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Abstract: This study evaluates the impact of industrial energy efficiency on agricultural development
in the 31 member countries of the Organization for Economic Cooperation and Development (OECD)
from 2015 to 2019. Using dynamic network slack-based measures (DN-SBM) and dynamic network
total factor productivity (DN-TFP) indicators, dynamic cross-period information is used to assess
the changes in efficiency and productivity of the industrial and agricultural sectors. The empirical
results show that the industrial sector of the OECD is more efficient than the agricultural sector,
and while some countries have low efficiency, productivity tends to improve. The study has three
contributions: 1. Using the concept of the water–energy–food (WEF) nexus as a framework and
combining its elements with variables to evaluate the efficiency performance of OECD countries;
2. using a dynamic two-stage DN-SBM model to objectively assess the overall efficiency value and
provide improvement suggestions for different stages; 3. a comprehensive analysis of efficiency and
productivity; the results can serve as a reference for OECD countries when formulating policies

Keywords: OECD; WEF nexus; industrial and agricultural sectors; DN-SBM; DN-TFP

1. Introduction

The interconnection between water, energy, and food systems is called the WEF nexus,
which has gained increasing attention in the global academic, policy, and social spheres,
including relationships with ecosystems, livelihoods, and economies. This article aims
to critically review the WEF integrated concept, research issues, and methods from three
perspectives and identify future research directions and challenges. With rapid population
growth, urbanization, and climate change, the global demand for water, energy, and food
is expected to increase by over 50% from 2015 to 2050. [1]. This will create enormous
pressure on the existing water, energy, and food systems, and in many parts of the world,
the competitive demand for limited resources has already restricted the access of many
people. Additionally, water, energy, and food are interconnected, and therefore, extreme
drought caused by climate change could lead to significant food and energy security issues
due to the increased pressure on the water supply. In this context, the WEF nexus has
an integrative concept to comprehensively study and manage the global resource system.
Further discussions on water, energy, and food will be provided below:

Water is a critical resource for life and essential for food and energy production.
However, the increasing demand for water resources is putting pressure on the availabil-
ity of freshwater, especially in arid and semi-arid regions. In developing countries and
emerging economies, water resources are often insufficient to meet the basic needs of their
populations. According to the United Nations World Water Development Report 2021
estimates (the United Nations World Water Development Report 2021: valuing water;
executive summary. https://unesdoc.unesco.org/ark:/48223/pf0000375750, accessed on
1 March 2023), in global freshwater resource usage, the majority is used for agricultural

Sustainability 2023, 15, 6084. https://doi.org/10.3390/su15076084 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15076084
https://doi.org/10.3390/su15076084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5175-6690
https://orcid.org/0000-0001-7605-0918
https://unesdoc.unesco.org/ark:/48223/pf0000375750
https://doi.org/10.3390/su15076084
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15076084?type=check_update&version=1


Sustainability 2023, 15, 6084 2 of 17

irrigation (accounting for 69%). However, the increasing competition for water usage
between different sectors and the exacerbation of water scarcity are challenging the amount
of water needed for food production. Additionally, in many regions of the world, the water
efficiency of food production is relatively low, which is also one of the main causes of
environmental degradation, including excessive groundwater extraction, reduced river
flow, and environmental pollution. Water scarcity can affect the availability of energy
and food, while the production of energy and food requires water resources. Therefore,
it is crucial to develop a comprehensive understanding of the interactions between water,
energy, and food systems to ensure their sustainable use and management.

Energy is another important resource in the WEF nexus. It is used for pumping,
treatment, and distribution of water, as well as food production and processing. However,
the production and consumption of energy also have significant environmental impacts,
such as greenhouse gas emissions, air pollution, and water depletion. (IEA, 2022) IEA
World Energy Outlook 2022: https://www.iea.org/reports/world-energy-outlook-2022,
accessed on 1 March 2023. Natural gas and coal prices have hit historic highs, causing a
90% increase in global electricity costs, exacerbating inflation and food insecurity, especially
for poorer families. Almost 100 million people worldwide may be forced to use wood for
cooking. The number of people without access to electricity is beginning to rise, causing
serious difficulties in people’s lives. The WEF nexus approach can help identify and address
the balance and synergies between energy, water, and food systems. Renewable energy
sources, such as solar and wind power, can provide sustainable solutions to meet the energy
needs of water and food production.

Food production heavily relies on water and energy resources, according to the 2021
State of Food Security and Nutrition in the World (FAO, 2021) FAO report: The state of food
security and nutrition in the world https://www.fao.org/publications/sofi/2021/en/,
accessed on 1 March 2023. In 2020, the COVID-19 pandemic ravaged the world, and the
issue of hunger reemerged. After five years of stable food insecurity rates, the rate increased
from 8.4% to 9.9% in just one year, making the achievement of the Zero Hunger Goal by
2030 more challenging. It is estimated that between 720 million and 811 million people
worldwide faced hunger in 2020. The WEF nexus approach can help identify the balance
and synergies between food production, energy, and water use, reduce food waste, and
promote sustainable food production and consumption.

The WEF nexus provides an integrated framework for the sustainable management of
water, energy, and food resources. It is important to recognize the long-standing interde-
pendence between these systems, not just short-term, to ensure their sustainable use and
management (Figure 1). Due to population growth, economic development, urbanization,
and changes in consumption patterns, developing countries and emerging economies are
particularly vulnerable to the challenges faced by the WEF nexus. Therefore, a compre-
hensive approach is needed to consider the interdependence between these systems and
identify sustainable solutions to address the challenges of the WEF nexus.

Previous studies have primarily focused on the internal efficiency of the industrial
sector and the static efficiency analysis of economic development, but there is little in the
literature that simultaneously discusses related issues such as industrial development,
energy use, greenhouse gas emissions, agricultural production, and forest area protection.
Therefore, this study aims to explore the impact of harmful outputs such as greenhouse
gases and changes in water resources and forest area (as shown in Figure 2) by evaluating
the efficiency of the industrial and agricultural sectors of OECD member countries. To
achieve this goal, we used the DN-SBM method to evaluate the efficiency of the industrial
and agricultural sectors of OECD member countries. In addition, we evaluated the impact
of cross-period variables on overall efficiency and productivity over time based on dynamic
cross-period data on DN-TFP productivity index. These assessment results provide useful
information for evaluating the environmental efficiency of OECD member countries and
serve as a reference for exploring more sustainable development paths. Therefore, we

https://www.iea.org/reports/world-energy-outlook-2022
https://www.fao.org/publications/sofi/2021/en/
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believe that these research findings will have substantive implications for policy makers
and relevant stakeholders.
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2. Literature Review

The previous research has mainly focused on static efficiency analysis of the industrial
and agricultural sectors, as well as economic development. However, there has been little
in the literature exploring related issues such as industrial development, energy use, green-
house gas emissions, agricultural production, and forest conservation simultaneously. To
comprehensively examine these issues, this paper reviews the previous literature research,
particularly in relation to the WEF nexus, energy efficiency, agricultural efficiency, and
other relevant studies. Through this literature review, we can understand the findings and
limitations of the previous research, as well as the research methodology and contributions
of this study.

Research on the WEF nexus has been increasing in recent years. Some studies have
investigated the interlinkages between resources such as water, energy, and food and
how their scarcity or misuse can have negative impacts on the economy, society, and
the environment, such as [2]. An evaluation of the efficiency of the food–energy–water
(FEW) nexus system in China from 2005 to 2017 found that the efficiency was higher
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in provinces located in the eastern and central regions, while it was lower in provinces
located in the western region. Improvement suggestions for sustainable resource utilization
were also proposed. Lu et al. [3] evaluated the efficiency of the water–energy–land–food
(WELF) nexus among Organization for Economic Cooperation and Development (OECD)
countries, revealing differences in efficiency performance among member countries and
assessing the impact of drought on WELF efficiency. In addition, some studies have
explored the linkages between the WEF nexus and sustainable development, emphasizing
the importance of considering the integrated use of resources across different domains.
Sun et al. [4] investigated the relationship between water, food, and energy (W-E-F) in
different regions of China and found that the overall regional and inter-provincial W-E-F
nexus efficiency was low, with the food subsystem being the main reason for inefficiency in
the entire system and the main reason for regional differences.

Research on energy efficiency in the industrial sector mainly focuses on energy pro-
duction and consumption. Some studies have looked at the impact of improving energy
efficiency on the environment and economy, while also exploring related issues in energy
policy, such as [5], who evaluated the energy efficiency of each province in China from 2003
to 2012 using the data envelopment analysis (DEA) method with labor, capital, and energy
as inputs and industrial output value and pollutant emissions as outputs. They found
significant differences in energy efficiency in China due to differences between the eastern
and western regions. Bian et al. [6] evaluated the energy efficiency of China’s economic
system using the DEA method with inputs of labor, capital, and energy and output of
GDP. They found that low industrial efficiency would lower the overall economic efficiency.
Guo et al. [7] used dynamic DEA to evaluate the energy efficiency of OECD countries
and China. They found that China and Canada had lower energy use efficiency and CO2
emission efficiency than other countries, while most countries showed progress in energy
efficiency. Chen and Jia, [8] used DEA to evaluate the regional industrial environmental
efficiency in China with inputs of industrial employment, energy consumption, and fixed
assets and outputs of GDP, exhaust gas, and industrial solid waste. They found that China’s
environmental efficiency varied significantly by region and had problems with low envi-
ronmental efficiency and imbalanced industrial development. Ziolo et al., [9] evaluated the
relationship between energy efficiency and sustainable economic and financial develop-
ment in OECD countries using DEA and regression analysis from 2000 to 2018. The results
showed that the total factor energy efficiency (TFEE) of OECD countries slightly increased
during the analysis period, but the TFEE level varied among countries. Developed OECD
countries had higher TFEE levels than developing countries. Liddle and Sadorsky, [10]
evaluated the energy efficiency of 81 OECD and non-OECD countries from 2000 to 2013.
They found that non-OECD countries’ energy efficiency was increasing, while the energy
efficiency of OECD countries was declining. In addition, some studies have also explored
the relationship between energy efficiency and innovation, evaluating the potential benefits
of technological innovation in improving energy efficiency, such as [11], who used DEA
and TFEE methods to assess the impact of environmental variables on technology and
energy efficiency in the European region and found that most EU regions have not adopted
the most efficient production technologies, which is the main reason for the differences.
In addition, improving human capital and innovation will improve regional efficiency or
ecological performance. Paramati et al. [12] evaluated the role of environmental-related
technologies in energy demand and energy efficiency in 28 OECD economies and found
that environmental technologies help OECD economies to reduce their overall energy
consumption and improve their overall energy efficiency.

The research on agricultural efficiency mainly concerns the issue of agricultural pro-
duction efficiency. Some studies focus on the impact of productivity and efficiency improve-
ments in agricultural production on food production while also evaluating the benefits of
agricultural policies and inputs. For example, Diao et al., [13] evaluated the total factor
productivity (TFP) and input redundancy of agriculture in different regions of China and
found that between 1995 and 2014, China’s agricultural TFP grew at an annual rate of
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4.3%, mainly due to technological progress. Adetutu and Ajayi, [14] conducted an inves-
tigation using a stochastic frontier analysis (SFA) model on the impact of domestic and
foreign research and development on agricultural productivity in 30 Sub-Saharan African
(SSA) countries from 1981 to 2011. The study found that total factor productivity was
strongly influenced by domestic and foreign agricultural sector research and development
expenditures, highlighting the critical role of knowledge stock in promoting agricultural
productivity in the SSA region. Chen et al., [15] used the DEA method to evaluate agricul-
tural total factor productivity (AGTFP) in 30 provinces of China from 2000 to 2017. The
study found that AGTFP was lower when considering carbon emissions and agricultural
non-point source pollution (ANSP). Wan and Zhou [16] used the Malmquist-DEA model
to evaluate the total factor productivity (TFP) of agricultural management in 12 cities in
China, as well as technological change (TC) and technical efficiency change (EC). The study
found that the growth rate of agricultural TFP varied significantly in different regions and
had a positive and significant impact on agricultural output. In addition, some studies also
explore the link between agricultural efficiency and environmental issues such as soil pol-
lution, water resource management, and climate change. Toma et al. [17] used a bootstrap
DEA method to evaluate the agricultural efficiency of EU countries from 1993 to 2013, fo-
cusing on the relationship between agricultural productivity and ecological protection. The
study has been used to support planners and managers. The research found that most EU
countries improve production efficiency by changing the use of inputs. In policy planning
and decision-making, not only maximizing agricultural production should be considered
but also excessive development of environmental resources. Rybaczewska-Błażejowska
and Gierulski [18] used the combined application of life cycle assessment (LCA) and data
envelopment analysis (DEA) to evaluate the agricultural ecological efficiency of 28 EU
member states. The analysis showed that the agricultural sector’s ecological efficiency is
low in 18 of the 28 EU countries, which means that some countries’ agricultural sectors
have consumed too many natural resources (especially energy).

Meanwhile, many studies have explored the impact of industrial production on
agricultural efficiency. For example, some studies have found that the industrialization
process can reduce agricultural production efficiency because it may cause natural resource
degradation and changes in land use during agricultural production. Pollutants emitted
during industrial production may also have a negative impact on agricultural production
efficiency, such as in [19]. India’s air pollution problem has attracted special attention, and
different rural areas may experience varying degrees of yield loss due to factors such as
pollution level, exposure time, climate, soil, plant varieties, and cultivation practices, which
can also have adverse effects on seed quality.

According to Wang et al. [20], the impact of industrial air pollution on agricultural
production technology efficiency has had a significant impact, so the use of air pollution as
an input production function was analyzed to assess its impact on rice production. This
will help with understanding and reasonably estimating the agricultural losses caused by
industrial air pollution. Wang and Wei [21] used survey data from southwestern China, to
estimate the concentration of atmospheric pollutants and agricultural losses. It was found
that modifying the layout of industrial plants can effectively reduce agricultural losses
caused by air pollution. Dong and Wang, [22] evaluated the degree and scope of the impact
of air pollution on agricultural total factor productivity (TFP) in 146 countries worldwide
from 2010 to 2019, and it was found that for every 1% increase in the concentration of
fine particulate matter (PM2.5) and tropospheric ozone (O3), agricultural TFP decreases
by 0.104% and 0.207%, respectively. González-Abraham et al. [23] stated that in order to
achieve climate, conservation, and production goals, the Mexican government used an
integrated land use model to predict policy aspirations for policy changes and productivity
improvements. This study predicts land use and greenhouse gas emissions under various
policy and productivity changes. It was found that through policy reform, Mexico can
achieve its goal of providing adequate nutrition by 2050 while reducing greenhouse gas
emissions and expanding forest land.
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Forests are one of the most important resources in human society and ecosystems,
therefore, many studies focus on the impact of forest area on economic development and
environmental protection. For example, L.-C. Lu et al. [24] found that forest area is an
important factor in controlling CO2 emissions. By studying data from 28 EU countries be-
tween 2009 and 2016, they found that increasing forest area can improve a country’s energy
efficiency and help reduce CO2 emissions. L. C. Lu et al. [25] used a modified dynamic data
envelopment analysis (DEA) model that takes into account the role of forest carbon sinks to
evaluate the CO2 emissions and productivity efficiency of European countries. The study
results showed that the fixed amount of forest carbon sink significantly affected efficiency
rankings. Denmark, Luxembourg, Norway, Sweden, and the UK were the best-performing
countries in the overall factor efficiency analysis due to their long-term efforts to address
the impact of forest carbon sinks and CO2 emissions on efficiency. Teng et al., [26] used
forest carbon absorption as a new expected output variable to evaluate China’s energy
efficiency from 2010 to 2019. The study found that as forest carbon absorption improved,
the technology gap ratios between the central and western regions and the eastern region
decreased from an average of 0.4 to 0.23 and from 0.36 to 0.2 from 2015 to 2019. In addition,
dynamic DEA includes the carryover effect, which reflects the impact of past resource
utilization on current production efficiency. Therefore, using dynamic data, DEA methods
can comprehensively evaluate the efficiency of an economic system. Previous studies have
used dynamic DEA methods and forest area as a carryover variable to evaluate the effects
of environmental efficiency and sustainable development. For example, Lu et al., [3] used
the DEA model to evaluate the energy, health efficiency, and productivity changes of OECD
member countries between 2011 and 2015, with forest area as an indicator.

Based on the literature above, it can be seen that previous studies have mostly explored
the relationships between various elements in the WEF system and have primarily focused
on single-industry or agriculture efficiency, lacking dynamic assessments of the cross-period
efficiency performance at the national or regional level. Therefore, this study adopts the DN-
SBM dynamic two-stage method to objectively evaluate the impact of the industrial stage on
the agricultural stage under the WEF nexus framework, where factors such as the economic
development level and policy measures of each country have important influences. At the
same time, the study analyzes the impact of forest area on the total efficiency of the OECD
and further evaluates the changes in total productivity. The characteristic of the above
research is our contribution and breakthrough in the academic field.

3. Research Method
3.1. Dynamic Network SBM, DN-SBM

The network DEA model improves the performance part of each department that the
traditional DEA failed to analyze. Tone and Tsutsui [27] further put forward the weighted
slack-based measures (SBM) dynamic network data envelopment analysis (DEA) model.
They evaluated the efficiency of each department and found the optimal solution by taking
the linkage between different departments of decision-making units as the analysis basis of
the network DEA model, each department as the sub-DMU and carry-over activities as the
linkage. The basic model and solution of DN-SBM are described as follows:

The basic mode has n (j = 1,...,n), each has k sectors (k = 1,...,K), and the time periods
are T (t = 1,...,T); each DMU has input and output in period t through Carry over (link) to
the next period t + 1.

Let and represent K input and H output of each department, while represent K to H of
each department; represents the set of K and H departments, input–output, connection and
existence period, defined as follows:

(1) Inputs and outputs

Xt
ijk ∈ R+(i = 1, . . . , mk; j = 1, . . . , n; K = 1 . . . , K; t = 1, . . . , T): Represents the input

item i of k sector in period t.
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yt
rjk ∈ R+(r = 1, . . . , rk; j = 1, . . . , n; K = 1 . . . , K; t = 1, . . . , T): Represents the out-

put term r of sector in phase t; if part of the output is not ideal, it is regarded as the input of
sector k.

(2) Links

Zt
j(kh)t ∈ R+(j = 1; . . . ; n; l = 1; . . . , Lhk; t = 1; . . . , T)0: Represents the links from the

k sector to the h sector in the DMUj of the link t period, where Lhk is the number of items
linked from k to h.

Zt
j(kh)t ∈ R+(j = 1; . . . ; n; l = 1; . . . , Lkh; t = 1; . . . ; T)

(3) Carry-overs

Z(t,t+1)
jkl ∈ R+(j = 1, . . . , n; l = 1, . . . , Lk; k = 1, . . . k, t = 1, . . . , T − 1): Represents the

carry-overs from k sector to h sector in the DMUj from t to t + 1 period, where Lk is the
number of items in the carry-overs of k sector. The following is the mathematical formula
of the basic model. First, production possible is defined as follows:

xt
k ≥

n

∑
j=1

xt
jkλt

jk(∀k, ∀t)

yt
k ≤

n

∑
j=1

yt
jkλt

jk(∀k, ∀t)

zt
(kh)l ≥,=,≤ ∑n

j=1 zt
j(kh)lλ

t
jk(∀l, ∀(kh)l , ∀t) (output of k division in t period)

zt
(kh)l ≥,=,≤ ∑n

j=1 zt
j(kh)lλ

t
jh(∀l, ∀(kh)l , ∀t) (input of h division in t period)

z(t,t+1)
kl ≥,=,≤ ∑n

j=1 z(t,t+1)
jkl λt

jk(∀kl , ∀k, t = 1, . . . , T − 1) (carry-overs of t period)

z(t,t+1)
kl ≥,=,≤ ∑n

j=1 z(t,t+1)
jkl λt+1

jk (∀kl , ∀k, t = 1, . . . , T − 1) (carry-overs of t + 1 period)

λt
jk ≥ 0(∀j, ∀k, ∀t).∑ n

j=1λt
jk = 1(∀k, ∀t), (1)

Equation (1) represents return-to-scale.
Definition of DMUo is as follows:
DMUo(o = 1 . . . n) ∈ ρ, is expressed as follows and the input and output limit formula

are as follows
xt

ok = Xt
kλt

kst−
ko (∀k, ∀t)

yt
ok = Yt

kλt
kst+

ko (∀k, ∀t)

eλt
k = 1 (∀k, ∀t)

λt
k ≥ 0,st−1

ko ≥ 0,st+
ko ≥ 0,(∀k, ∀t) (2)

Period and Sector Efficiencies

Period and sector efficiencies are as follows:

(1) Period efficiency, as is shown in Formula (3):

τt∗
o =

∑k
k=1 Wk

[
1− 1

mk+linkink+nbadk

(
∑mk

i=1
St−

iok
xt

iok
+ ∑linkink

(kh)l=1

st
o(kh)l in

zt
o(kh)l in

]
∑k

k=1 Wk

[
1 + 1

rk+linkoutk+ngoodk

(
∑rk

r=1
St+

rok
yt

rok
+ ∑linkoutk

(kh)l=1

st
o(kh)l out

zt
o(kh)l out

+ ∑
ngoodk
kl=1

s(t,(t+1))
okl good

z(t,(t+1))
okl good

] (3)
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(2) sector efficiency, as is shown in Formula (4):

δ∗ok =

∑T
t=1 Wt

[
1− 1

mk+linkink+nbadk

(
∑mk

i=1
St−

iok
xt

iok
+ ∑linkink

(kh)l=1

st
o(kh)l in

zt
o(kh)l in

]
∑T

t=1 Wt

[
1 + 1

rk+linkoutk+ngoodk

(
∑rk

r=1
St+

rok
yt

rok
+ ∑linkoutk

(kh)l=1

st
o(kh)l out

zt
o(kh)l out

+ ∑
ngoodk
kl=1

s(t,(t+1))
okl good

z(t,(t+1))
okl good

] (∀k) (4)

(3) Sector period efficiency is defined as follows, as is shown in Formula (5):

pt∗
ok =

1− 1
mk+linkink+nbadk

(
∑mk

i=1
St−

iok
xt

iok
+ ∑linkink

(kh)l=1

st
o(kh)l in

zt
o(kh)l in

)
1 + 1

rk+linkoutk+ngoodk

(
∑rk

r=1
St+

rok
yt

rok
+ ∑linkoutk

(kh)l=1

st
o(kh)l out

zt
o(kh)l out

+ ∑
ngoodk
kl=1

s(t,(t+1))
okl good

z(t,(t+1))
okl good

(∀k; ∀t)

Z(0,1)
olk

= ∑ n
j=1Z(0,1)

jlk λl
jk(∀lk) (5)

From the above results, the overall efficiency, period efficiency, sector efficiency, and
sector period efficiency can be obtained. From the above research method, it can be seen
that if the research case is a performance comparison among multi-sector in multi-period,
DN-SBM is more suitable for carry-overs across multiple sectors and periods compared
with traditional DEA.

3.2. Dynamic Network Malmquist Total Factor Productivity, DN-TFP

Dynamic network Malmquist total factor productivity (DN-TFP) is used to measure
changes in total factor productivity during different periods. On the one hand, it can be
used to judge the stability of the efficiency of each DMU, and on the other hand, it can also
be used to observe the changing trend in the efficiency value of each DMU. The Malmquist
total factor productivity change index is decomposed into technical efficiency change, also
known as the catch-up effect. Technical efficiency change is used to calculate the degree of
support for each DMU to improve efficiency during different periods. Technological change
is calculated to reflect changes in the efficiency frontier of the DMU during different periods.

As is shown in Figure 3, the input and output of a DMU in the two different periods
of p and q are P(xp,yp) and Q(xq,yq). The technical efficiency change is calculated as:

Catch− up =
inQof efficency frontier in periodQ

(
xq, yq

)
the efficiency

inPof efficency frontier in periodQ
(

xp, yp

)
the efficiency

(6)

In accordance with Figure 3, Equation (6) can be converted into

Catch− up =

BQ′
BQ
AP′
AP

(7)

This represents the relative progress efficiency from period p to time q. A value greater
than 1 indicates a trend of progress, a value equal to 1 indicates the status quo is maintained,
and a value less than 1 indicates a trend of regression.

From Figure 3, the technique change in the frontier-shift effect from point p’ to point C
in period P

(
xp, yp

)
is ϕp, which is represented by Formula (8):

ϕp =
inpof efficency frontier in periodP

(
xp, yp

)
the efficiency

inqof efficency frontier in periodP
(

xp, yp

)
the efficiency

=
A P ’
AP
AC
AP

=
AP’

AC
(8)
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In the same way, the frontier-shift in q period is φp. Therefore, the frontier-shift is the
geometric average of φ,φpand φq. As is shown in (9):

Frontier− shift = φ =
√

φpφq (9)

The Malmquist production index (represented by MPI) is the product of catch-up
(represented by C) and frontier-shift (represented by F). Its mathematical symbols are
represented as (10), (11) and (12), and the symbol δ represents efficiency.

C =
δq
((

xq, yq
)q
)

δp
((

xp, yp
)p
) (10)

F =

 δp
((

xp, yp
)p
)

δq
((

xp, yp
)p
) × δp

((
xq, yq

)q
)

δq
((

xq, yq
)q
)
1/2

(11)

MPI =

 δp
((

xq, yq
)q
)

δp
((

xp, yp
)p
) × δq

((
xq, yq

)q
)

δq
((

xp, yp
)p
)
1/2

(12)

In addition to the sectoral concept mentioned above, MPI also includes dynamic
changes over time. Its MPI value represents the growth and changes of DMU’s total factor
productivity (TFP). It mainly discusses the progress or regression of the frontier technology
effect from period 1 to period 2, which are as follows:

Overall DN-TFP

The overall DN-TFP is the weighted geometric average of the sectoral MPI, expressed
as (13):

DN− TFP = µo = ∏ K
k=1(µok)

wk(o = 1, . . . n) (13)

where µok is the weighted geometric average of µok
t→t+1(t = 1, . . . , T − 1), wk ≥ 0, and

∑ wk = 1.
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4. Empirical Analysis

Using the framework of the WEF nexus concept, this study evaluates the efficiency of
the industrial and agricultural sectors in OECD countries using the DN-SBM model and
measures their DN-SBM and DN-TFP changes using the industrial and agricultural sectors’
data from 2015 to 2019.

4.1. Data Source

This study focuses on 31 OECD countries, covering a 5-year period from 2015 to 2019.
The data sources mainly include the United Nations Data Retrieval System and the World
Bank Open Data. The data are annual.

4.1.1. Variable Description

The variables used in this study are described in Table 1.

Table 1. Unit description of each variable.

Variable Unit

Industrial Sector
Input

Employment in industry Person
Gross capital formation Current Millions of US dollars

Electricity Gigawatt hours

Output Industry value added Current Millions of US dollars

Link Greenhouse Gas Thousand tons CO2-eq

Agricultural
sector
Input

Employment in agriculture Person
Land under cereal production Hectares

Precipitation mm/year

Output Value of Agricultural Production Current Millions of US dollars

Carry over Forest area sq. km

4.1.2. Descriptive Statistical Analysis

In the section describing the maximum values of descriptive statistics (Table 2), em-
ployment in industry, gross capital formation, electricity, and industry value added show
a slight increase in trend, while the other variables remain relatively unchanged. In the
section for minimum values, gross capital formation shows an increasing trend, electricity
shows a slight decrease in trend, and the other variables remain relatively unchanged. In
the section for mean values, gross capital formation, industry value added, and value of
agricultural production show a slight increase in trend, while the other variables remain
relatively unchanged.

Table 2. Input–output of OECD variables to descriptive statistical analysis chart from 2015 to 2019.

Employment in
Industry

Gross Capital
Formation

Electricity Industry Value
Added

Greenhouse
Gas

Max

2015 37,445,319.59 3,859,763 4,109,219 33,839,77.115 6,689,006.13
2016 37,818,786.61 3,844,982 4,119,445 3,373,013.267 6,537,871.03
2017 39,437,363.87 4,558,260 4,236,927 3,908,533.954 6,689,006.13
2018 39,437,363.87 4,558,260 4,236,927 3,908,533.954 6,689,006.13
2019 39,437,363.87 4,558,260 4,236,927 3,908,533.954 6,689,006.13

Min

2015 39,921 3398.974485 2738 3537.62447 4746.024
2016 38,716 4384.008718 2168 4064.186221 4692.48
2017 35,956 5376.285015 2204.811 4846.374721 4776.967
2018 40,384 5850.274779 2170.172 5161.739529 4847.088
2019 38,377 5243.821439 1877.378 4918.171152 4713.009
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Table 2. Cont.

Employment in
Industry

Gross Capital
Formation

Electricity Industry Value
Added

Greenhouse
Gas

Average

2015 4,280,958.438 299,316.6691 289,633.9 296,547.8839 434,829.016
2016 4,322,013.254 303,525.6767 291,647.3 300,008.4507 430,037.309
2017 4,382,999.656 321,048.2218 292,560.8 315,344.2028 429,735.341
2018 4,447,133.462 345,313.9125 297,112.1 335,314.2987 431,342.955
2019 4,451,693.684 352,894.9669 294,085.8 334,365.6366 632,357.843

St Dev.

2015 7,464,689.608 704,040.3221 741,776.6 636,356.3478 1,197,366.58
2016 7,528,023.506 706,333.5941 743,027.9 644,511.2976 1,170,671.86
2017 7,604,771.65 742,329.5852 737,329.2 679,785.36 1,163,663.02
2018 7,726,565.533 796,135.8071 763,085.2 721,168.3267 1,194,822.81
2019 7,789,510.195 831,098.8412 754,459.9 734,050.0275 1,623,890.78

Employment in
agriculture

Land under cereal
production

Precipitation Value of Agricultural
Production

Forest area

Max

2015 7,476,523.112 58,124,740 1940 2,790,602.87 3,100,950
2016 7,319,259.506 58,445,763 1940 2,722,427 3,100,950
2017 7,489,642.452 58,445,763 1940 2,846,178.41 3,100,950
2018 7,489,642.452 58,445,763 1940 2,846,178.41 3,100,950
2019 7,489,642.452 58,445,763 1940 2,846,178.41 3,100,950

Min

2015 3348 1455 435 2373.82 481.6
2016 3309 2300 435 2297.58 486.6
2017 4645 2100 435 2763.93 493.8
2018 3608 1500 435 2838.07 500.4
2019 2414 2200 435 2637.91 506.9

Average

2015 753,733.9634 4,489,500.71 934.8065 253,562.5184 217,360.311
2016 745,114 4,424,700.419 934.8065 251,158.6084 217,753.913
2017 747,157 4,271,956.129 934.8065 263,145.9048 217,794.477
2018 731,794.0176 4,193,802.097 934.8065 267,690.7819 217,940.652
2019 713,782.3127 4,176,708.194 934.8065 262,925.7271 218,092.742

St Dev.

2015 1,448,894.294 10,797,194.8 403.6056 509,858.478 586,418.715
2016 1,418,468.485 10,787,376.53 403.6056 499,627.1191 587,007.838
2017 1,444,949.138 9,988,974.662 403.6056 518,714.6516 586,488.961
2018 1,402,110.18 9,968,133.91 403.6056 515,326.6791 586,468.461
2019 1,348,335.55 9,790,477.275 403.6056 515,053.9373 586,455.652

4.2. DN-SBM Empirical Result
4.2.1. The Industrial Sector Efficiency

This study evaluates the efficiency of the OECD industrial sector from 2015 to 2019,
and Table 3 shows the efficiency value results for this period. The average efficiency value
of the industrial sector is 0.8719, with a maximum value of 1 and a minimum value of 0.5835
and a standard deviation of 0.1288. Among them, Germany, Iceland, Israel, Luxembourg,
Netherlands, Switzerland, Australia, Ireland, Italy, Norway, Poland, and Slovenia are the
best countries with an efficiency value of 1 during these five years. In addition, 14 countries
have an efficiency value above the average, and 17 countries have an efficiency value below
the average. The countries with the lowest efficiency values are Portugal (0.7147), France
(0.6002), and Sweden (0.5835).

4.2.2. Agricultural Sector Efficiency

This study evaluates the efficiency of the OECD agricultural sector between 2011 and
2015, and Table 3 shows the efficiency and ranking of the agricultural sector. The average
efficiency value of the agricultural sector is 0.7666, with a maximum value of 1 and a
minimum value of 0.2708 and a standard deviation of 0.2730. Among them, Germany,
Iceland, Israel, Luxembourg, Netherlands, Switzerland, United States, New Zealand, Japan,
and Denmark are the most efficient countries in the agricultural sector with an efficiency



Sustainability 2023, 15, 6084 12 of 17

value of 1 during these five years. In addition, 17 countries have an efficiency value below
the average. The countries with the lowest efficiency values are Estonia (0.3134), Slovenia
(0.2890), and Slovak Republic (0.2708).

Table 3. OECD ranking analysis of industrial, agricultural sector, and overall efficiency from 2015
to 2019.

DMU Industrial
Sector

Agricultural
Sector Overall DMU Industrial

Sector
Agricultural

Sector Overall

Germany 1 1 1 Chile 0.7874 0.8271 0.7038
Iceland 1 1 1 Turkey 0.8353 0.8134 0.6880
Israel 1 1 1 France 0.6002 0.9945 0.6505

Luxembourg 1 1 1 Portugal 0.7147 0.5909 0.5447
Netherlands 1 1 1 Austria 0.7453 0.5248 0.5257
Switzerland 1 1 1 Hungary 0.7510 0.5587 0.5166

Australia 1 0.9564 0.9714 Poland 1 0.3286 0.5020
United States 0.9519 1 0.9637 Slovenia 1 0.2890 0.4575

Ireland 1 0.9126 0.9418 Sweden 0.5835 0.4729 0.4520
Greece 0.9921 0.9339 0.9302 Czech Republic 0.8533 0.3447 0.4515

Italy 1 0.9512 0.8912 Finland 0.7619 0.3608 0.4367
Japan 0.8504 1 0.8839 Slovak Republic 0.7898 0.2708 0.3649

Denmark 0.8305 1 0.8484 Estonia 0.7325 0.3134 0.3607
New Zealand 0.8675 1 0.8322 Max 1 1 1

Spain 0.8062 0.9813 0.8081 Min 0.5835 0.2708 0.3607
Norway 1 0.6366 0.7632 Average 0.8719 0.7666 0.7411
Belgium 0.7802 0.8921 0.7458 StDev. 0.1288 0.2730 0.2221

United Kingdom 0.7951 0.8113 0.7406

4.2.3. DN-SBM Overall Efficiency

Regarding the overall section (Table 3), the overall average is 0.7411, with a maximum
value of 1 and a minimum value of 0.3607 and a standard deviation of 0.2221. Among
them, Germany, Iceland, Israel, Luxembourg, Netherlands, and Switzerland are the best
countries with an efficiency value of 1 during these five years. In addition, there are 14
countries below the average. The countries with the lowest efficiency values are Finland
(0.4367), Slovak Republic (0.3649), and Estonia (0.3607).

In previous studies, efficiency was usually investigated for a single country or in-
dustry. However, in this study, we chose to use the WEF nexus framework to integrate
three elements: water, energy, and food, and objectively evaluate the impact of OECD
industrial production on agriculture. The study found that countries with higher industrial
sector efficiency did not necessarily have better agricultural sector efficiency, such as Aus-
tralia, Ireland, Italy, Norway, Poland, and Slovenia. Among them, Poland (1, 0.3286) and
Slovenia (1, 0.289) were the most obvious, with an average industrial sector efficiency of
1, ranking first over a five-year period. However, their agricultural sector efficiency was
low, resulting in an overall decline to 0.502 for Poland and 0.4575 for Slovenia. Similarly,
countries with higher agricultural sector efficiency did not necessarily have better industrial
sector efficiency, such as the United States, Japan, Denmark, and New Zealand, with New
Zealand being the most obvious, having an average agricultural sector efficiency of 1 but an
industrial sector efficiency of only 0.8675, the main reason for its overall decline to 0.8322.

Therefore, this study is different from the traditional research, which only investi-
gates efficiency for a single country or industry. The uniqueness of this study lies in its
use of a dynamic and multi-stage approach, which provides a more objective evaluation
of a country’s overall efficiency and enables the identification of areas for improvement
and recommendations based on efficiency performance at different stages. This has sig-
nificant implications for national policy-making, providing policymakers with a more
comprehensive and objective method of evaluating efficiency.
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4.3. DN-TFP Empirical Results

From 2015 to 2019, the average DN-TFP value for OECD countries was 1.0776, as
shown in Table 4, indicating a slight improvement trend. Among them, Japan (1.7059) had
the best productivity performance, while Turkey (0.8489) had the lowest DN-TFP value
with a standard deviation of 0.1681. DN-TFP values for 22 OECD countries were greater
than 1, indicating a trend in progress. DN-TFP values for 9 countries were less than 1,
indicating a trend of decline. Australia (0.9645), Slovenia (0.9126), and Turkey (0.8489) had
the lowest DN-TFP values.

Table 4. OECD DN-TFP from 2015 to 2019.

DMU 2015–
2016

2016–
2017

2017–
2018

2018–
2019 Ave. DMU 2015–

2016
2016–
2017

2017–
2018

2018–
2019 Ave.

Japan 1.2858 0.9401 1.0719 6.5367 1.7059 Luxembourg 1 0.9602 1.0961 1.0008 1.0131
Spain 1.2384 1.1153 1.1853 2.8674 1.4719 Italy 0.9305 1.0658 1.1274 0.937 1.0117

Ireland 0.8485 1.229 1.1257 2.9084 1.3593 France 0.8208 1.212 1.2907 0.8153 1.0115

Germany 0.9443 1.0192 0.8734 2.752 1.2333 Czech
Republic 1.0138 1.0338 1.0032 0.9948 1.0113

Belgium 0.8983 1.3411 1.3443 1.0669 1.1465 Austria 0.9984 1.0388 1.0608 0.932 1.0063
Netherlands 1.267 1.1844 0.9733 1.1523 1.139 Norway 0.7691 1.3899 1.3443 0.6851 0.9961

United
Kingdom 0.8842 1.0322 1.0795 1.6755 1.1335 United States 0.9333 1.081 0.9901 0.9627 0.9903

Chile 1.2176 1.1579 1.1958 0.9454 1.1236 Sweden 0.9759 1.0896 0.9927 0.8996 0.9872
Poland 1.4331 0.7494 0.666 1.8547 1.0732 Estonia 0.8287 1.186 0.9405 0.9958 0.9795

New Zealand 1.0633 1.2644 1.146 0.8495 1.0696 Hungary 1.0556 0.9924 0.9155 0.9402 0.9745
Israel 1.1053 1.1453 0.9629 1.0423 1.0617 Iceland 1.042 1.0124 0.9801 0.8697 0.9738

Slovak
Republic 1.0776 0.9875 1.1845 0.9762 1.0532 Australia 0.9667 1.1301 0.9775 0.8102 0.9645

Denmark 1.1021 1.1714 0.8275 1.1281 1.0477 Slovenia 1.7484 0.6294 0.6305 0.9994 0.9126
Portugal 0.95 1.0522 1.0054 1.1419 1.035 Turkey 0.8543 0.8135 0.6649 1.1237 0.8489

Switzerland 0.9886 1.0177 1.1197 0.9975 1.0296 Max 1.7484 1.3899 1.3443 6.5367 1.7059
Greece 0.9762 1.0601 0.9992 1.0678 1.0251 Min 0.7691 0.6294 0.6305 0.6851 0.8489
Finland 0.9785 1.0715 1.014 1.0056 1.0168 Average 1.0386 1.0701 1.0254 1.3850 1.0776

StDev. 0.1996 0.1563 0.1752 1.1220 0.1681

This study further compared the overall efficiency values of DN-SBM and DN-TFP (as
shown in Table 4 and Figure 4). The study found that five countries, including Germany
(1, 1.2333), Israel (1, 1.0617), Luxembourg (1, 1.0131), the Netherlands (1, 1.139), and Switzer-
land (1, 1.0296), had an overall efficiency value of 1 and showed progress in productivity.
However, Iceland (1, 0.9738) showed a slight decline in productivity. Among the three
countries with lower efficiency values, Finland (0.4367, 1.0168) and Slovakia (0.3649, 1.0532)
showed progress in productivity, while Estonia (0.3607, 0.9795), which had the lowest
efficiency value, not only had low efficiency but also showed a decline in productivity.
Eight countries had declining productivity, but there was still room for improvement in
efficiency, including Norway (0.7632, 0.9961), the United States (0.9637, 0.9903), Sweden
(0.452, 0.9872), Estonia (0.3607, 0.9795), Hungary (0.5166, 0.9745), Australia (0.9714, 0.9645),
Slovenia (0.4575, 0.9126), and Turkey (0.6880, 0.8489). The study found that although Japan
had a relatively lower efficiency value (0.8504) in the industrial stage, its productivity
showed a significant growth trend (1.7059). By adjusting the inputs and resource allocation
in the industrial stage, it is expected to further improve overall efficiency performance.
This finding shows that a single efficiency value is not the only standard for measuring a
country’s productivity, and multiple factors need to be considered. Moreover, it provides a
reference for other countries to improve their efficiency performance, especially those with
slow productivity growth.
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4.4. Policy Implications and Discussion

According to research findings, the overall efficiency performance of OECD countries
is 0.7411, which still has room for improvement. Among them, the average efficiency of
the industrial sector is 0.8719, which is better than the average efficiency of the agricul-
tural sector at 0.7666. This indicates that the efficiency of the agricultural sector can be
improved through resource allocation and other methods to enhance overall efficiency
performance. Although the average productivity of OECD countries is 1.0766, showing a
slight improvement trend, some OECD countries are already developed countries. If these
countries cannot effectively develop industry, agriculture, protect water resources, and
maintain forests, developing countries will undoubtedly face more difficulties in achieving
the goals of the Paris Agreement. Therefore, this study uses the WEF nexus as a framework
to re-examine and evaluate the performance of efficiency and productivity in OECD coun-
tries and strengthen the implementation of related policies to make more contributions to
sustainable development and climate change issues. In addition, OECD countries should
focus on promoting industrial innovation and technological progress to enhance overall
efficiency, for example, by strengthening innovation investment, encouraging industrial
and agricultural research and development of new technologies, and expanding the scope
of new technology applications. Moreover, education and training can be used to improve
the skills and knowledge of workers and increase the quality and efficiency of the labor
force. At the same time, OECD countries should strengthen cross-border cooperation
and jointly respond to global challenges such as climate change to promote sustainable
development goals.

5. Conclusions

The main purpose of this study is to comprehensively assess the impact of industrial
production on agricultural output and efficiency in 31 OECD countries from 2015 to 2019
in order to further understand the relationship between the two. To achieve this goal, we
used the DN-SBM model to evaluate the efficiency of two stages and the DN-TFP model to
measure the changes in total factor productivity. Through in depth analysis of these factors,
we can better grasp the interaction between industry and agriculture and further develop
more effective policies to promote economic and sustainable development. The empirical
results of this study are summarized as follows:

(1) The average efficiency value of the OECD industrial sector during the study period is
0.8719, with a maximum value of 1 and a minimum value of 0.5835. The efficiency
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values of 14 countries are higher than the average level, and the efficiency values of
17 countries are lower than the average level. The countries with the lowest efficiency
values are Portugal (0.7147), France (0.6002), and Sweden (0.5835).

(2) The average efficiency value of the agricultural sector is 0.7666, with a maximum value
of 1 and a minimum value of 0.2708 and a standard deviation of 0.2730. The efficiency
values of 20 countries are higher than the average level, and the efficiency values of
11 countries are lower than the average level. The countries with the lowest efficiency
values are Estonia (0.3134), Slovenia (0.2890), and the Slovak Republic (0.2708).

(3) The overall average value of DN-SBM is 0.7411, with a maximum value of 1 and a
minimum value of 0.3607 and a standard deviation of 0.2221. The efficiency values
of 17 countries are higher than the average level, and 14 countries are lower than the
average level. The countries with the lowest efficiency values are Finland (0.4367), the
Slovak Republic (0.3649), and Estonia (0.3607).

(4) The DN-TFP average value is 1.0776, indicating a slight improvement trend. Japan
(1.7059) shows the best productivity performance, while Turkey (0.8489) has the
lowest DN-TFP value with a standard deviation of 0.1681. DN-TFP values for 22
OECD countries are greater than 1, indicating a trend in progress. DN-TFP values
for 9 countries are less than 1, indicating a declining trend. The DN-TFP values for
Australia (0.9645), Slovenia (0.9126), and Turkey (0.8489) are the lowest.

(5) This study further compares DN-SBM and DN-TFP and finds that the overall efficiency
values for five countries, including Germany (1.2333), Israel (1.0617), Luxembourg
(1.0131), Netherlands (1.139), and Switzerland (1.0296), are 1, and productivity has
improved. Among the three countries with lower efficiency values, Finland (0.4367,
1.0168) and Slovakia (0.3649, 1.0532) have improved productivity, while Estonia
(0.3607, 0.9795), with the lowest efficiency value, not only has lower efficiency but
also a decline in productivity. Eight countries have a decline in productivity, but there
is still room for improvement in efficiency.

Efficiency was typically investigated for individual countries or industries in previous
studies. However, in this study, we chose to use the WEF nexus framework to compre-
hensively assess the impact of industrial production in OECD countries on agriculture by
combining the three elements of water, energy, and food and objectively evaluating their
efficiency. The study found that countries with higher efficiency in the industrial sector
did not necessarily have better efficiency in the agricultural sector. Similarly, countries
with higher efficiency in the agricultural sector did not necessarily have better efficiency in
the industrial sector. Therefore, this study is different from traditional research that only
investigates the efficiency of individual countries or industries.

The uniqueness of this study lies in its use of dynamic and multi-stage methods to
more objectively evaluate the overall efficiency of a country and determine the areas that
need improvement and recommendations based on the efficiency performance at different
stages. This has significant implications for national policy-making and provides policy
makers with a more comprehensive and objective efficiency assessment method.
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