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Abstract: Recently, different techniques have been applied to detect, predict, and reduce traffic
congestion to improve the quality of transportation system services. Deep learning (DL) is becoming
increasingly valuable for solving critiques. DL applications in transportation have been collected
in several recently published surveys over the last few years. The existing research has discussed
the cloud environment, which does not provide timely traffic forecasts, which is the cause of fre-
quent traffic accidents. Thus, a solid understanding of the difficulties in predicting congestion is
required because the transportation system varies widely between non-congested and congested
states. This research develops a bi-directional recurrent neural network (BRNN) using Gated Re-
current Units (GRUs) to extract and classify traffic into congested and non-congested. This research
uses a bidirectional recurrent neural network to simulate and forecast traffic congestion in smart
cities (BRNN). Urban regions worldwide struggle with traffic congestion, and conventional traffic
control techniques have failed miserably. This research suggests a data-driven approach employing
BRNN for traffic management in smart cities, which uses real-time data from sensors and linked
devices to control traffic more efficiently. The primary measures include predicting traffic metrics
such as speed, weather, current, and accident probability. Congestion prediction performance has
also been improved by extracting more features such as traffic, road, and weather conditions. The
proposed model achieved better measures than the existing state-of-the-art methods. This research
also explores an overview and analysis of several early initiatives that have shown promising results;
moreover, it explores two potential future research approaches to increase the accuracy and efficiency
of large-scale motion prediction.

Keywords: congestion prediction; traffic congestion; transportation systems; recurrent neural net-
works; bidirectional neural; traffic load; deep learning; gated recurrent unit

1. Introduction

Traffic congestion is now a major issue in cities worldwide due to the fast rise of
urbanization. Traffic congestion can result in financial losses and significantly lower local
citizens’ quality of life. To solve this issue, the idea of “smart cities” has been put out, which
optimizes the performance of many systems inside a city, including transportation, using
cutting-edge technology such as the Internet of Things (IoT), artificial intelligence (AI), and
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machine learning (ML). Accurately forecasting traffic congestion is one of the main issues
in smart cities when optimizing traffic flow. Accurate traffic jam predictions make routing
or changing traffic signals to prevent or lessen congestion feasible.

Recurrent neural networks (RNNs), which can represent sequential data, have gained
popularity recently due to DL techniques’ promise in traffic prediction applications. In this
work, a GRU-based smooth RNN model is developed to enhance congestion prediction in
smart cities. A soft gating mechanism is incorporated into the soft GRU (Gated Recurrent
Unit), which is a variation of the conventional GRU that improves the handling of missing
or noisy input. The suggested model combines historical traffic data with information from
other sources such as weather and events to forecast future congestion levels. The perfor-
mance of the proposed model is examined using an actual traffic dataset and compared to
several reference models. The experimental findings support the suggested concept.

Ensuring economic growth and the comfort of road users are two prerequisites for the
country’s development, which is not possible without traffic flow [1–3]. With the develop-
ment of the transport sector through traffic information authorities pay more attention to
traffic volume monitoring. Traffic forecasts give authorities time to plan resource allocations
to ensure a smooth journey. The usefulness of street systems is limited by congestion. The
reductions result in both direct and indirect costs for the community [4–6]. The effects of
congestion on the economic system and social structure have been extensively studied.
Late working hours are a direct result of traffic jams. It was later calculated that the United
States lost 8.8 billion work hours to congestion and traffic in any given year. The traffic
prediction problem can be defined as estimating parameters related to traffic levels, for
example, from 15 min to several hours, using various AI methods using the collected traffic
data. Five parameters are typically evaluated when monitoring and forecasting congestion:
traffic volume, traffic volume, occupancy, congestion rate, and travel time. Depending
on the type of data collected, different AI approaches are used to evaluate the overload
parameters [7–9].

A significant study field, particularly in AI and ML, has resulted from the ability to
predict traffic congestion in recent times. Over the past few decades, this research field
has dramatically expanded due to the emergence of massive data from static sensors or
probed navigation systems [10,11]. Several traffic factors are evaluated to anticipate traffic
congestion, particularly short-term congestion problems. The majority of studies on antici-
pating traffic congestion use past data. A few papers, however, have predicted congestion
problems in real time. Congestion forecasting is a more complicated problem to solve from
the perspective of modifiability than traffic flow prediction in non-congested circumstances.
Traffic controllers can implement relief measures thanks to an alert system. Over the years,
the infrastructure for collecting traffic data has improved. Researchers studying transporta-
tion may now use DNN predictions for this field, thanks to this advancement and the
expansion of computational power [12,13].

Previous techniques use empirical or ML algorithms to anticipate incoming traffic
to use these advantages. They use algorithms based on features gathered and real-time
traffic data as to reveal and preserve fundamental traffic conditions using human-crafted
characteristics. Nevertheless, in actuality, various circumstances, such as traffic laws,
environmental conditions, and so forth, can affect incoming traffic. It has been established
that these individually chosen parameters fall short of fully describing traffic data, making
it impossible to make an accurate prediction. DL theory has advanced significantly thanks
to the extraordinary amount of data and the speed with which these data can be processed.
DL has received a lot of attention because of its extraordinary capacity to dynamically
extract characteristics from massive amounts of source data. It has already been effectively
used in several disciplines, including object and speech recognition.

Unlike traditional ML models SVM and ANN, which have only a shallow infras-
tructure to encapsulate features, DL models have used a multi-layer structure to uncover
interesting patterns and nonlinearities. Layers capture features from various angles before
establishing a multi-level abstraction [14,15]. One can anticipate the promise, widespread
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use, and influence of DL integration with extensive mobility data in the predictions of
future traffic. This research explores an overview of the fundamental elements that go
into the process of predicting road traffic, such as the forms of inputs, mobility data, traf-
fic modeling, and numerous target traffic indications, including speed, flow, and traffic
conditions [16–18]. While discussing early initiatives that have already tapped into DL for
accurate forecasts of different traffic indicators, this research explores the potential methods
for applying DL to several types of traffic prediction [19,20].

The network traffic monitoring is implemented using a Ryu controller in a software-
defined networking (SDN) environment. The study focuses on improving the efficiency and
accuracy of network traffic monitoring, a critical aspect of network management [21–24].
The proposed approach utilizes a Ryu controller to collect and analyze network traffic data
and provide real-time insights into network performance. Overall, this research provides
valuable insights into the potential of SDN and the Ryu controller in improving network
traffic monitoring [25–28]. The research demonstrates how the NN can be implemented
on a DSP to achieve real-time processing of traffic sign images. The study shows how the
model can predict traffic flow and identify areas where congestion is likely. The results
demonstrate that the model can help reduce traffic jams by optimizing traffic flow and
identifying areas where traffic control measures are needed.

The specific contributions of this research are summarized as follows:

• First, an edge-based vehicular environment is considered to predict road traffic. Edge
servers store past historical and real-time information about the user’s social media,
weather information, road traffic information, and road conditions information.

• Second, multiple features are extracted using DL architecture, i.e., BRNN with the soft
GRU, with that information classified into two classes, congested or not.

• Third, an optimization approach is proposed for optimizing the hyperparameters of
DL architecture according to the real-time and past traffic data.

The research article is organized as follows. The ideas used in traffic forecasting are
first introduced. After that, the reviews of DL in traffic prediction and previous efforts are
analyzed, and the potential paths for enhancing the precision and effectiveness of broad
traffic forecasting are reviewed.

The experimental findings demonstrate that the suggested model performs better than
reference models regarding prediction accuracy and resilience to noise and missing data.
Moreover, the sensitivity study checks how different hyperparameters affect how well the
model works. Therefore, creating more effective traffic management systems in smart cities
with the suggested GRU-based Soft-RNN model can improve people’s quality of life and
lessen the economic losses of congestion.

The cloud-based vehicular environment system can gather data from various sources,
such as GPS devices, traffic sensors, and mobile phones, to comprehensively understand
traffic conditions. The data are then processed and analyzed using ML algorithms and
predictive models to identify patterns and predict congestion in Figure 1.
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2. Preliminary Knowledge

Some of the established techniques used for motion prediction are described below.
Statistical Approach: Statistical methods can detect traffic patterns at different scales,

e.g., during the day, on different days of the week, across the seasons, etc. They are generally
faster, cheaper, and easier to manufacture than ML. However, they are less reliable because
they cannot analyze as much multivariate data. Since the 1970s, autoregressive integrated
moving average models (ARIMA) have been easier to use to anticipate traffic jams and
have been more precise than other statistical methods. To examine the past and forecast the
future, traditional statistical approaches have been applied. They collect data at regular
intervals and assume that current trends will continue. However, one-dimensional ARIMA
models cannot handle complex structures and the many variables that alter traffic flow.

ML approach: ML allows the creation of predictive models considering large amounts
of heterogeneous data from multiple sources. Research has been conducted on the use of
ML algorithms for traffic estimation. The random forest (RF) method creates many decision
trees and integrates their data to develop accurate predictions. With sufficient training data,
effective results can be achieved quickly. This approach has demonstrated 87.5% accuracy
when used to resolve congestion. The model’s input parameters include weather, time,
specific traffic conditions, road infrastructure, and holidays. To predict possible trends, the
k-nearest neighbor (KNN) method uses the idea of the similarity of features. Studies using
the ANN model have shown that it can predict short-term traffic flow with an accuracy of
over 90%.

DL approach: When comparing DL techniques to ML or statistical models, DL methods
consistently show at least 90% prediction efficiency. NNs are the basis of DL algorithms.
Artificial NNs (ANNs) use interconnected nodes, or neurons, arranged in two or more
layers and are designed to mimic the behavior of the human nervous system. Many types
of NNs have been developed for different applications. Convolutional NNs (CNNs) are
recognized as industry pioneers in image recognition and analysis. Using road surveillance
camera footage, congestion monitoring is a logical application for infrastructure problems.
In this case, the average categorization accuracy is 89.5%. CNN would not be the first
choice for traffic forecasts.
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In contrast, the intention to create a CNN-based model capable of predicting transit
speeds has succeeded. To do this, the scientists created a two-dimensional image matrix
based on temporal and spatial data that characterize traffic flows. Unlike CNNs, RNNs are
designed to analyze data from time series or experiments collected over specific periods.
Motion patterns are an excellent example of such observations. When using RNN models,
studies have shown high accuracy in predicting congestion development. However, their
disadvantage is the dispersion gradient problem, which causes some data from previous
layers to be lost. Because of this “forgetfulness”, learning the algorithm is more complex
and takes longer. Variations of RNNs that address the dispersion gradient problem include
long-term memory (LSTM) and GRU. Studies comparing the performance of these models
have shown that the GRU model is easier to train and more accurate at predicting traffic
levels. Many studies recommend developing various NNs models for motion prediction,
including graph NNs, fuzzy NNs, Bayesian NNs, and others, and hybrid techniques that
integrate two or even more algorithms. No perfect technique can be used in all situations to
obtain the most accurate projections. So, first, let us look at what information is needed for
traffic prediction and where to find it. For accurate predictions, all variables affecting traffic
must be considered. Therefore, many important categories of data must be collected to
anticipate the movement and display of data. First, a complete road network map is needed
with the associated attributes. Connecting to global geographic data sources such as Google
Maps, TomTom, HERE, or OSM is a great idea to get a clear picture of the current data.

INRIX Dataset: The INRIX dataset contains real-time and historical traffic data col-
lected from GPS-enabled devices such as smartphones and navigation systems. It covers
more than 200 countries and includes traffic speed, travel time, and congestion informa-
tion from https://www.inrix.com/solutions/data/ (accessed on 19 October 2022). The
other two datasets were also utilized in this research from https://pems.dot.ca.gov/ (ac-
cessed on 19 October 2022) and https://www.inrix.com/solutions/data/ (accessed on 19
October 2022).

Motivation and Application

Predictive modeling strategies are used to reduce traffic congestion in smart cities. DL
systems may be trained on previous traffic data to identify trends and forecast future traffic
conditions. This method can assist city planners and transportation officials to predict
congestion before it happens and take preventative measures to avoid it. For instance,
they may alter the timing of traffic lights, reroute traffic to less crowded locations, or warn
motorists to stay away from specific places at particular times.

3. Literature Review

The construction of Intelligent Transportation Systems (ITS) is currently widespread
worldwide. As a critical component of ITS, traffic congestion forecasting gives travelers
reliable traffic data to save time and helps transportation management organizations handle
the road network. Due to the complicated connection between road segments, researchers
noted that the current studies, particularly, NNs, do not function well. Additionally, the
impact of traffic congestion prediction is worsened by the absence of a higher evaluation cri-
terion for congestion. Researchers provide a technique in this work for mining free-stream
speeds and free-stream flow to produce traffic congestion scores. Researchers suggest a
road network grouping strategy based on association subgraphs to pre-train DL models
and realize data exchange among road segments while considering the road segments’
association properties in the road transport system. A traffic congestion prediction model
called SG-CNN combines the characteristics of traffic conditions and the CNN model. The
process of training is optimized by the road network grouping method. The results of the
trials demonstrate that it is superior to other methods in terms of accuracy. The city’s ongo-
ing development has made the traffic issue more and more critical. This model suggests a
straightforward traffic congestion forecast approach based on the RF algorithm to lessen
the discomfort of people’s travel resulting from traffic congestion. The degree of traffic

https://www.inrix.com/solutions/data/
https://pems.dot.ca.gov/
https://www.inrix.com/solutions/data/
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congestion is first determined using DBSCAN. The long-term average speed and traffic
flow of urban roadways are trained and predicted using the RF algorithm. The combined
model is used to anticipate the level of traffic congestion. The testing findings reveal that
the precision is 94.36%, which shows the method’s effectiveness. The experiment used
traffic data from high-speed roads in the PEMs dataset of the United States.

These traffic jams not only result in a significant number of fatalities and high pollution
levels, but they also slow economic growth by restricting the movement of people and
commodities, raising the loss of working hours, and raising fuel usage. Numerous research
projects have successfully concentrated on foreseeing traffic congestion and then foreseeing
their patterns to address this issue. Despite their applicability, the suggested remedies to
traffic jam spread have relied heavily on past data. Additionally, they have not effectively
allocated traffic control resources based on their estimates. A two-stage traffic resource
dispatching approach is developed to create a self-organizing traffic control system enabled
by the IoT. This method models and forecasts the distribution of traffic jams throughout a
road network using a Markov Random Field (MRF) at its first stage. The method employs
the Markov Decision Process (MDP) to autonomously distribute the assets for road traffic
following the predictions obtained.

The rapid development of AI applications offers unmatched prospects to raise the
effectiveness of many systems. For example, the transportation industry faces additional
challenges due to adopting and fusing various global vehicles and environmental issues.
Due to the sharp increase in vehicles on the road, road traffic is one of the most pressing
challenges in this respect. This model suggests a cloud-based intelligent road traffic
congestion prediction framework equipped with a hybrid neuro-fuzzy technique to solve
this enormous problem. The study aims to shorten the wait times drivers encounter at
various city traffic intersections.

In a smart city environment, observation-based data are collected from multiple
embedded IoT sensors along the street. This approach also aimed to support autonomous
traffic control systems by reducing congestion. It uses the data by adding a neuro-fuzzy
algorithm after appropriate preprocessing by a cloud server. As a result, it has a high level
of accuracy through intelligent decision making with a low error rate. After experimental
simulations, the accuracy of the proposed model was 98% during the validation test which
is higher than the highest accuracy rates reported in the literature for prior art methods,
which were 90.6%, 95.84%, 97.56%, and 98.03%, respectively. The trajectories were used
to capture better and map Nepal’s road infrastructure. Task scheduling has been used in
parallel computing to speed up calculations and better use computing resources [29]. This
study uses RF to build a traffic prediction model. The high stability, excellent reliability,
and high accessibility define the RF algorithm. Input factors such as weather, time of day,
season, abnormal road conditions, traffic conditions, and holidays are used to create a traffic
prediction model. The results show that the traffic prediction model developed with the RF
classification method has an accuracy rate of 87.5%, the generalization error is small, and it
can be predicted successfully. Moreover, the calculation speed is fast, which is more helpful
in predicting overload conditions. The spatiotemporal context integration with a metric
learning approach (STE-ML) is developed to predict traffic congestion intensity. STE-M
comprises a feature learning component and a traffic spatial–temporal context embedding
element. The context embedding component can integrate regional spatial–temporal
correlation characteristics and worldwide traffic statistics data concurrently, compressing
them into a single, abstract embedded model. This is possible from both local and global
viewpoints. While this happens, the metric learning aspect gains from mastering a more
suited distance function tailored to a particular activity. These models are combined to
improve the accuracy of traffic congestion predictions [30]. For an ITS in a smart city, an
accurate traffic flow forecast is crucial. Accurate traffic congestion forecasting helps with
sensible urban management and strategic energy use concerning the problem of traffic
congestion. Data-driven traffic flow congestion prediction has various drawbacks, such
as erroneous predictions from complicated spatiotemporal correlation patterns. To solve
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this issue, an attention-based spatiotemporal attention combination network (STACN)
is developed for predicting traffic congestion. First, the multi-dimensional time series
relationship of the target road is captured using the standard attention technique. Second,
the spatial dependency of each neighborhood along the target route is captured using the
graph attention technique. The actual traffic dataset is used in this study to examine the
forecast accuracy and consistency of the congestion level, and the experimental findings
support the model’s efficacy.

The effectiveness and capability of a road network can be increased, and traffic can
be avoided by accurately forecasting the amount of congestion. Despite its importance,
academics and traffic engineers do not like to anticipate traffic congestion. There are not
enough effective computer techniques for traffic flow prediction or elevated citywide traffic
data. The Seoul Transportation Operation and Information Service (TOPIS), an accessible
online web system, and a hybrid NN LSTM, transposed CNN, and CNN is combined to
retrieve the spatial and temporal information from the source image, respectively. The
road congestion intensity is forecasted using processed GPS trajectory data because speed
sensors are still not used as often as GPS trackers. The average speed of road segments can
be calculated using nearby GPS trajectory data, and a hidden Markov model is utilized to
link GPS data collected to the road system.

The congestion level forecast uses four DL models—CNN, RNN, LSTM, and GRU—and
three traditional ML models: autoregressive integrated time series, support vectors, and
peak regression. Experimental results show that DL models outperform traditional ML
models regarding traffic volume prediction accuracy. ITS offers real-time traffic services
to increase client convenience. Using these services helps spread out traffic and ease
congestion. Next, it sacrifices accuracy for the convenience of these services. Since these
services often rely on measurement data, data collection will determine the accuracy
of the models. As a result, the LSTM prediction approach corrects for missing spatial
and temporal variables. The prediction approach first performs preprocessing, including
removing outliers using average standard deviations of traffic data and fitting temporal
and geographic values using temporal and spatial data patterns and trends. Data with
time series aspects have not been adequately trained in previous studies. The prediction
technique trains the LSTM model on the time series data. The success of this method was
evaluated by determining the mean absolute error (MAE) and comparing it to other models.
With a MAE of around 5%, this method was the best of the models compared. Congestion
and potential delays at intersections can be significantly reduced through effective traffic
management and traffic light placement. Accurately anticipating traffic ahead of the next
cycle is an essential aspect of traffic light timing optimization. A perfect approach cannot
be achieved with an inaccurate prediction of incoming traffic. This method uses DL to
create a real-time, data-driven queue length prediction technique. Imagine a network
corridor where sensor data are sent from vehicles (located at an intersection) to subsequent
intersections. According to the hypothesis, the duration of the delay at the intersection
of the next bike lane is influenced by the duration of the congestion at the destination
intersection and the two upcoming intersections.

4. Research Gaps

For a few decades, road traffic prediction has drawn increased attention. Each country
has been experiencing traffic congestion challenges due to the building of infrastructure. As
a result, forecasting the congestion can help the authorities prepare and take the appropriate
steps to avoid it. Researchers have started using several models in this area as a result of
the advancement of AI and the accessibility of extensive data. Probabilistic models are
generally straightforward, but when many elements, such as the weather, social media, and
events, which influence traffic congestion, are considered, they become more complicated.
In this situation, ML, profound learning, is advantageous. Because they can evaluate an
extensive dataset, DL algorithms have grown in popularity over time. The amount of
research on predicting traffic congestion is growing tremendously. Most investigations
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employed static sensor or camera data from the two sources. Whereas sensor data cannot
capture dynamic traffic changes, numerous source changes make assessing flow patterns
for probe data challenging. An essential consideration in studies of traffic congestion is the
data-gathering horizon. As traffic is dynamic, the short time frame of a few days cannot
depict the actual state of the bottleneck. The seasonality’s limitations were demonstrated
by other research that employed data spanning a few months [31–35].

The environment significantly influences traffic congestion. Several research studies
have concentrated on these elements. Five studies considered weather, while two studies
considered social media contributions. National holidays, popular sporting events, and
public holidays contribute significantly to traffic congestion. As an illustration, Melbourne,
Australia, observes two national holidays before and after the nation’s two most important
sporting events. To deal with the traffic and the parade, the officials restrict a few traffic
routes, which causes congestion. Hence, it is essential to pay more attention to integrating
these elements in forecasts [36–40].

5. Proposed Methodology

The increase in vehicle routine creates the need for effective traffic management as the
traffic pattern differs in each area. This technology enables drivers to share more informa-
tion, including weather conditions, traffic information, directions, accident information,
information about the buildings such as hospitals, etc. and many others directly without
phone calls. With the increasing population development in urban and rural regions, the
necessity for appropriate transportation networks that can provide good compatibility for
road users has become a key concern in India. Level of Service (LOS) is one such com-
patibility metric that provides a quality measure for the operating circumstances within a
traffic stream, i.e., the service the road provides to the user. This research looks at the many
levels of service models for urban and rural roads that scholars worldwide have proposed.
There are several generally used ways to determine the level of service of a given road
stretch, such as cluster fuzzy set theory, genetic algorithms, and analysis. This research
discusses and reports on techniques such as NNs. A new method for determining the
degree of service was established, namely, utilizing the volume-to-capacity ratio, average
vehicle speed, and percentage speed reduction.

This research synthesizes LOS data and conclusions using analytical models that
may estimate levels of compatibility among diverse road users in an urban environment
with various traffic conditions. This research aims to investigate LOS for various routes
that have been identified and debated. Bhimavaram (India) town, Ramayanpuram, and
Jaganadhapuram villages were used for research. Both study areas-1,3 and 2,4 received a
LOS-D rating, while study area-2,4 received a LOS-E grade. Some corrective actions were
implemented to improve the LOS grades and traffic conditions: road traffic trajectory and
congestion in rural and urban areas using DL RNN.

The architecture of the road traffic system comprises several key components that work
together to ensure the smooth and safe movement of vehicles and pedestrians on roads in
Figure 2. BRNN combines the two hidden layers of opposite directions to a similar output;
hence, the output layer includes backward and forward states, concurrently. The traditional
RNN does not predict future information from the current state. BRNN overcomes this.
The forward layer is used for the positive direction, and the backward layer is used for the
negative layer. The forward and backward hidden layer of the BRNN is defined as follows.

Hf = δ(x(t)w(f) + H(t − 1)w(f) + b(f) (1)

Hb = δ(x(t)w(f) + H(t − 1)w(b) + b(b) (2)

where x(t) represents the input, and w(f) and w(b) represent the weight values of the
forward and backward hidden layers, respectively. b(f) and b(b) represent the bias param-
eters. Then, the BRNN concatenates the two hidden states, forward and backward, for final
outputs. The final output of the BRNN is defined as follows.
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O(t) = H(t)W(c) + b(c) (3)

where W(c) represents the weight matric of the final output, and b(c) represents the bias
parameter of the output layer. The training process of BRNN is defined as follows.
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Algorithm 1, Bidirectional LSTMs have the ability to comprehend prolonged de-
pendencies within a sequence, rendering them appropriate for tasks that demand an
understanding of context over extended durations.

Algorithm 1. Bidirectional LSTM

Load the data
Initialize the batch size, number of steps, and number of devices
Training the iterations with load data time
Define the bidirectional LSTM model for setting bidirectional is equal to true
Define the number of hidden layers, and the number of layers
Process LSTM layer (LSTM.LSTM (No. Hidden, No. layers, Bidirectional=true)
Update the result of the RNN model
Train the procedure from steps 1 to 7
Define the number of iterations
Provide training results of BRN

5.1. GRU

This section explains the general process of GRU. It is the advanced version of Standard
RNN. The LSTM includes three gates that do not maintain the internal cell state but are
integrated into the hidden state of the gated RNN. This information is transferred to the
next GRU. The various gates of GRU are defined as follows.

Update gate: It defines how much previous knowledge needs to be forwarded to
the future. It determines the corresponding Output Gate in an LSTM recurrent unit. It is
calculated using

y = σ
(

W(y)Zt + V(y)Ht−1

)
(4)

where Zt is given to the network unit, which is multiplied by the weight value W(y). That
is forwarded to the hidden layer Ht−1, which includes the information of the previous
states, and is multiplied by its weight values V(y). These two results are added to provide
the final result in the update gate between 0 and 1. It represents how much past information
wants to be forwarded to the future. It is used to eliminate the risk of gradient problems.
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Reset gate: It represents how much of previous knowledge can be forgotten. It
corresponds to the input gate and forgets it in an LSTM recurrent unit. The reset fate
calculation is defined using

R = σ
(

W(y)Zt + V(y)Ht−1

)
(5)

The two results are added and multiplied with their weight values, and the sigmoid
function value is applied to the output results.

Current memory gate: This gate is integrated into the reset gate such as the input
modulation gate, a subpart of the input gate. It provides the nonlinearity input and also
provides zero mean input. It is used to reduce the outcome that previous information of the
current information is forwarded to the future gate. The calculation of the current memory
gate is performed using

H = tanh(Wzt + R � VHt−1) (6)

Multiply the input zt with its weight value, and the hidden state is multiplied by its
weight value. Then, compute the Hadamard product between the reset gates R � VHt−1.
Then, add the output of the first and second process values. For this output, tanh nonlinear
activation function is applied to calculate the current memory content of the GRU. Finally,
calculate the hidden state value that includes the current unit’s values and then forward it
to the network, performed by the update gate. It determines the current memory content.
The calculation of current memory is defined using

Ht = yt � Ht−1 + (1 − yt)� Ht (7)

Perform element-wise multiplication to the update gate and then calculate element-
wise multiplication to (1 − yt) � Ht. Finally, add these two results for calculating the
current memory content of the GRU. Figure 3 represents the general architecture of GRU.
GRU enhances the RNN memory capacity and solves the vanishing gradient problems.
It is suitable for many applications such as machine translation, speech signal modeling,
recognizing handwriting, etc.
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The key innovation of GRUs is the use of gating mechanisms to control the flow of
information in and out of the cell. The gating mechanism consists of an update gate and a
reset gate. The update gate controls how much of the previous state should be retained,
while the reset gate controls how much new input should be incorporated into the state in
Figure 3. The proposed bidirectional RNN includes two layers of RNN that can process
concurrently. Y is input and Yk denotes the different inputs with different timestamps.
The processing is performed concurrently, and the layers are arranged successively. The
input is processed one by one in the other layer. The hidden layer of RNN includes two
hidden states determined for every time step. The hidden layers are combined into one
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layer by adding two inputs using a simple addition operator. Bidirectional RNN executes
each neuron of the network. The feature-matching process considers the input and output
elements for processing the time step. RNN includes Soft-GRU, has low complexity, and
processes the input x̃k,n using history hk−1,n. This process has low complexity due to the
activation function and soft plus. The proposed Soft GRU is defined as follows.

hk,n = (1 − zt)� hk−1,n + zt � x̃k,n (8)

x̃k,n = π(Wxxk,n + bx) (9)

zt = σ(Wxxk,n + Uzxk−1,n + bz) (10)

where π(x) represents the function of soft plus, which is computed as (1 + ex) and σ repre-
sents the sigmoid function and bx, bz represent the values of biases, and Wx, Wz, and Uz
represent the weights values of the GRU. The process of feature extraction using bidirec-
tional RNN is depicted in Figure 4. GRU can operate for natural language processing,
which utilizes past and real-time information about social media, traffic, road, and weather,
presented in the edge servers. Figure 5 represents the flowchart for the overall process of
traffic density prediction.
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5.2. Traffic Information

Next, the data are collected on past and present traffic conditions, including the
amount, sort, and velocity of cars that pass through a specific location (trucks, light vehicles,
etc.). These data are gathered using camera systems, loop sensors, and other devices.

5.3. Data on the Weather

Historical, present-day, and anticipated weather data are required because weather
factors affect traffic and speed limits on the road.

5.4. Traffic Density

The number of vehicles on the road about its length is called traffic density. Due to
the lack of sensors to gauge the existence of vehicles, it has historically been challenging to
determine the traffic volume for the entire road length. However, this tendency is shifting
with more traffic cameras and advancements in ML. Occupancy is a related term frequently
used as a stand-in for density measurement. The proportion of time that a particular
location on the road network has vehicles parked there is known as occupancy. Sensors
can measure usage, making vehicle loop detectors the most popular choice (VLDs). In a
homogenous stream of traffic, each vehicle has the same length, occupancy, and traffic
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flow, and they are precisely related. The fundamental relationship between density and
speed (q = ku), where q is the flow, k is the density, and u is the speed, is most frequently
used in practice to determine density. The connection between occupancy versus density is
complicated when there is a heterogeneous traffic stream. In a BRNN using a soft GRU,
the input sequence is first fed through a forward GRU layer and then through a backward
GRU layer. The outputs from both layers are then concatenated to create the final output
sequence in Figure 4.

Traffic Velocity (speed): The pace recorded at a particular time and place is known as
a vehicle’s spot speed (or instantaneous speed). This is the pace that the car’s speedometer
registers. In engineering management, however, our focus is on figuring out mean speed
because it can be utilized to define the movement of vehicles. The aggregate can be used in
either time or space to calculate mean speed.

The space-mean speed for a particular space interval is calculated as the ratio of the
total distance traveled by all vehicles to the total time needed. The average of each of the
two vehicles’ specific speeds is the time-mean speed for a specific period. The process of
traffic congestion prediction involves collecting data, preprocessing the data, engineering
features, selecting and training a suitable model, evaluating the model, and deploying it to
predict traffic conditions in real time. This process can help improve traffic management
and reduce roadway congestion in Figure 5.

5.5. Traffic Flow

Traffic flow is the number of vehicles crossing a specified reference location at a given
moment. Usually, a section’s center or end is used as the point of reference.

5.6. Experimental Results

In this section, an edge-assisted vehicular environment is evaluated regarding per-
formance metrics. The performance achieved by the proposed method is compared with
previous research works. The proposed edge-based vehicular environment is modeled
using an integrated simulation system incorporating the OMNeT++ and SUMO traffic
models. INETMANET is used in this case to design the ad hoc network.

An open-source model library called INETMANET was created for the OMNeT++
simulation environment. Both necessary wireless protocols and ad hoc network protocols
are supported. The comprehensive simulation environment is built to deliver a realistic
vehicle movement trace that can be utilized in the real world. The network is simulated
using OMNeT-4.6, SUMO-0.21.0, and INETMANET-2.0. INETMANET is an open-source
network simulation framework that can simulate various network systems, including road
traffic networks. It can benefit road traffic networks in multiple ways, such as evaluating
performance, managing traffic, analyzing safety, and assessing environmental impact.

Figure 6 illustrates the general simulation model of an edge servers-assisted vehicular
environment. Here, shaded areas denote obstructions, and black lines signify traffic lanes.
The shapes in the yellow color depict vehicles. Firstly, we compile the geographic infor-
mation regarding the location of traffic monitoring stations along the highway’s sections,
the road system geometry file, and the time data in the form of traffic flow captured at
each sampling interval (3 min time intervals in our case). SDN, Cognitive Radio (CR), and
Vehicular Ad Hoc Networks (VANETs) technologies (SDN-CR-VANET). SDN-CR-VANET
technology aims to enhance the efficiency and dependability of VANETs by utilizing radio
spectra more effectively and managing the network centrally. The technology allows for
resource allocation based on traffic demand, while the CR technology dynamically adjusts
transmission parameters to optimize spectrum utilization. In addition, SDN-CR-VANET
technology has a broad range of applications, including traffic management, emergency
response, and entertainment.
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In Table 1, several approaches have increasingly highlighted the significance of hyper-
parameters for the training phase. This research considers five hyperparameters—learning
rate, number of RNN layers, number of nodes, batch size, and dropout—for tuning in RNN
models concerning the traffic data from the highway system. This one is predicated on
our prior works. In particular, Table 2 shows the search spaces and descriptions for the
abovementioned hyperparameters. The focus of this research is to reduce the square error
for estimating traffic flow by using the automatic hyper-parameters tune challenge, and
this goal is stated as follows:

E =
n

∑
i=1

(Yi − Pi)
2 (11)

E represents the square error values, and P represents traffic flow values. Similarly,
other certain metrics, including Mean Absolute Error (MAE), Mean.

where
Yi represents the actual value or target value for observation i.
Pi represents the predicted value for observation i.
(Yi − Pi)2 is the square of the difference between the actual and predicted values for

observation i.
∑ the symbol means summating all the squared differences across all n observations

from i = 1 to n.

Table 1. Comparison Results for Proposed and Existing Methods.

Unique Aspect Data Source Performance DNN Architecture Congestion Is Defined on
the Basis of: Paper

Efficient encoding for
spatial information

11 intersections (VLDs)
3 months Florida, USA RMSE∼1 LSTM Queue length (Rahman and

Hasan, 2020) [32]

Scalable architecture Speed heat map
Seoul, S Korea Accuracy: 84.2% Novel PredNet) (built

using CNN&LSTM) Traffic speed (Ranjan et al.,
2020) [29]

Congestion tree
553 road links

(5 weeks)
Helsinki, Finland

MSE: 0.73 (weekdays),
0.37 (weekend) Conv-LSTM

Not applicable
(pre-labeled by data

provider)

(Di et al., 2019)
[33]

Detailed sensitivity
analysis with regard to

the input horizon

2000 taxis GPS
(28 days)

Chengdu, China

90.55% ≤ Accuracy ≤ 96.32%
91.89% ≤ Accuracy ≤ 96.75% CNN LSTM Traffic speed (Sun et al., 2019)

[30]

Observation: The sort of
network affects how
complicated a task is.

Seoul, South Korea’s
metropolitan suburbs

and the
surrounding area

MAPE: 4.29% (urban) MAPE:
6.08% (suburban) LSTM Traffic speed (Shin et al., 2020)

[31]
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Table 2. Hyperparameters Tuning Bi-Directional RNN with Soft GRU.

Parameter Explanation Data Type and Values

No of Neurons The units within the hidden layer’s
techniques for accuracy maximization Log Uniform or Int [1, 200]

Dropout Minimizing the overfitting of neural nets Floating [1, 0]

Learning Rate Error-values are adjusted according to the
weight values

Log Uniform/Floating
[0.1, 0.2, 0.005]

Hidden Layers Input and output layers that maximize the
accuracy Int [0, 2]

Batch Size Describing the no of samples that
propagates via the process Int [1, 512]

MSE and Root Mean Squared Error (RMSE) are frequently used to measure efficiency
for regression problems.

MSE =
1
N

N

∑
i=1

(
Ai − P̂Ri

)2
(12)

RMSE =
1
N

N

∑
i=1

(
Âi − PRi

)2
(13)

MPSE =
1
N

N

∑
i=1

(
Ai − P̂Ri

)
Ai

(14)

where Ai and PRi are the actual and predicted values, respectively.
MSE: Mean Squared Error, a standard metric used to measure the average squared

difference between a dataset’s predicted and actual values.
RMSE: Root Mean Squared Error.
N: the total number of data points in the dataset.
Ai : the actual value of the i-th data point in the dataset.

PRi: a model or algorithm estimates the predicted value of the i-th data point in
the dataset.

i: the index of the data point in the dataset.
DL is a complex problem because of the numerous hyperparameters they contain. In

particular, changing every hyperparameter can complicate the procedure. Additionally,
search algorithms consider hyperparameters equally to discover the better effect, which
might cause time-consuming and complex issues to compute. The formulae show that
RMSE and MAE are based on the unit, whereas MAPE is a dimensionless variable. When-
ever MAPE was available, we sought to present it in this survey with the results of several
regression exercises. Residency and computational time are important factors to consider
in various fields. Balancing these factors can lead to optimal performance and efficiency in
a given task or process in Figure 7. As seen in Table 3, a confusion matrix can be utilized
to describe the most frequently used parameters for classification. Several metrics are
described in the context of the confusion matrix. The three metrics, true positive rate (TPR),
true negative rate (TNR), and precision, are provided.

TNR = FP + TN / TN (15)

TPR = FN + TP / TP (16)

Accuracy =
(TP + TN)

(TP + FN + FP + TN)
(17)
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Table 3. Binary classification-based confusion matrix.

Time Class

Congested Non-Congested

True Positive (TP)Congested Predicted
as Congested

False Positive (FP) Non-Congested Predicted
as Congested

False Negative (FN) Congested Predicted
as Non- Congested

True Negative (TN) Congested Predicted
as Non-Congested

The task ahead frequently dictates the decision of the metric used to evaluate perfor-
mance. Let us look at an instance where a DL approach categorizes the traffic status as
“congested” or “non-congested” to illustrate the point.

MAPE stands for Mean Absolute Percentage Error, a commonly used metric for
evaluating the performance of regression models in ML. It measures the average absolute
percentage difference between a target variable’s predicted and actual values.

The formula for MAPE is:

MAPE = (1/n) × ∑(|(actual − predicted)/actual|) × 100% (18)

where n is the number of samples, actual is the actual value of the target variable, and
predicted is the predicted value of the target variable.

MSE stands for Mean Squared Error, a common metric used in machine learning to
evaluate the performance of a regression model. The MSE measures the average squared
difference between the predicted and actual values in the dataset.

MSE = (1/n) × Σ (y − ŷ)2 (19)

where
n is the number of data points;
y is the actual value;
ŷ is the predicted value.
For finding the computational time, we have to consider different factors such

as—determining the size of the input data, determining the number of hidden layers
and the number of neurons per layer, determining the type of activation function used in
BRNN, determining the type of optimization algorithm used in BRNN, and determining
the processing power of computer or server

Once these factors are determined, the computational time of BRNN is estimated using
the following formula:

Computational time = number of computations × time per computation (20)

For all three data sources (velocity, capacity, and flows), where we have withheld
specific data portions, numerous results are presented in previous efforts to better illustrate
the efficiency of the new traffic congestion forecast. The results, particularly for flow
and capacity data streams, demonstrate outstanding current traffic forecasting outcomes
compared to all other currently used approaches. As well as many other outcomes such as
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MAE, MAPE, and RMSE, which present the mean values RMSE and standard deviation
results achieved across all stations and all statistics from incoming streams, when both
methods are used, the advantages of the proposed road congestion prediction can be seen
overall. Consequently, the remaining study results will concentrate on showcasing the
influence of DL on precision, and performance was evaluated utilizing both congested and
non-congested data streams.

When we forecast even more into the future, every system’s prediction efficiency drops
as is to be predicted. The Conv-LSTM is the model that performs the worst, mainly because
it ignores the temporal and spatial correlations between both the counting stations. The
proposed model surpasses all other algorithms in every circumstance, while the hybrid
approach RNN with a soft GRU comes in second place. Advanced DL models are the
models that perform the best overall. We furthermore offer the graphics for the other two
performance indicators that were compared to all models. The variation for all models, as
calculated using the MAE and SMAPE, are shown in Figures 8–12. The results of the RMSE
investigation that was previously reported yield the same findings. Computation time is
determined for predicting traffic congestion to the traffic density.
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Computational time is plotted concerning several increasing traffic densities, as de-
picted in Figure 12. Computation time gradually increases with the growth in the number
of vehicles, since additional involvement of vehicles includes congestion on the road. This
comparison shows the computation time for the proposed method decreases while other
existing methods have a harder time in predicting traffic congestion.

6. Conclusions and Future Work

In this research, we make some speculative claims about the potential use of DL to
forecast a range of traffic indicators, including speed, weather, flow, and accident likelihood.
The performance of the traffic congestion forecast is enhanced by extracting several features,
including the past-day traffic, road, and weather conditions. BRNNs with a soft GRU are
suggested to extract traffic data and divide them into two classifications: congested and non-
congested. Previous works have been mentioned regarding the cloud environment, which
does not guarantee accurate traffic forecasting and which frequently results in accidents on
the road. We also summarize and analyze a few recent initiatives with encouraging results.
We describe two potential directions for future research to improve the accuracy and
efficiency of large-scale traffic predictions. In the future, a semantic matching procedure
will be included to predict traffic levels accurately. The proposed framework achieves
state-of-the-art performance in detecting COVID-19 and pneumonia, demonstrating the
effectiveness of the ensemble approach. The paper contributes to the development of deep
learning models for the early detection of COVID-19 and pneumonia, which can aid in the
prompt diagnosis and treatment of these diseases. In the time traffic control was maximized
that provides safety and health to the human beings [41–43].

The research article proposes a novel approach for traffic prediction in an edge-based
vehicular environment. The approach utilizes historical and real-time information from
various sources, such as social media, weather information, road traffic information, and
road conditions information, stored in edge servers. Multiple features are then extracted us-
ing deep learning architecture, specifically bidirectional RNNs with the soft gated recurrent
unit (GRU), and classified into two classes, congested or not. An optimization approach is
also proposed to optimize the hyperparameters of the DL architecture based on real-time
and past traffic data. Finally, this approach has the potential to enhance the precision and
effectiveness of traffic forecasting, which can be helpful in various applications such as
route planning, traffic management, and congestion mitigation. The article also reviews
previous efforts and suggests potential paths for future research in this area. Rahman and
Hasan, 2020; Di et al., 2019; Shine et al., 2020; Ranjan et al., 2020; Sun et al., 2019; and our
proposed work were compared and depicted in Figures 8–12.

Traffic flow management is a crucial problem in smart cities, and DL methods such
as RNNs may significantly enhance congestion prediction. GRU-based soft RNNs have
demonstrated promising results in predicting traffic congestion by identifying temporal
patterns in traffic flow data. Intelligent city planners may optimize traffic flow by precisely
forecasting traffic bottlenecks—modifying traffic lights, or recommending to drivers alter-
nate routes. Decreasing the time that cars are left idle in traffic can also aid in lowering
greenhouse gas emissions and improving air quality. To summarize, a possible strategy to
improve traffic flow in smart cities is to use GRU-based soft RNNs for congestion predic-
tion. This technology can aid in developing more sustainable and effective transportation
systems that are good for both people and the environment.
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