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Abstract: To meet the national green development trend and realize the sustainable development of
human society, the carbon emission in cold-chain distribution is costed. We plan the vehicle distribu-
tion path reasonably and optimize the distribution path locally for immediate demand to balance
the economic benefits of enterprises and customer satisfaction while reducing the environmental
pollution. To minimize distribution cost and maximize customer satisfaction, we design an improved
ant colony algorithm to solve the initial distribution path and use the insertion method to solve
the immediate customer demand. Taking the actual data of enterprise M as an example, we obtain
the optimal distribution path using MATLAB software and optimize the distribution path locally
according to the immediate customer demand. The results show that the proposed model and the
designed algorithm are practical in satisfying the sustainable development of cold-chain logistics
in China.

Keywords: cold-chain logistics; carbon emissions; immediate needs of customers; improved ant
colony algorithm

1. Introduction

With the development of the economy and the improvement of people’s living stan-
dards, the quantity and quality of fresh products are increasing, and the development of
cold-chain logistics is also very rapid. However, rapid development has also brought high
costs and high emissions. In the context of the Chinese “3060” policy of peaking carbon
neutrality, finding the balanced development of the economy, energy, and environment
is an essential issue for China and its provinces, cities, and other economies. Cold-chain
logistics distribution often involves fresh products. Perishability refers to abnormal quality
problems such as the death, deterioration of animal food, or the decay and mildew of plant
food. In cold-chain transportation and storage, businesses will reduce the temperature
and other means to prevent the deterioration of fresh products. However, such measures
usually result in carbon emissions of cold-chain logistics exceeding the standard. Therefore,
it is essential to consider carbon emissions in cold-chain logistics distribution. This scenario
creates an immediate demand from the customer. With the development of the customer’s
individualized and differentiated needs, the original Business to Customer (B2C), Cus-
tomer to Customer (C2C) cold-chain logistics model cannot meet the immediate needs
of customers. Therefore, in cold-chain logistics, distribution path optimization considers
customers’ immediate needs in line with the current consumption trends. Whether the
customer’s immediate demand is satisfied or not can be reflected in the customer’s satisfac-
tion, and the logistics cost directly affects the economic benefit of the enterprise. Currently,
research on cold-chain logistics focuses on customer satisfaction and route optimization,
and few articles consider both carbon emissions and immediate customer needs. In this
paper, a bi-objective optimization model aiming at customer satisfaction cost and logistics
cost is established.
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The research shows that the Asia–Pacific region is the primary cold-chain logistics
market, and China contributes the most to generating market income. The Chinese cold-
chain logistics market has grown 15 percent annually since 2013 and is expected to generate
USD 80 billion in 2024 revenues [1]. Although the cold-chain logistics market is booming,
cold-chain logistics companies are usually small and numerous. Cooperation between
them is limited, resulting in high transport costs and carbon emissions [2,3]. Therefore,
reducing total distribution costs and carbon emissions is a significant concern for the
industry involving cold-chain logistics companies. Carbon emissions become an essential
factor affecting the distribution path in the vehicle-routing problem. In order to better
consider the carbon emission factor in the model, some scholars add the carbon emission
cost into the objective function [4,5].

In the research of path optimization, there are three ways to reduce carbon emissions:
carbon tax regulation, carbon trading regulation, and multi-objective optimization. Carbon
tax regulations exist in many places, such as in the United States, where companies do not
receive subsidies or tax credits to remanufacture and, therefore, must pay an emissions
tax [6]. Therefore, green cold-chain logistics has become the future trend of development.
Based on this, Dou and others believe that collecting second-hand products directly from
customers can effectively reduce the carbon emissions of the supply chain system. So, they
modeled three classes. The results show that manufacturers and retailers can be the most
eco-efficient recycling channels, while third-party recycling channels are the least popular.
Retailers can do a better job of Pareto efficiency both environmentally and economically [7].

The tax rate in the carbon tax regulations may change from time to time. The results
show that the total emission can increase or decrease by reducing remanufacturing emis-
sion intensity. In order to effectively control total emissions, regulators can selectively
increase tax rates according to the characteristics of manufacturers’ production decisions
and remanufacturing [8]. In order to promote low-carbon production, the government
also provides some subsidies under the carbon tax regulations. There are two main types
of subsidies: those based on emission reductions and the cost of investment in reducing
emissions. The results show that government subsidies can expand the corresponding
conditions for improving investment in emission reduction [9]. To illustrate the impact
of various carbon footprint plans on costs and carbon emissions, we have developed con-
tainerization strategies to minimize transport costs under different carbon footprint plans.
The study shows that the containerization strategy under the carbon tax regulation is better
than the conventional policy regarding the total transport cost and carbon emissions [10].

The researchers regulated carbon trading by calculating the cost of carbon and intro-
duced carbon trading by focusing on carbon prices and carbon quotas. If a cold-chain
logistics company emits more carbon than it can, it must pay extra to buy more. However, if
the emissions of the cold-chain logistics company are below the prescribed limit, the carbon
quota can be sold for a profit [11]. Research shows that as the price of carbon rises, so does
the cost of carbon. As carbon becomes more expensive than before, emissions significantly
affect the total cost [12]. When carbon quotas are fixed, the higher the price of carbon,
the greater the total cost of carbon [13]. In order to study the relationship between the
fluctuation of the carbon price and production efficiency and trading quantity, modeling
simulation and sensitivity analysis were carried out. The results show that under carbon
cap-and-trade regulation, joint production and trading policies can help firms benefit from
changes in carbon prices [14]. In order to study the relationship between the carbon price
and enterprise marginal emission cost, the time-varying difference (TDID) model is used to
post-estimate the carbon price of enterprises. The results show that the impact of carbon
prices is more pronounced among state-owned enterprises in eastern China. In addition,
more significant investment in R&D patents and capital can help raise corporate total factor
productivity [15]. The impact of carbon trading regulation on different enterprises’ green
innovation is heterogeneous. The behavior logic of participants under the regulation of
carbon trading is analyzed by constructing an evolutionary game, evolutionary equilib-
rium, and numerical analysis. The results show that when the impact of carbon trading
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regulation on innovation is positive, the quality of innovation may be different under
different conditions [16,17].

In addition, there are related researchers through multi-objective optimization methods
to reduce carbon emissions. For example, a multi-objective mixed-integer linear program-
ming model calculates the amount of greenhouse gas emissions related to the minimum
cumulative energy consumption, thus providing a decision-making basis for reducing
carbon emissions. The study shows that the proposed model can reduce greenhouse gas
emissions from offshore by 25%. Therefore, the shared power generation between offshore
wind farms and platforms is beneficial to the environmental and economic benefits of
society and enterprises [18]. The combination of multiple modes of transport provides a
flexible and environmentally friendly alternative for transporting large quantities of goods
over long distances. In order to reflect the advantages of each mode of transport, the
multi-objective planning of multimodal transport research shows that the cost of excessive
reduction in carbon emissions and the original cost of transport are similar [19]. In order to
study the effect of supply chain structure on carbon emission, a new network optimization
model is proposed. Research shows that the rate of change in carbon emissions is related to
the cost of carbon emissions and GDP growth. Countries with higher carbon costs will bear
more burden [20]. In order to avoid increasing energy consumption in developed countries
due to enhanced manufacturing technology and mitigate global warming, the supply chain
network optimization was carried out to minimize the total production cost, reduce the
carbon footprint, and minimize the energy cost of renewable energy. The results show that
the optimized supply chain has lower production costs and less carbon emission [21].

This article aims to calculate the cost of carbon emissions to conduct carbon tax regula-
tion and then control carbon emissions. The distribution cost of the vehicle-routing model
in this paper includes vehicle fixed cost, vehicle transportation cost, temperature cost, and
carbon emission cost. The cost of carbon emissions is the cost of carbon dioxide emissions
mainly from the following two aspects. On the one hand, refrigerated vehicles produce
carbon emissions from fuel consumption; on the other hand, refrigerant consumption by
refrigeration equipment to keep the products of the cold chain in a suitable low-temperature
environment during transportation also produces carbon emissions. Therefore, the carbon
emission cost is considered in the vehicle-routing model.

In the current cold-chain logistics research, many articles consider carbon emission and
logistics cost, but they consider carbon emission, logistics cost, and immediate customer
demand less. This paper takes the carbon emission cost as a part of the logistics cost. It
takes the logistics cost and the customer’s immediate demand as two goals to optimize
the cold-chain logistics distribution path. Based on these two factors, a bi-objective opti-
mization model for customer satisfaction and logistics costs is established in this paper.
The trapezoidal fuzzy membership function was constructed to express the relationship be-
tween customer satisfaction and the time window and to optimize the local allocation path.
This paper also considers optimizing the local allocation of the total cost of carbon emis-
sions. The research could help increase customer satisfaction and reduce carbon emissions
from cold-chain logistics. It is of great practical significance to realize the maximization of
environmental and economic benefits. In addition, this study adapts to the development of
the current era and meets the requirements of low-carbon sustainable development of cities.
The heuristic function and pheromone in the model optimization process are improved,
and multi-strategy improvement is added to the ant colony algorithm. The effectiveness of
the algorithm and the proposed model considering the cost and customer satisfaction of
emission reduction is verified by an example.

The innovation of this article is as follows. First, this paper focuses on customer
demand and carbon emissions and establishes a bi-objective optimization model with
customer satisfaction and logistics costs as objectives. Second, the cost of carbon emission
is considered calculating logistics costs. This factor is rare in previous studies. The model
helps to strike a balance between customer satisfaction, business economic benefits, and
environmental benefits. Third, the ant colony algorithm is improved. In this paper, the
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heuristic function and pheromone are improved, and the multi-strategy improvement is
added to the ant colony algorithm to form an improved ant colony algorithm to solve the
initial distribution path.

This paper is organized as follows: Section 2 contains the problem description and
modeling. The total cost of distribution, including the cost of carbon emissions, was
constructed to achieve both the lowest cost of distribution and the best customer satisfaction,
taking into account customers’ needs. Section 3 explains the algorithm design. We use the
improved ant colony algorithm to solve the distribution path in the initial stage. Moreover,
the insert method solves the customer’s instant demand. An example analysis of the
calculation is introduced in Section 4. This paper uses a sizeable fresh distribution company
in Shaanxi province as an example to calculate. Finally, Section 5 contains the conclusion.

2. Problem Description and Modeling
2.1. Problem Description

The cold-chain logistics enterprise has a group of customers and a distribution center,
and the refrigerated trucks serve the customers under the premise of meeting the vehicle
load limit. The distribution center has sufficient inventory, and the distribution center has
the same vehicle model and a sufficient number of distribution vehicles. The distribution
center needs to make path planning for the known customer demand, which is the initial
distribution route. In the process of distribution, immediate customer demand will be
generated. Then, the cold-chain logistics enterprise needs to handle the immediate customer
demand and adjust the original distribution route formulated. Because of the perishable
nature of cold-chain products, the refrigeration equipment in the distribution process will
consume more energy and increase emissions. Therefore, in this paper, the total distribution
cost, including the carbon emission cost, is constructed while considering the immediate
customer demand to achieve the two goals of the lowest distribution cost and the most
excellent customer satisfaction. The schematic diagram of vehicle path optimization under
immediate customer demand is shown in Figure 1.
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Figure 1. Dynamic vehicle route optimization diagram. Figure 1. Dynamic vehicle route optimization diagram.

The assumptions of this paper are as follows.

Supposition 1: There is only one distribution center, and distribution vehicles must start and
finish the routes.

Supposition 2: The number of distribution vehicles is sufficient and of the same type, and the total
amount of goods loaded in the distribution vehicles cannot exceed their capacity.
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Supposition 3: Customer demand cannot be split, and each customer point is served.

Supposition 4: Distribution vehicles are loaded before distribution, and they do not need to wait
when they arrive at any customer demand point and can be unloaded directly.

Supposition 5: Distribution vehicles operate at a constant speed.

Supposition 6: All drivers of distribution vehicles have the same technical experience, and vehicle
fuel consumption will not change due to subjective factors.

2.2. Distribution Cost Function

(1) Vehicle fixed cost

For logistics enterprises, as long as the use of distribution vehicles to pay the fixed
cost of vehicle use, fixed costs and a load of goods and the length of the driving distance is
not relevant:

C1 =
n

∑
j=1

m

∑
k=1

fkxk
0j (1)

(2) Vehicle Transportation Costs

Transportation costs mainly include fuel consumption, vehicle maintenance, and other
costs. Generally speaking, vehicle transportation costs increase with the distance traveled:

C2 =
n

∑
i=0

n

∑
j=0

m

∑
k=1

Fkxk
ijdij (2)

(3) Temperature cost

The temperature cost includes the temperature generated when the refrigerated truck
is driving. Moreover, the temperature cost is caused by the additional consumption of
refrigerant. Moreover, the reason is the temperature difference between the refrigerated
truck compartment and the external environment in the loading and unloading process,
generating air convection and raising the temperature inside the refrigerated truck com-
partment.

The temperature cost in the transportation process is calculated as follows:

C31 =
n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ijφ1tk

ijT (3)

The formula calculates the temperature cost of the loading and unloading link:

C32 =
n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ijφ2tk

j ∆T (4)

In summary, the temperature cost expression is:

C3 = C31 + C32 =
n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ij(φ1tk

ijT + φ2tk
j ∆T) (5)

All the symbols in the text are shown in Table 1.
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Table 1. Symbolic conventions for the proposed model.

Variable Classification Symbol Connotation and Unit

Parametric variable

K A collection of vehicles providing fresh produce delivery services,
k ∈ K and k = (1, 2, . . . m);

I
The collection of distribution points where transportation is required. i, j ∈ I
and i, j = (0, 1, 2 . . . n), where 0 is the distribution center, and the others are the

demand points;
fk Fixed cost of using any of the delivery vehicles;
Fk Transportation cost per unit distance;
dij The distance between client i and client j;

tk
ij

The time it takes for the k vehicle to travel from distribution point i to
distribution point j;

φ1 The cost factor for product cooling during distribution;
T High and low temperatures in the carriage;

tk
j

Length of time required for the vehicle k to load and unload at the distribution
point j;

φ2 The cost factor for product cooling during loading and unloading;

∆T The existence of temperature differences between the inside and outside of
the carriage;

Q The load limit of the vehicle;
qi Customer demand i;

Qij Vehicle shipment from customer i to customer j;
pc Unit carbon tax price;
e Carbon dioxide emission factor;

λi The actual time the delivery vehicle arrives at the customer demand point;
Ce Waiting cost per unit time advance service;
Cl Penalty cost per unit of time delayed service;

Collection variable
[eti, lti] Optimal service time for the client i;
[ETi, LTi] A soft time window limit for the client i;

Decision variable xk
ij

{
1, Distribution k vehicles travels from customer i to customer j
0, Other

(4) Cost of carbon emissions

The carbon emission cost studied in this paper is the cost of carbon dioxide emission,
which is generated mainly from the following two aspects. On the one hand, fuel consump-
tion fuel by refrigerated trucks generates carbon emissions; on the other hand, refrigerant
by refrigeration equipment also generates carbon emissions to keep the cold-chain products
in a suitable low-temperature environment during transportation.

When a cargo of weight Qij is loaded in the reefer, the fuel consumption per unit
distance is calculated using the load estimation method as shown in Equation (6):

E1(Qij) = ρ0 +
ρ∗ − ρ0

Q
Qij (6)

where ρ0 is the fuel consumption rate per unit distance when the vehicle is empty, and ρ∗ is
the fuel consumption rate per unit distance when the vehicle is fully loaded.

The cost of carbon emissions from vehicle operation is shown in Equation (7) [16]:

C41 = pc

n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ijeE1(Qij)dij (7)

The refrigeration method of the refrigerated vehicle in this paper is mechanical refrig-
eration. Therefore, it could consume diesel or gasoline to maintain the cold-chain products
at a lower temperature while generating carbon dioxide. The cost of carbon emissions from
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the refrigeration equipment for a vehicle carrying a product of weight to be delivered from
customer to customer is shown in Equation (8):

C42 = pc

n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ijE2Qijdij (8)

In summary, the expression for the cost of carbon emissions is:

C4 = C41 + C42 = pc

n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ijdij(eE1(Qij) + E2Qij) (9)

(5) Time window penalty cost

The time window penalty cost is the extra cost of the cold-chain delivery vehicle
for violating the time window specified by the customer. The time window penalty cost
includes the opportunity cost of forming a window earlier than the time window and the
penalty cost of forming a window later than the time window. A fuzzy soft time window is
used in this paper. Because the best service time is not the whole time window but a specific
period within the time window, the traditional soft time window cannot accurately express
customer satisfaction, so the fuzzy soft time window is chosen. Assuming a customer i
service start time of λi, the time window penalty function can be expressed as follows:

C5(i) =


Ce(ETi − λi), λi < ETi

0, ETi ≤ λi ≤ LTi

Cl(λi − LTi), λi > LTi

(10)

The customer’s i time window penalty is shown schematically in Figure 2.
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Therefore, the customer i time window costing is expressed as follows:

C5 = Ce∑
i∈I

max{ETi − λi, 0}+ Cl∑
i∈I

max{λi − LTi, 0} (11)

where Ce ∑
i∈I

max{ETi − λi, 0} denotes the total opportunity cost due to being earlier than

the time window and Cl ∑
i∈I

max{λi − LTi, 0} is the total penalty cost due to being later than

the time window.
From the above analysis, the total distribution cost objective function can be obtained

as follows:
C = C1 + C2 + C3 + C4 + C5 (12)
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i.e.,

C=
n

∑
j=1

m

∑
k=1

fkxk
0j +

n

∑
i=0

n

∑
j=0

m

∑
k=1

Fkxk
ijdij +

n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ij(φ1tk

ijT + φ2tk
j ∆T)

+pc

n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ij·dij(eE1(Qij) + E2Qij) + Ce∑

i∈I
max{ETi − λi, 0}

+Cl∑
i∈I

max{λi − LTi, 0}

(13)

2.3. Customer Satisfaction Function

In the actual distribution process of cold-chain logistics, the customer time window
is flexible, and customer satisfaction also decreases with the increase in the difference
between the actual arrival time of the distribution vehicle and the preset time of the
customer. Customer satisfaction based on a soft time window is generally transformed into
0–1 values, where 0 and 1 denote the minimum and maximum satisfaction, respectively.
The relationship between soft time windows and customer satisfaction is illustrated in
Figure 3.
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However, because the customer’s best service in this paper is only part of the customer
time window—a specific period—the traditional soft time window cannot accurately
represent customer satisfaction. This paper’s trapezoidal fuzzy affiliation function is
constructed to represent the time window, as shown in Figure 4.
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0–1 values, where 0 and 1 denote the minimum and maximum satisfaction, respectively. 
The relationship between soft time windows and customer satisfaction is illustrated in 
Figure 3. 
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The function of customer satisfaction si is expressed as follows:

si =


λi−ETi
eti−ETi

, ETi ≤ λi < eti

1, eti ≤ λi < lti
LTi−λi
LTi−lti

, lti ≤ λi < LTi

0, Other

(14)

So, the customer satisfaction function can be expressed as:

S =

∑
i∈I

si

n
(15)

2.4. Mathematical Models

This model is nonlinear, and the improved ant colony algorithm has vital positive
feedback and parallelism to solve this model. In summary, in order to unify the calculation
and transform the maximum customer satisfaction into the minimum customer dissatis-
faction, the optimization model of the cold-chain logistics distribution path considering
carbon emission and immediate customer demand is established as follows:

minC=
n

∑
j=1

m

∑
k=1

fkxk
0j +

n

∑
i=0

n

∑
j=0

m

∑
k=1

Fkxk
ijdij +

n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ij(φ1tk

ijT + φ2tk
j ∆T)

+pc

n

∑
i=0

n

∑
j=0

m

∑
k=1

xk
ijdij(eE1(Qij) + E2Qij) + Ce∑

i∈I
max{ETi − λi, 0}

+Cl∑
i∈I

max{λi − LTi, 0}

(16)

minS = 1−
∑
i∈I

si

n
(17)

The constraints are as follows:

n

∑
i=0

qi

n

∑
j=0

xk
ij ≤ Q, k ∈ {1, 2, . . . m} (18)

n

∑
j=0

m

∑
k=1

xk
ij = 1, i ∈ {1, 2, . . . , n} (19)

n

∑
i=0

m

∑
k=1

xk
ij = 1, j ∈ {1, 2, . . . , n} (20)

n

∑
j=1

xk
ij =

n

∑
j=1

xk
ji ≤ 1 (21)

j

∑
i,j∈S×S

xk
ij ≤ |S| − 1, S ⊆ {1, 2 . . . n} (22)

xk
ij

{
1, Distribution k vehicles travels f rom customer i to customer j
0, Other

(23)

Equation (16) indicates the lowest total cost of distribution. Equation (17) indicates
the lowest customer dissatisfaction. Equation (18) indicates that the load capacity of each
distribution vehicle does not exceed its capacity. Equations (19) and (20) indicate that
each distribution point will be served, and only one distribution vehicle can provide a
distribution service. Equation (21) indicates that each distribution vehicle must start and
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end at the distribution center. The purpose of Equation (22) is to eliminate the subloop.
Equation (23) represents the 0–1 variable of the distribution vehicle k from point i to point j.

The objective functions in this paper are the lowest total cost of distribution and the
lowest customer dissatisfaction, which need to be quantified. In this paper, the sigmoid
function is used to unify the order of magnitude of each objective function so that the
order of magnitude of the two objective function values remains unified, and the quantified
results are:

(minC)′ = 1/(1 + e

−(
n
∑

j=1

m
∑

k=1
fkxk

0j +
n
∑

i=0

n
∑

j=0

m
∑

k=1
Fkxk

ijdij +
n
∑

i=0

n
∑

j=0

m
∑

k=1
xk

ij(φ1tk
ijT + φ2tk

j ∆T) + pc
n
∑

i=0

n
∑

j=0

m
∑

k=1
xk

ijdij(eE1(Qij)

+E2Qij) + Ce ∑
i∈I

max{ETi − λi, 0}+ Cl ∑
i∈I

max{λi − LTi, 0})
) (24)

(minS)′ = 1/(1 + e−(1−
∑

n∈I
Sn

n )) (25)

The objective function value y is obtained after the normalization process y′, y′ ∈ [0, 1].
C′ and S′ represent C and S after the above method.

3. Algorithm Design

The objective function of this paper is the minimum cost and the maximum customer
satisfaction, which belongs to the multi-objective optimization problem and is usually
solved by the heuristic. Although in the initial stage, the ant colony algorithm is prone to
fall into local optimum and slow convergence because of the lack of pheromones, it can be
improved to make up for the algorithm’s shortcomings. Therefore, this paper improves
the traditional ant colony algorithm, using the improved ant colony algorithm to solve the
initial stage of the distribution path. In the stage of customer demand, the insert method is
simple and efficient, and the quality of a solution is generally high, so the insert method is
chosen to solve customer demand.

Macro Dorigo first proposed the ant colony algorithm, which has vital positive feed-
back and parallelism [22]. Although the ant colony algorithm is prone to fall into local
optimum and slow convergence in the initial stage because of the lack of pheromones, it can
be improved to make up for the algorithm’s shortcomings [23]. Therefore, in this paper, the
traditional ant colony algorithm is improved, and the distribution path in the initial stage
is solved using the improved ant colony algorithm. In the immediate customer demand
stage, the insert method is simple and efficient, and the solution quality is generally high,
so the insertion method is chosen to solve the immediate customer demand [24].

3.1. Algorithm for Initial Distribution Path Planning
3.1.1. Principle of Ant Colony Algorithm

The ant colony algorithm has positive feedback and robustness to obtain a better
solution. From nest to food, the trajectory of an ant is disorderly, but research has found
that when the number of ants accumulates to a specific value, they always find the shortest
path. When ants search for food, they release a secretion—pheromone—on their path.
When an ant encounters an intersection, it randomly chooses a path. When the next
ant comes to the same intersection, it chooses the route with a higher concentration of
pheromones and releases pheromones. The pheromone concentration increased as the
distance became shorter, and this affected the path choice of the following ants. As time
passes and the number of ants accumulates, eventually, all ants will choose the path with
the greater pheromone concentration, i.e., the shortest path, which also finds the optimal
solution to the problem.
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3.1.2. Improved Ant Colony Algorithm

(1) Adopt a saving matrix to guide the ant search

The basic ant colony algorithm is prone to fall into local optimum, and to solve this
phenomenon, this paper adds the saving matrix U : U(i, j) = D(i, 1) + D(j, 1)− D(i, j)
to strengthen the attractiveness to ants [22]. After optimization using the idea of the
saving matrix, the original distribution route is merged from two to one, at which time the
probability is shown in Equation (26):

Pk
ij(t) =


[τij(t)]

α×[ηij(t)]
β×Uθ

ij

∑
s∈allowedk

[τis(t)]
α×[ηis(t)]

β×Uθ
is

, j ∈ allowedk

0, j /∈ allowedk

(26)

θ is the weighting factor that can be adjusted for the savings matrix.

(2) Improvement of the heuristic function

This is a heuristic article. The heuristic is presented relative to the optimal algorithm,
and a feasible solution of the combinatorial optimization problem to be solved is given
within an acceptable range. The deviation between the feasible solution and the optimal
solution cannot be predicted; when dealing with large-scale VRP, the heuristic is more
feasible. Pheromones are a kind of volatile secretion released by ants to the environment,
which will disappear gradually with the passage of time. Although in the initial stage, the
ant colony algorithm is prone to fall into local optimum and slow convergence because
of the lack of pheromones, it can be improved to make up for the shortcomings of the
algorithm. In this paper, the heuristic function and pheromone are improved by using an
econometric matrix to guide the ant search. The multi-strategy improvement of sequential
exchange strategy [25], 2-OPT algorithm [26] and sequential insertion strategy [27] are
added into the ant colony algorithm to strengthen the aim of ant searching, avoid the
local optimum and finally reach the global optimum [28]. The expression is shown in
Equation (27):

ηij(t) =
1

dij + dig
(27)

where dig indicates the distance between the current nodes j and g.

(3) Improvement of pheromone

Since the chances of each path being chosen are the same in the initial moment envi-
ronment, this leads to the time for ants to find the shortest path length. In order to solve the
problem in which ants are prone to fall into local optimum, this paper improves the initial
pheromone by using chaotic variables, which are made to correspond to the optimization
variables when the pheromone is initialized. The chaotic variables are generated by the
logistic mapping of

Zij(t + 1) = µZij(t)
[
1− Zij(t)

]
(28)

In the above equation, µ is the control variable, which takes the value between
[3.56, 4.0] in general, and Zij(t) is generated randomly [29]. When, µ = 4, 0 ≤ Zij(0) ≤ 1 is
fully generated randomly. The purpose of the chaotic system is to make the same initial
pheromone chaotic in the essential ant colony to reduce the occurrence of local optima,
make it more diverse, and finally improve the convergence speed of the algorithm.

Although chaotic systems can chaos the initial pheromone, they cannot avoid the oc-
currence of the ant colony algorithm falling into a local optimum. Therefore, the pheromone
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is adjusted and optimized to reduce instances of the algorithm falling into a local optimum.
The expression after incorporating chaotic perturbations in the pheromone is:

τij(t + 1) = (1− ρ)τij(t) + ∆τij(t) + ζZij(t)

∆τij(t) =
n
∑

k=1
τk

ij(t)

∆τk
ij(t) =

{
Q/Lk The k ant moves f rom location i to location j
0 else

(29)

where Zij(t) is the chaotic variable obtained from the iteration of Equation (29).

(4) Multi-strategy improvement This paper uses a multi-strategy approach to adjust the
solutions obtained from each iteration. Moreover, we add a sequential exchange
strategy [25], 2-OPT algorithm [26], and a sequential insertion strategy to the ant
colony algorithm [27], in which each strategy is a neighborhood to avoid local optima
to enhance the ergodicity of the ant colony algorithm search.

(1) Sequential exchange strategy: Each customer point is passed through in se-
quence, and a customer point within the current line is exchanged with a
customer on the same line or another line for the location.

(2) The 2-OPT algorithm: Two points on the route are randomly selected, and the
order of the remaining points remains the same, only the points between them
are flipped in reverse order, which belongs to a local search algorithm.

(3) Sequential insertion strategy: Insert customer points in different routes.

3.1.3. Improved Ant Colony Algorithm Flow

(1) Initialization parameters. Let time t = 0, iteration number iter = 0, set maximum iter-
ation number itermax, input specific data such as the distribution center and customer
geographic location, set the distribution center node as the starting point of the ant,
and enable chaos initialization.

(2) Under the restriction of satisfying multiple constraints, each ant selects the next node
j according to Equation (26), records it in the forbidden table, and updates the load
information of the vehicle.

(3) Determine whether all ants visit all customer points. If not, repeat the step; if yes, put all
customer points into the forbidden table and return to the logistics distribution center.

(4) Multi-strategy improvement is performed.
(5) Update the pheromone using the pheromone update rule Formula (29) of chaotic

perturbation.
(6) When the number of loops reaches the set maximum number of loops, the algorithm

is terminated, and the optimal result of the algorithm is output. Conversely, the taboo
table is emptied, and a new round of loops is started, iter = iter + 1.

(7) Output the calculation results.

The flow chart of the improved ant colony algorithm is shown in Figure 5.

3.2. Delivery Path Algorithm for Immediate Customer Demand Phase

In this paper, we study the optimization of a cold-chain logistics distribution path
considering carbon emission and immediate customer demand [30]. Because of the peak
season of cold-chain goods demand, holiday promotion, and other unexpected situations,
there may be a delay in the delivery time requested by customers or new customers’ orders
during the cold-chain distribution process [31,32]. Generally speaking, the immediate
customer demand studied in this paper includes new customer demand and changes in
the existing customer time window [33].
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When the distribution center receives information on immediate customer demand, it
simplifies the complex problem by converting the dynamic information into several static
pieces. When the immediate customer demand arises, there are usually two ways to process
it immediately and in batches [34,35]. Due to the limitation of immediate processing, the
distribution center cannot arrive at the optimal route when the distribution center has a
heavy workload, so this paper selects the timing processing method in batch processing
to process the immediate customer demand. In the actual distribution, the distribution
center needs to divide the products in advance according to the customer’s order, so local
optimization is more relevant to reality [36,37].

For the new customer demand, the vehicle that has already departed from the distri-
bution center will not be considered to return to the distribution center halfway. The new
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customer demand can be delivered by the refrigerated vehicle that has yet to depart [38,39].
Moreover, the distribution center will arrange a new vehicle if there is no eligible vehicle.
When the time window for the original customer changes, the distribution center will make
local optimization adjustments to the distribution route at the timing decision point and
communicate the planned new route to the distribution drivers [40,41].

Compared with other methods, the insertion method can obtain the results in a shorter
time so that the immediate customer demand can be satisfied and the timeliness of the
adjusted and optimized distribution plan can be ensured. The flow chart of the insertion
algorithm is shown in Figure 6.
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In order to solve the optimization model of the cold-chain logistics distribution path
considering carbon emission and the customer’s immediate demand better, this paper
selects an improved ant colony algorithm to solve the initial planning stage. The insertion
algorithm solves the optimization phase of the customer’s instant demand. The overall
algorithm design is shown in Figure 7.
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4. Example Analysis of the Calculation
4.1. Background Analysis and Parameter Setting

Enterprise M is a large fresh food distribution company in Shaanxi province. The
services include meat, fresh fruits, vegetables, and aquatic products. Moreover, other work
on all customer orders is received the day before at 3:30, and the distribution vehicles
depart from the distribution center at 5:00. New customer requirements are received by the
distribution center between 3:50 and 4:30. We can add the customer’s new requirements to
the initial delivery route. Assuming that the departing vehicles can meet the distribution
needs of new customers, we will replan the distribution route. If the new demand cannot
be met, we will arrange another car for distribution. In addition, the distribution center will
also receive the customer’s request for service time window adjustment, which requires
local optimization of the distribution route. This paper obtains the linear distance between
the distribution center and the customer through the scale. The basic information about the
initial customers is shown in Table 2.
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Table 2. Initial customer demand information.

Customer
Number Longitude (E) Latitude (N) Demand

(t)
Service

Time (h) ET et lt LT

0 108.677091 34.266719 - - - - - -
1 108.834904 34.298973 0.9 0.36 123 168 192 224
2 108.351339 34.457663 1.2 0.48 111 159 181 193
3 108.659804 34.335292 0.6 0.24 24 57 92 114
4 108.401643 34.201826 1 0.4 15 36 54 121
5 108.431812 34.426692 0.5 0.2 113 142 154 171
6 108.686791 34.458481 1 0.4 96 133 170 208
7 108.534434 34.336947 0.5 0.2 50 78 96 113
8 108.733897 34.315858 0.7 0.28 85 115 148 193
9 108.810638 34.422681 0.6 0.24 12 45 89 121

10 108.163187 34.358199 1.3 0.52 102 144 195 238
11 108.613462 34.124683 1.1 0.44 23 69 194 114
12 108.917593 34.157497 0.6 0.24 15 42 68 92
13 108.411762 34.306202 0.7 0.28 18 33 50 68
14 108.342154 34.367553 0.7 0.28 103 136 158 169
15 108.194996 34.259948 0.9 0.36 46 87 137 162
16 108.939718 34.202915 0.8 0.32 24 53 88 105
17 108.833701 34.251392 0.6 0.24 124 149 183 207
18 108.977323 34.398478 0.8 0.32 117 132 156 172
19 108.601433 34.395234 0.7 0.28 52 78 95 112
20 108.957505 34.346586 0.5 0.2 21 45 92 135
21 108.453489 34.154947 0.6 0.24 18 26 35 42
22 108.904797 34.360362 0.7 0.28 124 159 180 208
23 108.760642 34.507643 0.5 0.2 16 32 68 135
24 108.615176 34.532539 0.7 0.28 45 87 106 182
25 109.021785 34.273477 0.7 0.28 42 93 149 181
26 108.339864 34.218985 1.3 0.52 18 25 47 60
27 108.234023 34.146337 0.8 0.32 21 36 59 113
28 108.961859 34.267609 0.6 0.24 58 97 142 173
29 108.023154 34.131234 0.7 0.28 54 72 103 124
30 108.580261 34.458556 0.5 0.2 58 94 139 192
31 108.726415 34.356136 1.1 0.44 21 32 48 64
32 108.281024 34.328557 0.6 0.24 23 42 61 83
33 108.079304 34.282961 1.1 0.44 26 47 68 107
34 108.904597 34.446687 0.7 0.28 48 98 148 174
35 109.010218 34.444346 1.2 0.48 26 63 91 142
36 108.077109 34.246373 0.5 0.2 169 184 207 256
37 108.136842 34.526286 0.7 0.28 108 121 147 163
38 108.885776 34.523326 0.6 0.24 21 68 91 115
39 109.010997 34.185556 0.7 0.28 18 25 59 96
40 109.056321 34.246891 1 0.4 76 98 135 164
41 109.137439 34.356827 0.6 0.24 23 48 89 154
42 108.718379 34.126482 0.8 0.32 113 143 165 201
43 108.107532 34.415861 0.9 0.36 91 105 134 148

The immediate customer demand involved in enterprise M is divided into two cat-
egories, one for new customer needs, denoted by 0, and the other for adjustments to the
original customer time window, denoted by 1. The information on the immediate customer
demand of enterprise M is shown in Table 3.
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Table 3. Customers instantly demand information.

Immediate
Demand

Type

Customer
Number

Receiving
Moment

Longitude
(E)

Latitude
(N)

Demand
(t)

Service
Time (h) ET et lt LT

0 44 3:54 108.613742 34.426692 0.8 0.32 84 125 153 201
0 45 4:12 108.709566 34.245249 0.6 0.24 149 172 196 256
1 22 5:13 108.904797 34.360362 0.7 0.28 35 35 50 50
1 18 5:18 108.977323 34.398478 0.8 0.32 137 137 148 148

The relevant parameters are designed as follows: the distribution center is the same
type of refrigerated vehicle, the maximum vehicle load Q is 5t, the fixed cost of the re-
frigerated vehicle fk is 350 yuan, and the transportation cost of the refrigerated vehicle
Fk is 8 yuan/km; M enterprise is set according to the actual situation of the enterprise
Ce = 100 yuan, Cl = 150 yuan; the fuel consumption of the vehicle empty ρ0 and ρ∗ full
load unit distance and is 0.35 L/km and 0.7 L/km, respectively; the energy consumption of
refrigeration equipment is 0.00868/kg km, and the unit carbon tax pc is 100 yuan/t; the
CO2 emission factor e is 2.61 kg/L. This paper assumed that the outdoor temperature is
constant at 18 ◦C. The temperature inside the refrigerated vehicle compartment is set at
0 ◦C, and the cooling cost of the logistics vehicle during the transportation is 35 yuan/h.
The temperature inside the compartment increases by 3 ◦C when the distribution point
carries out unloading, the additional cooling cost due to the temperature difference is
6 yuan (◦C/h), and the speed of the distribution vehicle is 60 km/h. The basic parameters
of the improved ant colony algorithm are: α = 1, β = 2, ρ = 0.75, Q = 100, and θ = 2,
the number of ants m = 40, and the maximum number of iterations itermax = 200 [22].
In addition, the weight of the lowest transportation cost is 0.75, and the lowest customer
dissatisfaction is 0.25.

4.2. Analysis of Results

(1) Solving under the initial distribution demand

The distribution information and related parameters of customers are imported. The
initial distribution model is constructed and improved by the design of the ant colony
algorithm, which is solved by MATLAB software. The iteration curve of the total cost can
be obtained, as shown in Figure 8. After 60 iterations, the total distribution cost curve
is more stable, and the optimal value of the total distribution cost is obtained when the
number of iterations is 200.

The algorithm is run 200 times to obtain the optimal results. According to the results,
it is known that the cold-chain distribution center needs to send eight refrigerated trucks to
serve 43 customers, and the optimal roadmap for refrigerated truck distribution is shown
in Figure 9.

The vehicle distribution routes under the improved ant colony algorithm can be seen
in Figure 9, the vehicle numbers are represented by vehicles 1–8, and each vehicle’s specific
distribution tasks and customers are shown in Table 4.
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to serve 43 customers, and the optimal roadmap for refrigerated truck distribution is 
shown in Figure 9. 
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Figure 9. Optimal route map.

As shown in Table 4, enterprise M needs eight vehicles to complete all distribution
tasks. The first vehicle distribution route is 0-26-4-11-42-0, with a total load rate of 84%.
The second vehicle distribution route is 0-20-41-35-34-18-22-0, with a total load rate of
90%. The third vehicle distribution route is 0-12-39-16-40-25-28-0, with a total load rate
of 88%. The fourth vehicle delivery route is 0-13-32-7-3-8-17-1-0, with a total load rate
of 92%. The fifth vehicle delivery route is 0-33-43-37-2-0, with a total load rate of 78%.
The sixth vehicle delivery route is 0-31-19-5-14-10-0, with a total load rate of 86%. The
seventh vehicle delivery route is 0-9-38-23-24-30-6-0, with a total load rate of 78%. The
eighth vehicle delivery route is 0-21-27-29-15-36-0, with a total load rate of 70%.
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Table 4. Specific distribution routes of vehicles.

Vehicle Route Vehicle Load (t) Vehicle Full Load Ratio

1 0-26-4-11-42-0 4.2 84%
2 0-20-41-35-34-18-22-0 4.5 90%
3 0-12-39-16-40-25-28-0 4.4 88%
4 0-13-32-7-3-8-17-1-0 4.6 92%
5 0-33-43-37-2-0 3.9 78%
6 0-31-19-5-14-10-0 4.3 86%
7 0-9-38-23-24-30-6-0 3.9 78%
8 0-21-27-29-15-36-0 3.5 70%

This paper improves customer satisfaction as the premise for customer delivery. Cus-
tomer satisfaction is expressed by a trapezoidal fuzzy affiliation function time window to
minimize delivery costs and maximize customer satisfaction. After calculation, the results
of each distribution vehicle solution under the initial demand are shown in Table 5.

Table 5. Initial demand distribution solution results.

Vehicles Vehicle
Fixed Costs

Vehicle
Transportation Costs

Temperature
Costs

Carbon
Costs

Time Window
Penalty Costs

Total
Customer Dissatisfaction

1 350 685.36 139.98 184.66 58.5 1417.49 24.54%
2 350 871.60 158.95 259.58 0 1640.14 12.26%
3 350 689.12 143.53 187.99 0 1370.64 16.86%
4 350 887.68 162.25 284.09 166.5 1850.52 22.10%
5 350 1123.57 164.61 283.91 0 1922.09 15.29%
6 350 916.35 157.98 160.03 0 1584.36 19.44%
7 350 797.08 140.80 195.84 0 1483.72 13.69%
8 350 1210.74 162.48 208.09 91 2022.32 24.87%

Through path optimization, the total driving distance of distribution was 897.69 km,
and the total distribution cost was 13,291.27 yuan, including vehicle fixed cost of 2800 yuan,
accounting for 21.07%. Vehicle transportation cost was 17,181.50 yuan, accounting for
54.03%. The temperature cost was 1229.58 yuan, accounting for 9.25%. Carbon emis-
sion cost was 1764.19 yuan, accounting for 13.27%. The time window penalty cost was
316 yuan, accounting for 2.38%. Among the costs, the most significant proportion is vehicle
transportation, which M enterprise should focus on. The minor proportion is the time
window penalty cost, and the average customer dissatisfaction is 18.63%, proving that the
delivery time of distribution vehicles conforms to the soft time window limit and the high
customer satisfaction.

(2) Problem solving under immediate customer demand

The distribution center of enterprise M updates the customer demand information
every 20 min during the period of 3:50–4:30, and the new demand received from customers
can be added to the initial distribution route. After distribution started at 5:00, the out-
standing distribution routes were updated every 20 min in response to customer time
window adjustments. Customer 44 made a delivery request to the M enterprise distribution
center at 3:54, and customer 45 made a delivery request at 4:12. Then, customer 22 made
an urgent purchase request to the distribution center of enterprise M at 5:13. Customer
18 requested an early delivery of goods to the distribution center of enterprise M at 5:18.
The distribution path under immediate customer demand is updated using the insertion
method. The results are shown in Table 6.
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Table 6. Update results of distribution routes under immediate customer demand.

Immediate
Demand Type

Customer
Number

Receiving
Moment Vehicle Distribution Cost

(yuan)
Adjusted Distribution

Path

0 44 3:54 7 1576.46 0-9-38-23-24-30-44-6-0
0 45 4:12 1 1472.39 0-26-4-11-42-45-0
1 22 5:13 2 1897.15 0-20-22-41-35-18-34-0
1 18 5:18 2 1897.15 0-20-22-41-35-18-34-0

At 4:10, the distribution center updated the distribution route. Customer 44 had a new
distribution demand. The distribution route of vehicle 7 was changed, the load capacity of
vehicle 7 was changed from 3.9 to 4.7 t, the total distribution cost was 1576.46 yuan, and
the additional cost was 92.74 yuan.

At 4:30, the distribution center updated the distribution route. Customer 45 had a new
distribution demand. The distribution route of vehicle 1 was changed, the load capacity of
vehicle 1 changed from 4.2 to 4.8 t, the total distribution cost was 1472.39 yuan, and the
additional cost was 54.90 yuan.

The distribution center received customers’ requests 22 and 18 to adjust the service time
window at 5:13 and 5:18, respectively. The distribution center updated and re-optimized
the distribution route at 5:20 when refrigerated vehicle 2 was on its way to customer 20. The
distribution center made adjustments to optimize the customers’ points on path two that
were not delivered after customer 20. The distribution cost of route two after adjustment
was 1897.15 yuan, which increased the additional cost by 257.01 yuan.

As shown in Table 7, the loading rate of vehicle 1 changes from 84% to 96%, and that
of vehicle 7 increases from 78% to 94%, saving M enterprises’ resources while increasing
the loading rate and satisfying the needs of additional customers. Vehicle 2 adds a cost of
257.01 yuan but satisfies the immediate demand of customers 18 and 22, avoiding more
penalty costs.

Table 7. Distribution vehicle loading rate.

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 Vehicle 7 Vehicle 8

Total load rate of
distribution vehicles
under initial demand

84% 90% 88% 92% 78% 86% 78% 70%

Total load rate of delivery
vehicles under immediate

customer demand
96% 90% 88% 92% 78% 86% 94% 70%

5. Conclusions

Based on the cold-chain logistics, this paper adopts the improved ant colony algo-
rithm to solve the initial distribution path and the insert method to solve the immediate
demand of customers, aiming at the minimum distribution cost and the maximum cus-
tomer satisfaction [42,43]. Using M enterprise’s actual data as an example, this paper uses
MATLAB software to obtain the optimal distribution path. It constructs a trapezoidal fuzzy
membership function to express the relationship between customer satisfaction and the
time window and local optimization of the distribution path [44]. In addition, this paper
also considers the carbon emissions in the total cost to local optimization of the distribution
path. Based on the conclusion of this paper, we put forward the following suggestions for
developing low-carbon cold-chain logistics.

Firstly, optimize the distribution plan of M enterprise. Choosing the optimal distri-
bution path is a complex problem for M enterprise. According to M enterprise’s route
optimization result, the distribution distance dramatically affects the distribution cost. Ac-
cording to M enterprise’s route optimization result, the distribution distance dramatically
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affects the distribution cost, which requires rationalizing routes and reducing vehicle travel
time. Second, carbon emissions are related to vehicle loads, which can be delivered to
high-demand customers first, thereby reducing the cost of carbon emissions. In addition,
M enterprise should also pay attention to the daily maintenance of refrigerated vehicles to
ensure that refrigerated vehicles have better vehicle driving and cooling capacity to reduce
fuel consumption and carbon emissions while maintaining refrigeration and reducing
vehicle costs. The most important thing is to measure the cost and customer satisfaction of
distribution to ensure the long-term development of M enterprise.

Second, strengthen the service consciousness of M enterprise. Customer satisfaction
is crucial to the business and includes both satisfaction with product quality and delivery
services. For the distribution center, it includes ensuring the freshness of products and
providing customer satisfaction with the service. For M enterprise, we should take “3Q” as
the primary service idea, standardize the delivery procedure, reduce the operation time
of the intermediate link as much as possible, and respond to the customer’s demand in
time. Start with every link of the cold-chain logistics to improve the quality of the delivery
service and ensure the freshness and customer satisfaction of the products.

Third, improve the level of logistics distribution information. M enterprise must
infiltrate intelligence into each link of distribution. In the distribution of products for the
whole process, monitoring speeds up the operation process and improves distribution
accuracy and security. It can also respond to customers’ real-time needs and improve m
enterprise’s ability to deal with customers’ emergencies, such as drivers’ sudden health
problems and refrigerated vehicles’ sudden malfunctions, which cannot be predicted, so
how M enterprise deals with these emergencies is very important. It is suggested that
M enterprise install a management system and intelligent positioning in the refrigerated
vehicle, know and forecast traffic status in time, respond to customer demand quickly, and
improve its core competitiveness.

This research is helping to improve customer satisfaction and reduce carbon emissions
in cold-chain logistics distribution [45]. It is of great practical significance to realize the
maximization of environmental and economic benefits. In addition, this study adapts to
the development of the current era and meets the requirements of low-carbon sustainable
development of cities [46]. Solving the uneconomic and unsustainability problem in cold-
chain logistics distribution is helpful, and it promotes the reform of enterprises. Optimizing
cold-chain logistics distribution helps enhance the clustering and network connectivity of
logistics resources and ensures the capacity and efficiency of cold-chain logistics.

Although this paper has some reference value for studying cold-chain distribution path
optimization, the optimization problem considers the carbon emission and the customers’
immediate demand. Due to the limitations of assumptions and constraints, there are some
improvements in this paper’s speed and temperature distribution.
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