
Citation: Tang, J.; Liu, S.; Zhao, D.;

Tang, L.; Zou, W.; Zheng, B.

PCB-YOLO: An Improved Detection

Algorithm of PCB Surface Defects

Based on YOLOv5. Sustainability

2023, 15, 5963. https://doi.org/

10.3390/su15075963

Academic Editors: Shaofei Jiang,

Yanchun Ni and Feng-Liang Zhang

Received: 1 March 2023

Revised: 23 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

PCB-YOLO: An Improved Detection Algorithm of PCB Surface
Defects Based on YOLOv5
Junlong Tang 1,*, Shenbo Liu 1, Dongxue Zhao 1, Lijun Tang 1, Wanghui Zou 1 and Bin Zheng 2

1 School of Physics and Electronic Science, Changsha University of Science and Technology,
Changsha 410114, China

2 School of Computer and Communications Engineering, Changsha University of Science and Technology,
Changsha 410114, China

* Correspondence: tangjl625@163.com

Abstract: To address the problems of low network accuracy, slow speed, and a large number of
model parameters in printed circuit board (PCB) defect detection, an improved detection algorithm
of PCB surface defects based on YOLOv5 is proposed, named PCB-YOLO, in this paper. Based on
the K-means++ algorithm, more suitable anchors for the dataset are obtained, and a small target
detection layer is added to make the PCB-YOLO pay attention to more small target information.
Swin transformer is embedded into the backbone network, and a united attention mechanism is
constructed to reduce the interference between the background and defects in the image, and the
analysis ability of the network is improved. Model volume compression is achieved by introducing
depth-wise separable convolution. The EIoU loss function is used to optimize the regression process
of the prediction frame and detection frame, which enhances the localization ability of small targets.
The experimental results show that PCB-YOLO achieves a satisfactory balance between performance
and consumption, reaching 95.97% mAP at 92.5 FPS, which is more accurate and faster than many
other algorithms for real-time and high-precision detection of product surface defects.

Keywords: PCB defect detection; YOLO; united attention mechanism; PCB-YOLO

1. Introduction

With the development of the electronics industry, the electronics industry occupies
an important position in the modern manufacturing industry. As an important electronic
component, the printed circuit board (PCB) is a carrier connected to various electronic
components that provides line connections and hardware support for the equipment. From
small electronic watches and calculators to large computers, communication electronics,
and military weapons systems, as long as there are electronic components such as integrated
circuits, almost every electronic device needs a PCB [1–4]. However, the PCB manufacturing
process is complex and prone to miss holes, mouse bites, open circuits, shorts, and other
minor defects. To ensure the safety and reliability of electronic equipment, it is necessary to
detect the surface defects of PCB.

Traditional manual inspection is easily disrupted by external environmental factors,
which can affect the efficiency of defect detection. Additionally, the detection of tiny defects
can cause visual fatigue and lead to misclassification [5]. To solve the problems, some schol-
ars have introduced machine learning into PCB detection and have made great progress.
Wang et al. [6] proposed an automatic detection algorithm for PCB pinholes by combin-
ing machine learning knowledge. Pinhole defects of 2 mm can be identified within 10 s.
Yuk et al. [7] implemented the detection of PCB defects using accelerated robust features
and random forest algorithm. Weighted kernel density estimation (WKDE) mappings were
generated with weighted probabilities by considering the density of features to achieve
the detection of defect concentration regions. V et al. [8] used similarity metrics for the
detection of PCB surface defects. Experimental results demonstrated the effectiveness of
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this method in detecting and locating local defects in PCB images of complex component
installations. Some scholars have also proposed PCB surface defect detection approaches
based on machine learning, which are not real-time approaches [9,10]. Although machine
learning-based methods can achieve recognition of PCB surface defects, most algorithms
still require the artificial setting of image features through a priori knowledge, which results
in the algorithms’ lack of generalization ability.

Traditional image processing-based defect detection methods achieve acceptable de-
tection accuracy; however, they are time-consuming and sensitive to the environment and
inferred images [11]. With the development of deep learning (DL) and computer vision,
DL and convolutional neural network (CNN) techniques are widely used in the detection
of PCB defects. The existing deep learning target detection methods are mainly divided
into the single-stage and the two-stage detection algorithm. The single-stage algorithm
processes the entire input image in a single pass to detect objects. These algorithms typically
use a single CNN to perform both the region proposal and object detection. The two-stage
algorithm separates the object proposal from object detection. The first stage of a two-stage
algorithm generates region proposals using a separate algorithm or network; then, the
second stage performs object detection within those proposed regions. The two-stage de-
tection algorithm is represented by R-CNN (regions with CNN features) [12], Fast R-CNN
(fast region-based CNN) [13], and Faster R-CNN [14]. These algorithms were used to
generate candidate boxes and then classify each candidate box. The single-stage detection
algorithm is represented by the YOLO (You Only Look Once) series [15–18] and SSD (Single
Shot MultiBox Detector) [19]. These algorithms directly generated the class probability and
position coordinate values of the object while creating the candidate frame, and the final
detection results can be directly obtained after a single detection. To address the problem
that image uncertainty can limit PCB detection performance under uneven ambient light
or unstable transmission channels, Yu et al. [20] designed a novel collaborative learning
classification model. Zhang et al. [21] obtained a good detection effect by using a cost-
sensitive residual convolutional neural network for PCB appearance defects; however, the
model has high complexity and a large number of parameters. Wan et al. [22] achieved the
detection of PCB surface defects by using a few labeled samples based on semi-supervised
learning (SSL) methods, which improved the detection efficiency with a detection mean
average precision (mAP) of 98.4%. Ding et al. [23] proposed TDD-net (tiny defect detection)
based on Faster R-CNN for the detection of tiny target defects in PCB. The accuracy is
high but the model size is too large to be used on embedded devices. Xuan et al. [24]
proposed a detection algorithm based on YOLOX and coordinate attention for PCB defects
detection, which has good robustness; however, the size of the algorithm model is 379
MB. Wu et al. [25] proposed the GSC YOLOv5, a deep learning detection method that
incorporates lightweight networks and a dual-attention mechanism, to effectively solve the
small target detection problem; however, the proposed attention mechanism is complex
and slow. Zheng et al. [26] implemented real-time detection of PCB surface defects based
on MobileNet-V2. The mAP of four types of defects is only 92.86%, which needs to continue
to improve. Yu et al. [27] proposed the diagonal feature pyramid (DFP) to improve the
performance of tiny defect detection. However, the model size is 69.3MB and still needs
further quantification. Other scholars have also proposed a series of detection methods
based on deep learning techniques, all of which have problems of large model size and
poor real-time performance [28,29].

Deep learning-based detection algorithms have been able to achieve good accuracy
in other defect detection fields. In industrial applications, as PCB surface defect detection
requires high accuracy and real-time performance, the current PCB surface defect detection
algorithm needs to be further improved in terms of detection accuracy and speed. Therefore,
in order to further improve the model accuracy, a real-time detection network based on
the YOLOv5 algorithm is designed, which provides theoretical support for the subsequent
deployment of the embedded platform. Specific innovation points are as follows:
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(1) The K-means ++ algorithm was used to obtain 12 new sets of anchors, which solves the
problem that YOLOv5 preset anchors based on the COCO dataset are not applicable
to the PCB dataset. Based on the new anchors, a new detection layer is added to
obtain more information about the features of the target.

(2) A united attention mechanism is designed by combining the channel attention module
and the spatial attention module. It pays better attention to the channel information
and spatial information of the features.

(3) Combined with the Swin transformer and depth-wise separable convolution, a back-
bone network is designed for feature extraction. More spatial and channel information
are obtained, and the analysis capability of the network is improved.

(4) During the training process, the CIoU(Complete-IoU) [30] is replaced by the regression
loss function EIoU(Efficient-IoU) [31], which more clearly measures the differences
in the overlap area, centroids, and edge lengths in the bounding box regression. The
convergence speed of the model is accelerated and the model regression accuracy
is improved.

The remainder of this paper is organized as follows. Section 2 introduces the image
preprocessing and dataset. Section 3 presents the details of the proposed method. Section 4
reports the experimental results and discussion. Section 5 concludes this article and
considers further work.

2. Image Preprocessing and Dataset

The original PCB defect dataset was obtained from the Intelligent Robot Development
Laboratory of Peking University [23]. For this dataset, the average pixel size of each image
is 2777 × 2138, and the average pixel size of the six defects is 130 × 110. There are a total
of 1386 images with six types of defects, which are short, spur, open circuit, mouse bite,
spurious copper, missing hole, and various defects are shown in Figure 1. Due to the
small number of samples in the original dataset, problems such as low detection accuracy,
low robustness, and overfitting are likely to occur in the training process. The problem
of insufficient training samples can be effectively solved by appropriately enhancing the
original image to increase the number of images [32]. More and richer training data can
be generated through various transformations of the image, which can effectively avoid
overfitting and improve the generalization ability of the model. In this paper, the dataset
was extended to 8316 images after the random flipping, rotation, cropping, and cutout
operations in Figure 2, where the ratio of the training set, validation set, and test set is 8:1:1,
and the number of each defect image in the dataset is shown in Table 1. A comparison
of original and enhanced dataset is shown in Table 2; the mAP is increased from 90.56%
to 93.88%.

Table 1. PCB data set type and number.

Defects Class Amount

missing hole 1380
open circuit 1392

short 1392
spur 1380

spurious copper 1392
mouse bite 1380

Table 2. Comparison of original and enhanced dataset.

Original Dataset Augmented Dataset

Number of images 1386 8316
Number of defects 5906 35,436

mAP% 90.56 93.88
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Figure 1. Six defects on the printed circuit board surface. (a) missing hole; (b) open circuit; (c) short;
(d) spur; (e) spurious copper; (f) mouse bite.

Figure 2. Images were obtained by using the expansion technique.
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3. Description of Methodology
3.1. PCB-YOLO Network Structure

In this study, improvements are made based on the three basic structural frameworks
of the spine, neck and head of YOLOv5. YOLOv5 extracts three networks with different
levels of scale feature maps for detection, (80,80), (40,40), and (20,20). In order to obtain
more information about the features of the small target to be detected, a new detection
layer is added according to the new anchors obtained using the K-means++ algorithm.

Figure 3 shows that the PCB-YOLO network structure consists of four parts: input,
backbone, neck, and prediction. In input, the image is adjusted to 640 × 640 × 3 and
input to the backbone. The united attention mechanism and Swin transformer module
are embedded in the backbone to improve the model’s ability to pay attention to channel
information and spatial information. DwConv is used to compress the model, which not
only guarantees the accuracy of the model but also greatly reduces the size of the model.
The network at different levels of four scale feature maps are extracted for detection, which
were (160,160), (80,80), (40,40), (20,20) respectively.

Figure 3. PCB-YOLO network structure diagram.
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In the dataset, the average pixel size of each image is 2777 × 2138 and the pixels of
the six defects are 130 × 110. According to the definition in the literature [33], the types
of detects of PCB with less than 1.23% of annotated pixels are small objects. In order
to solve the problem of YOLOv5 preset anchors based on the COCO dataset not being
applicable to PCB datasets, this paper uses the K-means++ algorithm to generate 12 new
sets of anchors. A sample point is randomly selected from the uniformly distributed small
target PCB dataset X as the first initial clustering center C1. The shortest distance D(xi)
is calculated from each sample xi and the current clustering center C1, to the probability
P(xi) of each sample xi being selected as the next clustering center is calculated, P(xi) is
represented by Equation (1). The K = 12 clustering centers (C1 Ck) are selected according to
the roulette wheel method. The distance D(xi) is calculated from each sample xi to K = 12
clustering centers in the PCB dataset X , and the sample xi is divided into the category Ci
corresponding to the clustering center with the smallest distance D(xi). The clustering
center E is recalculated for each category Ci, and E is represented by Equation (2), until the
position of the clustering center Ck no longer changes. Equation (3) is the clustering means.

P(x) =
D(x)2

∑x∈X D(x)2 (1)

E =
k

∑
i=1

∑
x∈Ci

‖x− µi‖2
2 (2)

µi =
1
|Ci| ∑

x∈Ci

x (3)

where X is PCB dataset, C is the cluster center, P is the probability of the cluster center, and
D is the shortest distance from sample x to the cluster center C. E is the new cluster center.

Finally, 12 new sets of anchors, (7,7) (11,11) (13,13) (11,18) (17,12) (16,16) (13,24) (24,13)
(20,20) (35,13) (28,23) (36,34), are obtained using the K-means++ algorithm. A new small
target detection layer is added according to the new anchors. In the new small target
detection layer, the feature map 80 × 80 × 256 is up-sampled and further expanded to
160 × 160 × 128 by other processes. In addition, the feature map 160 × 160 × 128 in the
bone network is concatenated and fused to obtain a larger feature map 160 × 160 × 255 for
small target detection.

3.2. Bakbone Network
3.2.1. United Attention Mechanism

The attention mechanism essentially locates interesting information and suppresses
useless information. The PCB dataset contains complex background information. After
feature extraction of the convolutional layer, the defect information to be detected takes up
a small proportion, while the background and non-detected object information takes up a
large proportion. This non-interest region information will interfere with defect detection.

In order to focus on the defect target to be detected in the image and ignore the
irrelevant object information, a united attention mechanism (UAM) is design based on
the channel attention module (CAM) and spatial attention module (SAM) proposed by
Woo et al. [34]. The UAM consists of channel attention module and spatial attention module
connected in parallel. Through the parallel structure, the feature map information about
both spatial dimensions and channel dimensions is encoded simultaneously, which can
make better use of the information between the channel and space of the feature map. The
detailed structure of the UAM is shown in Figure 4, where F is the input of the feature
map, H and W are the height and width, respectively, and C is number of channels of the
input of feature map. In CAM, the global space information of F is firstly compressed using
max pool and avg pool to generate two feature maps S1 and S2 of size 1 × 1 × C. Then,
two one-dimensional feature maps are obtained through multi-layer perception (MLP).
The two one-dimensional feature maps are normalized to obtain the weighted feature
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map MC. In SAM, the result is input into the sigmoid function after F is activated by the
1 × 1 × 1 convolutional module to obtain the weight feature graph MS. The MC and MS
are connected in parallel by element-by-element summation, and the output feature map
Fˆ is obtained after the sigmoid activation function is executed.

Figure 4. UAM structure diagram.

3.2.2. Swin Transformer Module

The transformer is a model based on a self-attentive mechanism, which not only has
strong modeling function in the global environment but also shows excellent transferability
for downstream tasks under large-scale pre-training. VIT [35] was the first transformer
for computer vision, and its demonstrated powerful performance in image classification
has driven the development of subsequent transformers for computer vision. The Swin
transformer proposed by Liu et al. [36] is the most popular hierarchical vision transformer
that is able to compute attention within a local window without overlap, and allows cross-
window computation by introducing shift windows. The Swin transformer overcomes
the lack of connectivity between the windows generated by the conventional window
partitioning strategy in VIT, which leads to higher efficiency and lower complexity.

The structure of the Swin transformer is shown in Figure 5, which consists of two
shifted windowing-based self-attention mechanisms and two MLPs. Each self-attention
mechanism module and MLP module is preceded by an LN (LayerNorm level normaliza-
tion) layer, and the remaining connections are added after each module. Where W-MSA is
multi-head self-attention modules with regular windowing configurations and SW-MSA is
shifted windowing configurations, respectively.

The attention expressions of the Swin transformer are shown in Equations (4)–(7),

where
^
z

l
and zl are the feature outputs of (S)W-MSA and MLP in the l module, respectively,

and zl−1 denotes the output features of the corresponding l − 1 layer.

^
z

l
= W−MSA

(
LN

(
zl−1

))
+ zl−1 (4)

zl = MLP
(

LN
(

^
z

l))
+

^
z

l
(5)

^
z

l+1
= SW−MSA

(
LN

(
zl
))

+ zl (6)



Sustainability 2023, 15, 5963 8 of 17

zl+1 = MLP
(

LN
(

^
z

l+1))
+

^
z

l+1
(7)

Figure 5. Swin transformer block structure.

3.2.3. Depth-Wise Separable Convolution

In 2017, the Google team proposed MobileNet, a lightweight neural network focused
on mobile or embedded devices, where the basic unit of MobileNet is depth-wise separable
convolution (DwConv) [37]. As shown in Figure 6, DwConv is constructed from depth-
wise convolution and pointwise convolution. One convolutional kernel of the depth-wise
convolution can control a channel in one direction. One channel can only be accessed by
a single convolution. The process of the pointwise convolution is similar to the normal
convolution process. The convolutional kernel has a size of 1 × 1 and is weighed in one
direction corresponding to the previous map’s depth to generate the new feature map. The
computational complexity of a regular convolution CConv is shown in Equation (8), and
the computational complexity of a DwConv CDwConv is shown in Equation (9). The ratio
of the computational cost of deep separable convolution to that of standard convolution
is shown in Equation (10). Experiments [32] show that the computational amount of the
DwConv is eight-to-nine times lower than that of the normal convolution if the number of
convolutional kernels in DwConv is 3 × 3.

CConv = Dout1 · Dout2 · Dk1 · Dk2 · Cout · Cin (8)

CDwConv = Dout1 · Dout2 · Dk1 · Dk2 · Cin + Dout1 · Dout2 · Cout · Cin (9)

CDWConv
CConv

=
Dout1 · Dout2 · Dk1 · Dk2 · Cin + Dout1 · Doutt · Cout · Cin

Doutl · Dout2 · Dk1 · Dk2 · Cout · Cin
(10)
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Figure 6. DwConv structure.

3.3. Loss Function

The YOLOv5 algorithm uses CIoU to calculate the localization loss. The CIoU for-
mula is shown in Equation (11), where α is the parameter of the trade-off and v is the
parameter of measure the aspect ratio consistency. The α, v are defined as shown in
Equations (12) and (13), respectively.

LCIoU = 1− IoU +
ρ2
(

b, bbt
)

c2 + αv (11)

α =
v

(1− IoU) + v
(12)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(13)

where LCIoU is CIoU localization loss, α is the parameter of the trade-off and v is the
parameter of measure the aspect ratio consistency. wgt, hgt and w, h are side width and
side length of the true box and the prediction box, respectively. c are the diagonals of the
smallest outer rectangle of the real box and the predicted box, respectively.

Although the CIoU loss function takes into account the overlap area, centroid distance,
and aspect ratio of the bounding box regression, the parameter v in the formula reflects the
difference in aspect ratio rather than the true difference between the aspect ratio and its
confidence level. Therefore, the CIoU loss function sometimes prevents the model from
optimizing the similarity effectively, and fails to achieve accurate positioning.

In this paper, the EIoU loss function is used to calculate the localization loss. Based
on the penalty term of the CIoU, the penalty term of EIoU splits the influence factor of the
aspect ratio to calculate the length and width of the target box and anchor box, respectively.
In addition, the EIoU loss function consists of three parts: overlap loss, center distance loss,
and width-height loss. The overlap loss and center distance loss continue the CIoU method.
However, the width-height loss directly minimizes the difference between the width and
height of the target box and the anchor box, which makes the convergence speed faster.
By using the true difference between the length and width of the prediction box and the
labeled box to supervise back-propagation process, the optimal solution of the loss function
is obtained, and in this process the small target detection performance is improved by
increasing the regression accuracy. The EIoU is defined as shown in Equation (14), where
bgt, wgt, hgt and b, w, h are the centroid, side width, and side length of the true box and the
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prediction box, respectively. c, Cw, Ch are the diagonals, side widths, and side lengths of
the smallest outer rectangle of the real box and the predicted box, respectively.

LEIoU = 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(14)

4. Experiments and Discussion
4.1. Evaluation Metrics

In this paper, four evaluation metrics, precision (P), recall (R), mean average precision
(mAP), and frames per second (FPS), are chosen to evaluate the algorithms. The IOU
denotes the ratio of the intersection of the true bounding box and the prediction box to
the concatenation, shown in Equation (15). The precision measures the accuracy of the
classification as shown in Equation (16). The recall describes the completeness of detection
and is defined in Equation (17). The mAP indicates the accuracy of the model in a given
category, as defined in Equation (18). The mAP in Equation (19) is the average of AP, which
represents the average accuracy of all categories. The FPS is used to evaluate the detection
speed of the model, as shown in Equation (20), where Fn denotes the number of detected
images and T denotes the total time of detecting the images. In Equations (15)–(17), boxgt is
the ground truth of the defect, boxp is the predicted area of the defect, TP is the number of
samples correctly classified as positive samples, FP is the number of samples incorrectly
classified as positive samples, and FN is the number of samples incorrectly classified as
negative samples.

IOU
(
boxgt, boxp

)
=

∣∣boxgt ∩ boxp
∣∣∣∣boxgt ∪ boxp
∣∣ (15)

P =
TP

(TP + FP)
(16)

R =
TP

FN + TP
(17)

AP =
∑n

i=1 Pi

n
(18)

mAP =
∑k

i=1 APi

k
(19)

FPS =
Fn

T
(20)

4.2. Model Training

All experiments in this paper were performed on a Windows 11 operating system
with an Intel i7-12700 CPU and an NVIDIA GeForce RTX 3090 24GB GPU. The methods of
the paper adopt Python language, are implemented in Python 3.8, and use Pytorch 1.11 as
the neural network framework. In order to ensure the accuracy of the training results, the
algorithms involved in the comparison were tested under the same training parameters.
The model training parameters were set as follows: batch size is 32, learning rate is 0.0025,
momentum is 0.937, and weight decay is 0.0005.

Figure 7 shows the model training loss values obtained in each iteration during the
training process. The training loss consists of boxing loss, objection loss and classification
loss; these are represented by train/box_loss, train/obj_loss, and train/cls_loss, respectively.
As the number of iterations increases gradually, the loss value of the model decreases
gradually. In the initial training stage, the learning efficiency of the model is high and
the convergence speed of the training loss curve is fast. After 50 iterations, the training
loss curve slowly converges. When the number of iterations reaches 200, the classification
loss curve flattens out gradually. With the increasing number of iterations, the loss curve
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gradually reaches convergence. The loss curve stabilizes when the number of training
iterations reaches about 350.

Figure 7. Loss curve during training.

4.3. Test Result of Defect Detection

The PCB-YOLO was trained on the training set for several rounds to obtain the weights,
and the best weights were selected as the weights of the model to detect the images in
the test set; the results are shown in Table 3 and Figure 8. The experiments show that the
precision, recall and AP of a missing hole reach 0.991, 0.998 and 0.995, respectively, which
shows a better performance because the missing hole has obvious features and less random
shape. Similarly, open circuit, short and spurious copper have high precision, recall and AP
because they are less disturbed by the background and other defects. As the morphological
features of spur and mouse bite are similar, they are easy to be misidentified when the
density in the region reaches a certain level. In this paper, the background information is
changed through cutout, changing brightness and other techniques in image processing
so as to achieve the purpose of highlighting the defect features. The results show that
the AP of both spur and mouse bite reaches over 0.9. The various visual results for the
detection of defects in the image are presented in Figure 9. All six defects are detectable
with a confidence score of more than 0.8.

Table 3. Test results for six types of defect detection.

Missing Hole Open Circuit Short Spur Spurious Copper Mouse Bite

Precision 0.991 0.995 0.994 0.956 0.979 0.921
Recall 0.998 1 0.993 0.881 0.982 0.927

AP 0.995 0.995 0.985 0.909 0.967 0.907
mAP 0.960
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Figure 8. Confusion matrix of PCB-YOLO.

Figure 9. Visualization of test results.

4.4. Comparison of Anchor Box Calculation Algorithms

In order to verify the effectiveness of the anchor box calculation algorithm, the experi-
ments of the K-means++ algorithm, ISODATA, and K-means algorithm are compared in
this paper. Table 4 shows the anchor box values obtained by using the three algorithms
with mAP. The anchor box obtained using the ISODAT algorithm is the least effective due
to the fact that ISODATA requires more parameters to be specified and it is difficult to
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obtain an exact number for the value of the parameter. K-means++ algorithm improves
the initialization of cluster centroids by following a more intelligent initialization method
that reduces the chance of choosing bad initial centroids. The anchor box obtained using
the K-means++ algorithm was the most suitable, and the mAP was the highest, reaching
92.91% because K-means++ overcomes the inaccuracy of clustering a small number of
samples and has a good optimization iteration function.

Table 4. Results of the anchor box calculation algorithms comparison experiment.

Algorithm Anchor Box mAP%

K-means
(7,7),(11,11),(13,13),(13,18),(17,12),
(16,16),(16,24),(25,13),(20,20),(35,13),

(26,25),(38,34)
92.42

ISODATA
(5,7),(12,14),(13,13),(14,16),(18,16),
(15,19),(17,24),(22,15),(24,22),(26,33),

(38,36),(38,43)
90.33

K-means++
(7,7),(11,11),(13,13),(11,18),(17,12),
(16,16),(13,24),(24,13),(20,20),(35,13),

(28,23),(36,34)
92.91

4.5. Comparison of Attentional Mechanisms

In order to verify the effectiveness of the UAM module, comparison experiments of the
attention mechanism are conducted in this paper. SE (squeeze and excitation networks) [38],
CA (class agnostic segmentation networks) [39], ECA (efficient channel attention) [40],
CBAM [34] and UAM were, respectively, embedded in the backbone. Two metrics, params
size and mAP, were used as evaluation metrics. The experimental results in Table 5 show
that the CA and ECA have a smaller number of parameters but lower mAP, which is not
suitable for the defect detection of PCBs. Compared with the CBAM, the UAM proposed
in this paper has advantages in both the number of parameters and mAP. The UAM has
the lowest number of parameters and the highest mAP compared to the other attention
mechanisms, SE, CA, ECA and CBAM, because the UAM uses a parallel connection
structure that reduces the parameters. In the serial structure, the input of the spatial
attention mechanism is obtained after the channel attention module, which reduces the
shallow information of the target again. Even if there is more semantic information, it
is not possible to localize small targets; on the contrary, it may lead to the problem of
target misdetection.

Table 5. Results of the attentional mechanism comparison experiment.

Attention Params Size (MB) mAP%

None 90.38 93.88
+SE 92.34 95.58
+CA 96.61 94.01

+ECA 96.60 94.12
+CBAM 92.41 95.53
+UAM 92.30 95.97

4.6. Ablation Experiment

To verify the validity of each module, ablation experiments of the modules were
conducted on the PCB dataset. The detection layer, Swin transformer, DwConv, UAM and
EIoU loss functions are added in turn. The experimental results are shown in Table 6. After
adding the detection layer, the mAP increased significantly; however, the corresponding
model size increased by 8.16MB. Because of the addition of the detection layer, more
information about the defect features can be obtained and the algorithm’s ability to analyze
small targets is strengthened. Swin transformer enables the model to learn information
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across windows through a sliding window mechanism that can focus on both global
and local information. The mAP is increased by 0.71 after adding the Swin transformer.
The addition of DwConv significantly reduces the model size with small fluctuations in
mAP because DWConv reduces the number of parameters required for the convolution
calculation by splitting the correlation between the spatial dimension and the channel
dimension. The UAM module can improve the local information analysis capability of
the model. The addition of the UAM module further increases mAP by 1.48% and the
model size by 1.92 MB. The EIoU optimizes the sample imbalance problem in the bounding
box regression, reduces the optimization contribution of a large number of anchor boxes
that have less overlap with the target box to the box regression, and makes the regression
process focus on high-quality anchor boxes. Finally, with EIoU replacing CIoU, mAP is
further increased to 95.97% and the model size is unchanged at 92.3 MB.

Table 6. Module ablation experiment results.

YOLOv5 Detection Layer Swin Transformer DwConv UAM CIoU EIoU mAP% Model Size (MB)
√ √

90.11 91.43√ √ √
92.91 99.59√ √ √ √
93.62 101.43√ √ √ √ √
93.53 90.38√ √ √ √ √ √
95.01 92.30√ √ √ √ √ √
95.97 92.30

4.7. Performance Comparison of Different Detection Algorithms

In order to objectively verify the performance of the PCB-YOLO network proposed
in this paper, the PCB-YOLO is compared with single-stage detection algorithms (SSD,
YOLOv3, YOLOv4, YOLOv5, YOLOX, Tiny RetinaNet [41], EfficientDet [42]) and two-
stage detection algorithms (Faster R-CNN) under the same environment configuration.
Tiny RetinaNet solves the category imbalance problem by reducing the weights of simple
samples. With a trade-off between speed and accuracy, the EfficientDet network achieves
dynamic control over the number of times that the bi-directional feature fusion structure
is used. The mAP, detection speed, and model size at IOU = 0.5 were used as evaluation
metrics. The comparison experimental results of different algorithms are shown in Table 7.
Tiny RetinaNet and EfficientDet have better detection speeds; however, both have less than
70% detection accuracy, and they are not capable of detecting PCB surface defects. The
PCB-YOLO outperforms YOLOv3, YOLOv4, YOLOX in mAP, detection speed, and model
size, and has significantly higher mAP than YOLOv5 when the detection speed is close to
YOLOv5. The mAP of PCB-YOLO is close to that of Faster R- CNN, but the detection speed
is substantially faster than that of Faster R-CNN. Based on the comprehensive consideration
of the results, the proposed method—the PCB-YOLO—combines accuracy and real-time
performance, and has a good performance of PCB surface defect detection.

Table 7. Experimental results of comparing different algorithms.

Algorithm mAP (%) Detection Speed (FPS) Model Size (MB)

SSD 73.78 90.5 100.27
Tiny RetinaNet 69.75 110.6 68.5

EfficientDet 68.96 101.2 79.5
YOLOv3 86.83 61.7 234.80
YOLOv4 88.56 68.6 244.01
YOLOv5 90.11 96.6 91.43
YOLOX 92.30 73.4 155.60

Faster R-CNN 96.01 21.5 478.51
PCB-YOLO (Ours) 95.97 92.5 92.30
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5. Conclusions

Surface defects in the PCB production process can directly affect the quality of PCBs,
and should be effectively detected. In this paper, a PCB-YOLO detection network based on
the improved YOLOv5 is presented. By preprocessing the images, the feature information
of defects is enriched and overfitting is effectively avoided, and the mAP is improved by
3.32%. According to the new anchors obtained using the K-means ++ algorithm, a new small
target detection layer is added the network to obtain more small target feature information
for the detection and improve the detection ability of small targets. The ability of the model
to analyze PCB defects is improved by using the united attention mechanism with the Swin
transformer module. The DwConv significantly compresses the model size and improves
the detection speed while ensuring the accuracy of the algorithm. The regression loss
function EIoU improves the localization ability of the algorithm. Experiments show that
when PCB-YOLO is compared to YOLOv5, the difference in model size is small; however,
the mAP is improved by 5.86% to 95.97%, and the detection speed is 92.5 FPS, which can
achieve real-time detection of PCB surface defects.

The detection model proposed in this paper provides a new idea for PCB surface
defect detection. However, specific hardware configurations are required to achieve fast
detection. In the future, we will continue to work on industrial inspection and deployment.
Meanwhile, as there are many other PCB defects, such as breaking lines and wrong hole
sizes, we will continue to strengthen the research on more PCB surface defect types and
expand the scope of application. We believe we can make a great contribution to intelligent,
sustainable, and automated industrial manufacturing.
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