluvial gravelly soil accumulates on the riverbed
deposits in the later period, forming a typical binary structure, as shown in Figure 7d.

3.2.2. Physical and Mechanical Properties

The samples of terrace deposits were from the RS deposit, No.7 deposit, No.4 terrace
deposit in the RM Hydropower Station area. For pebbles and gravels in the terrace deposits,
the test under the natural condition was conducted at 29–39 m of No.5 drift in the RS
deposit, while the test under the saturated condition was conducted in the lower section of
the No.7 deposit. Figure 8 presents the σ-τ scatter diagrams for field tests in pebbles and
gravels in the terrace deposits. The results reveal that the shear strength parameters c’ and
f’ are 37 kPa and 36.9◦ under natural conditions, respectively. Meanwhile, they are 33 kPa
and 32.2◦ under saturated conditions, respectively.



Sustainability 2023, 15, 6090 11 of 24
Sustainability 2023, 15, x FOR PEER REVIEW 12 of 25 
 

 

  

  

Figure 7. Terrace deposits in the high and cold valley: (a) Remote sensing image; (b) Typical binary 

structure; (c) riverbed deposits; (d) colluvial-deluvial gravelly soil. 

3.2.2. Physical and Mechanical Properties 

The samples of terrace deposits were from the RS deposit, No.7 deposit, No.4 terrace 

deposit in the RM Hydropower Station area. For pebbles and gravels in the terrace depos-

its, the test under the natural condition was conducted at 29–39 m of No.5 drift in the RS 

deposit, while the test under the saturated condition was conducted in the lower section 

of the No.7 deposit. Figure 8 presents the σ-τ scatter diagrams for field tests in pebbles 

and gravels in the terrace deposits. The results reveal that the shear strength parameters 

c’ and f’ are 37 kPa and 36.9° under natural conditions, respectively. Meanwhile, they are 

33 kPa and 32.2° under saturated conditions, respectively. 

(a)      (b)      

(c)      (d)      

Figure 7. Terrace deposits in the high and cold valley: (a) Remote sensing image; (b) Typical binary
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3.2.3. Stability Analysis

(a) Stability analysis of the deposits before reservoir impoundment

Figure 9 presents a sectional view of the typical rock and soil structure of terrace
deposits. The terrace deposit photos in Figure 7 are in correspondence with the profile of
the numerical model in Figure 9. The No.4 terrace deposit is mainly composed of sand,
pebble, and gravel, and the terrain is generally flat. A computational analysis of the No.4
terrace deposit was performed using the Slide software from RocScience company. For the
mode of general slip with the boundary between bedrock and overburden as the bottom
slip plane, the stability factor is 3.74. For automatically searched circular slip, the minimum
stability factor is 1.08.
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Figure 9. Numerical calculation results of the No.4 terrace deposits in the high and cold valley:
(a) Numerical model of the deposits; (b) Stability results of the No.4 deposit.

The reasons for the difference in the stability of the deposits in the high and cold
valleys in different sliding surfaces are as follows. Firstly, in addition to sand, pebble, and
gravel, there are also toppling and river-blocking materials in the riverbed deposits of high
and cold valleys, which change the local stability of terrace deposits. Secondly, the upper
part of the terrace deposit will generally accumulate a certain thickness of late colluvial-
deluvial deposits, which belongs to the upper loading, and will reduce the stability of the
terrace deposit. When there are too many colluvial-deluvial deposits in the upper part, the
stability of the terrace deposit is controlled by colluvial-deluvial deposits, and the stability
factor of the terrace deposit will be significantly reduced. Finally, the valley has a strong
undercutting effect and less rainfall in the later period. The leading edge of the terrace
deposit is high and steep, with poor stability. Therefore, the terrace deposit may collapse
and slide locally.

(b) Stability analysis of the deposits after reservoir impoundment

Taking the No.4 deposit as an example, Figure 10 presents a sectional view of the
typical rock and soil structure of the deposit and its stability results. For the mode of
general slip with the boundary between bedrock and overburden as the bottom slip plane,
the stability factor is 3.19. Therefore, after the reservoir impoundment, the deposit below
the reservoir water will experience the uplift pressure of the water, and the soil parameters
will also be reduced to a certain extent. However, the bottom interface of the deposit is
gentle, and the slope surface is gentle. Therefore, the overall stability of the deposit is still
good. For automatically searched circular slip, the minimum stability factor is 1.00. In
this case, the stability of the deposit is obviously poor. The deformation and failure of the
deposit mainly occur on the steep slope near the river at the leading edge of the terrace, as
shown in Figure 10b,c. The deformation and failure mode of the deposit is mainly bank
collapse at the leading edge.
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Figure 10. Numerical simulation results of terrace deposits: (a) Stability; (b) Maximum shear strain;
(c) Total displacement.

3.3. Early Debris Flow Deposits
3.3.1. Characteristics of Deposits

The early debris flow deposits are generally higher than modern gullies due to their
early formation time. They are not affected by the existing river water and debris flow and
are well-cemented. Compared with the debris flow deposits in warm and humid regions at
low altitudes, those in the high and cold valley regions have more special characteristics in
terms of rock-soil structure as described below.

(a) Debris flow gullies have been developed pervasively. According to the investigation
results, among the 51 gullies along the Lancang River section from Mangkang County
to Chaya County, there are 15 debris flow gullies, accounting for 29% of the total
number of gullies. The reasons can be summarized by the following two aspects.
The first is that the upper crust in this region is in the rapid uplift stage. The gullies
on both sides of the valleys are steep in general, which creates favorable terrain
conditions for the occurrence of debris flows. The second is that broken surface
rocks, collapse, dislocation, landslide, and other adverse geological phenomena are
developed, providing a rich source of solid materials for the formation of debris flow.

(b) Most debris flow deposits have a large scale. The reasons can be summarized by
the following two aspects. The first is that the early glacial deposits from gullies
and large-scale slumps provide the necessary source conditions for debris flows. For
example, three deposits have been developed on the riverbanks of the Jinsha River
near Wangdalong (WDL) Village downstream of Batang County in Sichuan Province,
as shown in Figure 11a. The quantity of each deposit is more than 0.1 billion m3. On
the right bank of the Lancang River section in RM County of Tibet, No. 12 debris
flow deposit is distributed along the riverbank over a distance of 1.4 km and has a
maximum width of 0.8 km. The debris flow deposit is fan-shaped and covers the
second terrace. Apparently, large-scale slumps have occurred in the source gully,
as shown in Figure 11b–d. This large debris flow deposit has even blocked the
Lancang River and resulted in the displacement of the river channel to the left. The
second is that the melting of ice and snow and glacial lake outburst caused by climate
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changes provide an adequate water supply for ultra-large-scale debris flows. From the
perspective of the deposit-terrace, the WDL and No.12 debris flow deposits have all
covered the second terrace, but they have not fully covered the first terrace, indicating
that these deposits were formed in the same geological period as the first terrace.
The formation geological period of the two deposits is the early Holocene. This
phenomenon is highly consistent with the rapid warming during the early-middle
Holocene after the Last Glacial Maximum in the southeast of Tibet [29].
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Figure 11. Early debris flow deposits in the high and cold valleys: (a) Remote sensing image of early
WDL deposit; (b) Remote sensing image of No.12 deposit; (c) No.12 deposit in the RM Hydropower
Station area; (d) The scarps and caves formed by weathering of No.12 deposits.

3.3.2. Physical and Mechanical Properties

The samples of debris flow deposits were from the No.12 deposit in the RM Hy-
dropower Station area. Figure 12 presents the σ-τ scatter diagrams for field tests in sandy
gravels in debris flow deposits. The results reveal that the shear strength parameters c’ and
f’ are 32 kPa and 32.2◦ under natural conditions, respectively. Meanwhile, they are 28 kPa
and 24.7◦ under saturated conditions, respectively.
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Figure 12. σ-τ scatter diagrams for field tests on sandy gravels in debris flow deposits: (a) Natural
conditions; (b) Saturation conditions.

3.3.3. Stability Analysis

(a) Stability analysis of the deposits before reservoir impoundment

Taking the No.12 debris flow deposit as an example, Figure 13 presents a sectional
view of the typical rock and soil structure of the deposit and its stability results. The debris
flow deposit photos in Figure 11 are in correspondence with the profile of the numerical
model in Figure 13. For the mode of general slip with the boundary between bedrock and
overburden as the bottom slip plane, the stability factor is 1.81. For automatically searched
circular slip, the range of the stability factor is 1.53–1.55. Therefore, the overall stability of
the deposit is still good.
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Figure 13. Stability results of the No.12 debris flow deposits in the high and cold valley.

(b) Stability analysis of the deposits after reservoir impoundment

Figure 13 presents the stability results and the deformation characteristics of the No.12
debris flow deposit at RM Hydropower Station. The early debris flow deposit is mainly
composed of crushed gravel, and the terrain is generally gentle. For the mode of general
slip with the boundary between bedrock and overburden as the bottom slip plane, the
stability factor is 1.55. For automatically searched circular slip, the stability factor is 1.31.
The deposit is in a stable state under natural conditions. After impoundment, the deposit
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below the reservoir water will be affected by the uplift pressure of the water, and the soil
parameters will also be reduced to a certain extent. However, the stability of the deposit is
still good on the whole due to the gentle bottom interface and slope surface. Figure 14b,c
reveal that the deformation and failure of the deposit mainly occur in steep local areas.
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Figure 14. Numerical simulation results of debris flow deposits: (a) Stability; (b) Maximum shear
strain; (c) Total displacement.

3.4. Landside Deposits
3.4.1. Characteristics of Deposits

Compared with the landslide deposits in warm and humid regions at low altitudes,
those in the high and cold valley regions have two special characteristics in terms of
rock-soil structure as described below.

(a) The bedrock is strongly compressed by the structure, the surface is weathered and
unloaded strongly, and earthquakes occur frequently. Therefore, large-scale landslides
are common. For example, the No.1 deposit in front of the dam of CB hydropower
station has a total volume of 27 million m3, which is a slump deposit formed under
early seismic actions. The deposit is composed of broken rock masses, including the
broken granite and marble from the hanging wall of the Suwalon-Wangdalong Fault
in the Jinsha River fault zone, as shown in Figure 15a. Large quantities of rubbles and
huge blocks have blocked the Jinsha River, and damming silts have been deposited in
the upper reaches of the river. Afterwards, the deposit was flushed and divided by the
river water into two parts on both riverbanks. However, large-scale landslides have
also occurred recently. For example, the Baige Landslide, which occurred on the right
bank of the Jinsha River in BL Town of JD County in October 2018, has formed an
ultra-large-scale landslide deposit with a length of about 1600 m, a maximum width
of about 700 m, and a total volume of about 3500 × 104 m3. This landslide deposit
has even blocked the Jinsha River, as shown in Figure 15b. The formation mechanism
of the deposit is due to the deformation and failure of the melange rock mass in the
tectonic suture zone under the continuous action of unloading and gravity.
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Figure 15. Landslide deposits in the high and cold valleys: (a) Remote sensing image of No.1
deposit; (b) Remote sensing image of the Baige landslide deposit; (c) Overall view of the Jiasai
landslide deposit.

(b) Ice and snow meltwater are the main causes of large-scale landslides. The high and
cold valley region is an area with low rainfall. For example, the average annual rainfall
and maximum daily rainfall in the Lancang River valley in Mangkang area are 575 mm
and 55 mm, respectively, accounting for only 1/2–1/3 of the average annual rainfall
and maximum daily rainfall in inland areas. Therefore, it is difficult for the rainwater
to seep into the rock and soil masses at deep levels to create deep underground
flows or adequate fissure water pressure, as shown by the Jiasai landslide deposit
in Figure 15c. Three deformation zones are divided into the Jiasai landslide deposit.
The deformation of each zone is different because the permeability coefficient of
the rock and soil is different. However, the probability of occurrence of large-scale
landslides will increase significantly when ice and snow meltwater and storm water
work together as the temperature rises during the period from April to October
each year.

3.4.2. Stability Analysis

(a) Stability analysis of the deposits before reservoir impoundment
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Under natural conditions, landslides in this study area can be classified into two major
types including water-induced landslides and earthquake-induced landslides. The water-
induced landslide is characterized by gradual development, slow starting, low sliding
speed, and long evolution time. When the landslide reaches a new balance, the landslide
stops moving and tends to stabilize to form an old landslide or an ancient landslide. The
stability of the landslide is not high, and mostly in a basically stable-unstable state. When
the external conditions change slightly, the landslide is very easy to revive. For example,
based on the analysis of the Jiasai landslide deposit that has been deformed after the
impoundment of GD Hydropower Station, its stability factor under natural conditions
is only 1.05–1.07, as shown in Figure 16. The landslide deposit photos in Figure 15 are
in correspondence with the profile of the numerical model in Figure 16. The earthquake-
induced landslide has the characteristics of fast starting, short evolution time, high sliding
speed, etc. This kind of old landslide or ancient landslide has a relatively low and gentle
terrain, a relatively flat slope surface, and high stability. The possibility of such landslide
revival is small.
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(b) Stability analysis of the deposits after reservoir impoundment

Taking the Jiasai landslide deposit at GD Hydropower Station as an example, the
deformation characteristics of the deposit after the impoundment are as follows. Firstly,
according to the remote sensing image before the impoundment, the Jiasai landslide is an
old landslide with an obvious chair shape, as shown in Figure 17a. Secondly, the exploration
results show that the Jiasai landslide is mainly composed of rubble, and there are layered
giant blocks with a length of more than ten meters to tens of meters. However, there is a
through weak soil layer mainly composed of gravelly clay in the middle and lower part
of the landslide, as shown in Figure 17c. Finally, field investigation shows that after one
month of the reservoir impoundment, tension cracks are found in the leading edge of the
middle and upstream sides. About two months later, tension cracks are also found in
the back scarp of the landslide. After about four months of impoundment, the tension
cracks have connected the width of the cracks is 30–100 cm. Moreover, the trailing edge of
the landslide is staggered about 1–1.5 m, as shown in Figure 17c,d. Surface deformation
monitoring is shown in Figure 17e.
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Figure 17. Deformation characteristics and monitoring curves of the Jiasai landslide deposits after
the reservoir impoundment: (a) Remote sensing image before the impoundment; (b) Overall view
after the impoundment; (c) Tension cracks at the head scarp; (d) Tension cracks at the back scarp;
(e) Time-surface displacement curves.
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Figure 18 presents the finite element results of the Jiasai deposit at GD Hydropower
Station. It can be seen from the figure that the shear stress concentration area of the
landslide after the impoundment is mainly distributed in the leading edge and the lower
weak interlayer, which is in good agreement with the formation of tension cracks observed
on the leading edge and the trailing edge on site. The numerical simulation results and the
field monitoring results show that there are two main deformation and failure modes of
a landslide after impoundment. First, bank collapse occurs at the front steep slope. The
second is the overall sliding along the early bottom slip surface or the internal penetrating
soft layer. Compared with displacement data from some data points in the simulation model
and the data obtained in-situ, at the trailing edge of the landslide, the actual deformation of
the landslide is consistent with that of the numerical model. On the whole, its deformation
is relatively large, which is related to the impoundment of the reservoir. The rapid rise
of the reservoir water level has formed the stress condition of the landslide that is not
conducive to stability and formed the mechanical model of “pushing up and supporting
down” to induce the landslide. The soft intercalated sliding zone soil is saturated, resulting
in the reduction of shear strength. The water level of the leading-edge reservoir rises
rapidly to form buoyancy. The rainwater at the leading edge fills the cracks and seeps
along the cracks, generating hydrostatic pressure in the cracks and uplift pressure on the
sliding zone. This will reduce the anti-sliding force and increase the sliding force.
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Figure 18. Numerical simulation results of landslide deposits: (a) Maximum shear strain; (b) To-
tal displacement.

4. Discussion

The construction of the hydropower station can develop and utilize water resources
and improve the water environment in the alpine valley. However, the reservoir impound-
ment will also change some original geological bodies and bring new challenges to the
project construction. The impact of the reservoir impoundment on the stability of bank
slope deposits in the high and cold valleys is mainly shown in the following three aspects.

(a) The uplift pressure of the water is unfavorable to the stability of the deposits. When
the reservoir water rises, the surface and groundwater levels inside the deposits
will be raised as a whole, so that the deposits are partially under the constant water
level. This will form the uplift pressure to reduce the weight of the lower sliding
bodies, thus reducing the stability of the deposits. As shown in Figures 5b and 19,
compared with the stability analysis of the deposits before reservoir impoundment,
when the shear strength remains unchanged and only the unit weight of soil mass
below the water level is converted to saturated unit weight, the stability factor of the
RS colluvial-deluvial deposit decreases from 1.30 to 1.19. Compared with the stability
analysis of the deposits after reservoir impoundment, the stability factor of the RS
colluvial-deluvial deposit increases from 1.19 to 1.07, as shown in Figures 6a and 19.
For calculation of the result of the stability of the RS deposit after the impoundment in
Figure 19, only the uplift pressure of the water is considered. Therefore, the stability
factor is larger than that in the calculation result in Figure 6. The reason is that for
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calculating the result of the stability of the RS deposit after the impoundment in
Figure 6, the uplift pressure, seepage pressure, hydrostatic pressure and hydrody-
namic pressure of the water are considered. These factors cause the anti-sliding force
to decrease and the sliding force to increase. The influence factors of the deposits are
often realized through the change of groundwater, which will significantly change
the stress conditions of the deposits and the physical and mechanical properties of
rock and soil mass, thereby reducing the stability of the deposits. The rapid rise of
the groundwater level caused by the rise of the reservoir water level will form a large
hydrostatic pressure on the potential slip surface. The sliding body at the leading edge
of the anti-slide section is submerged by the reservoir water, resulting in an increase
in the uplift pressure, while the effective normal stress will be reduced, reducing the
anti-slide force at the anti-slide section.
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(b) The mechanical properties of soil mass decrease. Microstructure tests of fine particles
such as clay and silt show that water immersion will cause slip and tensile deformation
between soil particles. Subsequently, the particles are also broken and corroded.
These factors reduce the particle size and increase the pore spacing. Therefore, the
microstructure of soil mass will be destroyed, and the mechanical properties of the
soil will be reduced, especially the cohesion of soil. For coarse particles such as
pebbles and gravels, water will reduce the friction between particles, and the friction
of soil. The shear strength of the soil will decrease, reducing the stability of the
deposit. Therefore, fine-particle soil is more hydrophilic than coarse-particle soil, and
the wetting effect of water of the former is stronger. For example, compared with
the natural conditions, the f’ value of fine particle soil under saturated conditions
decreases by 16%, and the c’ value decreases by 53%. Nevertheless, the f’ value of
coarse particle soil decreases by 14%, and the c’ value decreases by 29%, as shown
in Table 1.

(c) The seepage pressure of the water is unfavorable to the stability of the deposits. When
the reservoir water drops rapidly, the residual groundwater in the soil will seep out,
and the seepage pressure will be formed. Finally, the force causing soil deformation is
increased, and the stability of the deposit is reduced.

In general, the water impoundment will deteriorate the geological conditions of the
deposits of the river valley and reduce the stability of the deposits. However, the influence
of the impoundment on the deposit with different genesis and material compositions is
different. The colluvial-deluvial deposit is less affected by water during its formation.
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However, after the impoundment, the external environment of the deposit will change
substantially, and the mechanical parameters and stability conditions of the soil will also
decrease significantly, which is unfavorable to the stability of the deposit. Terrace deposit
and debris flow deposit can only be formed under the condition of the water. The material
composition, accumulation structure and shape of the deposits are often affected by the
water. Therefore, the deterioration effect of the reservoir impoundment on the deposit
is weaker than that of colluvial-deluvial deposit. After the reservoir impoundment, the
deformation of the landslide increases significantly and is greatly affected by water.

The stability factor of the deposits can be calculated by finite element numerical
simulation, which provides reference for the evaluation of landslide. When the calculated
safety factor is small, reinforcement measures are needed for the deposits. At this point,
different anchoring methods can be planned according to the potential sliding surface in
numerical simulation. For large deformation area of the deposits, the number of anchor
cable rows can be increased appropriately. In addition, support structure can be calculated
by finite element method, such as checking thrust on antislide pile, calculating internal
force of antislide pile and optimizing design of structure.

5. Conclusions

This paper presented a preliminary study on the special characteristics, formation
mechanism, and stability analysis of four types of the deposits and the physical and
mechanical properties of soil mass under natural and saturated conditions on the high
and cold valleys in the Qinghai-Tibet Plateau. The following conclusions were drawn
about the colluvial-deluvial deposit, the terrace deposit, the debris flow deposit, and the
landslide deposit.

(a) The colluvial-deluvial deposits in high and cold valleys are widely distributed on
both banks of the river, with the characteristics of large burial depth and large volume.
The formation mechanism of the deposit is mainly related to the alternating action of
weathering, rainfall, freezing–thawing, and earthquake triggering, so the rock mass
produces large deformation. The colluvial-deluvial deposits in the high and cold
valley regions have special characteristics. Firstly, the high and cold valley region
is characterized by high regional in-situ stress, strong unloading, freezing–thawing,
and weathering effects. Secondly, under tectonic and seismic actions, the rock masses
are fractured noticeably and have many small and hidden joints. Finally, the layer
in the RS deposit mainly includes a well cemented and fine-grained muddy gravel
layer with high silt and clay content, and a poorly cemented broken gravel layer
with low silt and clay content. For each gravel, the shear strength parameters under
saturated conditions are less than those under natural conditions. After reservoir
impoundment, the deposit is stable. However, after the reservoir impoundment, the
deposit is unstable, and the main form of the deformation of the deposit is progressive
creep deformation from the surface to the inside.

(b) The terrace deposits in the high and cold valley region are intermittently distributed,
and many relatively independent and concentrated terrace deposits have been formed.
The test results reveal that the shear strength parameters c’ and f’ are 37 kPa and 36.9◦

under natural conditions, while 33 kPa and 32.2◦ under saturated conditions. For
the mode of general slip with the boundary between bedrock and overburden as the
bottom slip plane, the stability factor of the deposit before the reservoir impoundment
is 3.74, while is 3.19 after the reservoir impoundment. For automatically searched
circular slip, the minimum stability factor is 1.08, while it is 1.00 after the reservoir
impoundment. Therefore, the deformation and failure mode of the deposit is mainly
the bank collapse at the leading edge.

(c) Debris flow gullies have been developed pervasively, and most debris flow deposits
have a large scale. The test results reveal that the shear strength parameters c’ and f’
are 32 kPa and 32.2◦under natural conditions, while they are 28 kPa and 24.7◦ under
saturated conditions. For the mode of general slip with the boundary between bedrock
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and overburden as the bottom slip plane, the stability factor of the deposit before the
reservoir impoundment is 1.81, while it is 1.55 after the reservoir impoundment. For
automatically searched circular slip, the range of the stability factor is 1.53–1.55, while
the stability factor is 1.31 after the reservoir impoundment. Therefore, the deformation
and failure of the deposit mainly occur in steep local areas.

(d) Due to the weathering of the surface, the unloading strongly, and earthquake fre-
quently, large-scale landslide deposits in the high and cold valley region are common.
The Jiasai landslide deposit has been deformed after the impoundment, and its stabil-
ity factor under natural conditions is only 1.05–1.07. After one month of the reservoir
impoundment, tension cracks in the Jiasai deposit are found in the leading edge of the
middle and upstream sides. About two months later, tension cracks are also found
in the back scarp of the landslide. After about four months of impoundment, the
tension cracks have connected, and the width of the cracks is 30–100 cm. The results
show that the bank collapse and overall sliding along the early bottom slip surface or
the internal penetrating soft layer are the main deformation and failure modes of the
landslide after impoundment.
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