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Abstract: This paper presents a comprehensive study of Convolutional Neural Networks (CNN)
and transfer learning in the context of medical imaging. Medical imaging plays a critical role in
the diagnosis and treatment of diseases, and CNN-based models have demonstrated significant
improvements in image analysis and classification tasks. Transfer learning, which involves reusing
pre-trained CNN models, has also shown promise in addressing challenges related to small datasets
and limited computational resources. This paper reviews the advantages of CNN and transfer
learning in medical imaging, including improved accuracy, reduced time and resource requirements,
and the ability to address class imbalances. It also discusses challenges, such as the need for large and
diverse datasets, and the limited interpretability of deep learning models. What factors contribute
to the success of these networks? How are they fashioned, exactly? What motivated them to build
the structures that they did? Finally, the paper presents current and future research directions
and opportunities, including the development of specialized architectures and the exploration of
new modalities and applications for medical imaging using CNN and transfer learning techniques.
Overall, the paper highlights the significant potential of CNN and transfer learning in the field of
medical imaging, while also acknowledging the need for continued research and development to
overcome existing challenges and limitations.

Keywords: deep learning; transfer learning; medical imaging; CNN; machine learning

1. Introduction

People’s health is at the center of medical care. The amount of medical data available
today is enormous, but to benefit the medical industry [1], it is essential to use this data
wisely. Medical images are frequently requested in accordance with a patient’s follow-up
to ensure that therapy was successful, and it is a critical step in the process of medical
diagnosis and treatment [2]. In general, a radiologist examines the obtained medical
images and compiles their results in a report [3]. Based on the images and the reports
from radiologists, the referring doctor determines a diagnosis and a course of action.
The majority of medical professionals, particularly radiologists, interpret medical images.
However, human subjectivity, the wide variances among interpreters, and weariness limit
human image interpretation. Due to the limited time radiologists have to analyze an
ever-growing number of images, missed findings, lengthy turnaround times, and a lack of
quantitative data or quantification are common when reviewing cases [4,5]. In turn, this
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severely restricts the medical profession’s potential to expand the use of evidence-based,
individualized healthcare [6]. Artificial Intelligence (AI) is a broad field with a wide variety
of subfields such as natural language processing (NPL) [7], speech processing [8], machine
learning, deep learning, robotics, etc. [9]. AI is applied in various kinds of fields, such as
healthcare, agriculture, manufacturing, and the education sector [10]. Machine learning is a
branch of AI that can learn from the data itself, automatically identify the patterns in data,
and make decisions with minimum human intervention [11,12]. Over recent years, deep
learning techniques have gained a lot of attention to solve various problems, especially in
medical imaging fields [13]. Deep learning is an advanced field in computer vision. The
purpose of computer vision is to carry out multiple tasks such as image detection, image
recognition, NPL, image analysis [14], etc. A CNN is a type of artificial neural network
specially designed to handle video and image data. It takes input images, extracts them,
and classifies the output images after learning the features from the input images based on
the learning features [11]. The deep learning CNN technique is used in the majority of AI
medical image analyses, especially for the diagnosis of different types of diseases [15] such
as breast cancer, Alzheimer’s, brain tumors [16], etc. [4,17]. Deep CNN-based algorithms
have achieved promising outcomes in the analysis of medical images. Several types of TL
have been proposed for medical imaging data and have been very effective, such as Alex
Net, SPP-Net, VGGNet, ResNet, GoogLeNet, etc. [4]. The major aim of this review is to
highlight the most crucial CNN components so that researchers and students may easily
gain a comprehensive understanding of CNN and transfer learning. This article will assist
individuals to learn more about recent advancements in the discipline, which will promote
DL research. The following list outlines our contributions:

• This review aids in the comprehension of CNN and transfer learning techniques
among researchers and students.

• We simply describe the major issues of traditional ML and how DL-based techniques
like CNN can come to the rescue and play an important role in diagnostic analysis.

• We describe in-depth the ideas, theories, and cutting-edge architectures of CNN, the
most well-known deep learning technique.

• A literature review is provided in this paper to give an overview of related research
work done on the use of CNN and TL techniques.

• We discuss the difficulties that deep learning-based techniques currently face, such as
the scarcity of training data, overfitting, and vanishing gradient problems.

• The strategies for choosing the right TL-based technique for a problem are discussed.
• We also present a list of medical imaging modalities used in training the model, and

we describe computational resources such as GPU, CPU, and TPU by contrasting how
each tool affects deep learning algorithms.

CNNs’ application to medical image processing is first discussed in this paper. The
difference between traditional ML and DL-based algorithms and the analysis of medical
images are presented in Section 2. Then we give a detailed overview of the architecture of
CNN in Section 3. The corresponding work in the field of diagnosing disease using medical
images, including CT, MRI, fMRI, PET, X-ray, and ultrasound, is discussed in Section 4. We
also described the significance and importance of transfer learning techniques and explain
each with their potential benefits in Section 5. Finally, we discuss the possible problems and
predict the development prospects of CNN-based techniques in medical imaging analysis.

2. Imaging Modalities for Analytics and Diagnostics

To create an image, several methods are used. Examples of these measurements are
radiofrequency signal capacity in an MRI, sound pressure for ultrasounds, and radiation
absorption in X-ray imaging. In a digital image, one measurement is used to determine
each image point, while in multi-channel images, several measurements are gathered [18].
To create diagnostic images, a wide variety of imaging modalities are employed, such as
computed tomography (CT), X-ray, magnetic and functional resonance imaging (MRI and
fMRI) [19], and positron emission tomography (PET) scans [4,5]. Common DL applications
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using medical imaging include image classification [11], segmentation, synthesis, and
regression [12,20]. Figure 1 depicts various imaging modalities used [21]. In the initial
phase of using more precise imaging methods to halt the spread of disease, medical imaging
techniques are crucial as an aid to early diagnosis in the treatment or eradication of many
medical disorders.
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3. Convolutional Neural Network and its Background

David Hubel and Torsten Wiesel, two neurophysiologists, did experimentation in
1959 and eventually published their findings in a work titled “Receptive-Fields of Single-
Neurons in cat’s straits cortex” [22]. They defined how the neurons in a cat’s brain are
organized in a tiered pattern or layered form. These are the layers that can learn to detect
visual patterns with the help of local features, which are extracted first, and for a higher-
level representation, the extracted features are then combined [23]. Consequently, this
concept is effectively becoming one of deep learning’s core principles. In 1980, another
researcher by the name of Kunihiko, who was motivated by the work of T. Wiesel [22],
proposed a “Neocognitron”. This work proposed a multi-layered neural network for
the hierarchical detection of visual patterns learned from data (learning-without-teacher),
which is known as a self-organizing neural network. [24]. This design then became the first
CNN theoretical model. The Neocognitron develops the ability to classify and accurately
detect patterns based on their shape distinctions. Any patterns that we humans consider to
be similar are also classified as such by this proposed model. CNN, commonly known as
ConvNet, is one of the common types of Artificial Neural Network (ANN) [25] that comes
under the supervised method category. This method is known for its ability to discover
and interpret patterns. This pattern detection brings up the usefulness of CNN for image
analysis [26]. A ConvNet is a series of layers in which each layer performs some unique
functions. Furthermore, these layers are usually classified into different categories [27]. The
raw data is stored in the first layer, called the input layer. A convolutional layer is the second
layer, which is responsible for calculating the output volume by performing a dot product
between the image patch and all of the filters, followed by another important function
known as activation. The mathematical function is then applied to every element of the
convolution layer’s output. The next layer comes in to help in reducing the computation
costs by making the previous layer’s output memory efficient. It is known as the pooling
layer. Finally, once the pooling layer computation is done, it will pass its output to the
last layer and output the computed 1-D array class score [26]. Two primary tasks must be
accomplished when training a deep learning model:

• Forward propagation: To train a neural network, one must first provide it with an
input, and then, in light of the outcomes of that processing, an output is produced.
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• Backward propagation: Next, the model uses the backpropagation technique, such
that the weights of the neural network are modified in response to the error that was
obtained in the forward propagation.

3.1. Important Elements of CNN

In this part of the article, we discuss the fundamental components of a CNN in detail
with their role in the whole architecture:

3.1.1. Convolutional Layer

The convolution layer, as its name suggests, is crucial to CNN’s operation. Where
the majority of the calculation is concerned, it is the core unit of a CNN. Since digital
image processing is concerned, convolution operations are the most widely used [19].
Convolutional layers are where filters (also known as the set of kernels) are applied or get
convolved with the original input images, which can be n-dimensional metrics to generate
a feature map as an output [20]. Here, the number of kernels and the size of the kernels
are the most critical parameters, which refer to the size of the filter, as shown in below
Figure 2. The following mathematical formula is used to determine subsequent feature
map values [20], where the kernel is denoted by h and the image input is indicated by f.
The result matrix’s row and column indexes are denoted by m and n.

G[m, n] = ( f x)[m, n] = ∑
j

∑
k

h[j, k] f [m− j, n− k] (1)
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3.1.2. Pooling Layer

In CNN, the convolutional operation is applied to learned filters to the input image
to summarize and show the presence of those features in the given. This is done in a
systematic way to build its feature maps. The feature map is generated by the convolu-
tional layer’s output. It has one limitation due to recording the exact location of features
in the input. Therefore, in the input image, any small movement that happens to the
position of a feature, such as re-cropping, rotation, etc., will cause changes in the feature
map. A common solution to this problem can be achieved in the convolution layer using
downsampling by altering the convolution stride over the image [28]. This is where the
usage of the pooling layer begins. It is nothing but a common and robust approach to the
same problem. In a short pooling layer downsample, the previous layers’ feature map
and pooling operations aid in the creation of an invariant representation for small input
translations [29]. Additionally, there are several functions used for specifying the pooling
procedure; the most common functions are the following [30]:

(a) Average pooling: This is used when the average value is desired for each patch on the
feature map.
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(b) Maximum pooling: This is commonly known as Max-pooling, and is used when the
maximum value is desired for each patch on the feature map [30]. Below Figure 3,
illustrate the working of average and maximum pooling.
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3.1.3. Fully Connected Layers

Immediately following the completion of feature extraction and consolidation by the
convolutional and pooling layers, another layer comes in, which is known as the fully
connected layer [31]. This component is connected to the final node of each network to
flatten out the output of the previous layer. Finally, this layer returns the probability of
class predictions by building non-linear feature combinations. There are various non-linear
functions, such as activation functions, ReLU, and Softmax.

3.2. Important Parameters and Hyperparameters for Building CNN

The following are the important parameters with a high level of description.

• Kernels: The kernel is nothing but a matrix that is used to traverse over the input
images to perform a dot product to extract features [32]. By using the stride value, the
kernel can move by columns of pixels based on the number assigned to the stride.

• Biases: Before passing the output values through an activation function, the bias is
used to adjust the scaled values. For example, in a neural network, the activation
function receives an input ‘x’ which is multiplied by the ‘w’ weight. Therefore, adding
a constant bias to the input will enable you to shift the activation function [33].

• Padding: When a kernel is used with image processing, the image is altered each time
a convolution is carried out on the input data. The image shrinks and thus this can be
done only a certain number of times before the input image completely disappears [34].
As a result, some of the information contained in the image can be lost. The problem
is that when the kernel moves across the image there is a significant impact on the
pixels in the outskirts of the image, which are much smaller when compared to the
center pixels of the image [35]. Therefore, a more accurate analysis of the image can be
achieved by the use of padding, which is added to the image’s outer frame to provide
more room for the filter to cover the image.

• Stride: Stride is another so-called hyperparameter in the convolutional layer that
specifies the pixel count the kernel shifts over the input image matrix. For instance,
when two is set as the stride, then the filter or kernel moves two pixels at a time. When
three is set as stride, then the filter moves three pixels at a time, and so on [36].

• Dropout for regularization: This is a powerful yet simple regularization technique
for deep learning models [37], and CNNs usually have the habit of overfitting. When
there are a large number of nodes or neurons in a full-connected layer, it is more likely
that co-adaptation occurs. Co-adaption simply means when many neurons in a single
layer extract very similar or the same hidden features from the given input data. This
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usually happens when two different neurons’ connection weights are identical [38].
This technique works based on selecting neurons randomly and ignoring them during
training; they will lose their contribution for further processes.

• Learning Rate: The learning rate is a very important parameter in CNN which defines
how swiftly a network updates its parameters during backpropagation [39]. Keeping
the learning rate low makes the convergence smooth, but the learning process slows
down. However, keeping the learning rate larger may speed up the process of learning,
but may prevent convergence.

Activation Functions: Nonlinearity is introduced to models via activation functions,
allowing deep-learning models to learn nonlinear prediction bounds. In artificial neural
networks (ANNs), activation functions are used to transform an input signal into an output
signal. This output signal is then used as input by the subsequent layer in the stack. The
most common activations used in CNN are described below:

Sigmoid activation function: Because it is a non-linear function, it is the most often
utilized activation function. The sigmoid function changes data in the 0 to 1 range and it is
widely used for binary classification. It can be summed up as follows [40]:

f (x) =
1

e−x

Tanh activation function: It is a function known as the hyperbolic tangent. The Tanh
function is comparable to the sigmoid function; however, it is symmetric concerning the
origin [40]. This activation function is smoother, and it is a zero-centered function with a
scale that goes from −1 to 1, therefore, the function’s output is given as [41]:

f (x) =
(

ex − e−x

ex − e−x

)
In contrast to the sigmoid function, the Tanh function became the favored function

because it provides higher training performance for a model with multiple layers [42,43].
ReLU function: ReLU stands for the rectified linear unit; it is a non-linear function and

very popular in ConvNets. Since all the neurons are not going to be activated at the same
time, but rather a small number of neurons are activated at a time, the ReLU function is
more efficient than others [40]. According to equation 1, the output of ReLU is the value
that is greater than either zero or the value that was fed into the model. When the value of
the input is negative, the value of the output is equal to 0. When the value of the input is
positive, the output value will be equal to the value of the input [44].

f (x) = max(0, x)

An improved version of the ReLU activation function came up after ReLU, where
instead of specifying the ReLU function’s value as zero for x (negative values), rather it is de-
fined as an x having an extremely insignificant linear component. It can be mathematically
stated as [40]:

f (x) = 0.01x, x < 0 f (x) = x, x ≥ 0

Softmax activation function: For binary (0, 1) classification, the sigmoid function is
used, but to deal with multiclass classification Softmax is used. The Softmax function
returns a probability for each data point of all individual classes [40]. Therefore, in a
deep neural network, when we want to work with a multiclass classification problem, the
output layer of the neural network will have an identical amount of network neurons that
correspond to the number of target classes. The formula is stated as follows [13]:

σ(z)j =
ezj

∑K
k=1 ezj

f or j = 1, . . . ..K
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Figure 4 represents the process for these connected layers.
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conv-layer are used in extracting feature maps from the input. Each pooled layer reduces the image
size by half. Following the completion of each layer of pooling, the number of feature mappings and
conv-weights are both increased by one. With the activation function, the last layer of the feature
maps is fully connected to data nodes. Using a function, these nodes are then linked together to form
a single value. This value was fitted to be the label defined in the training set and finally returned a
value range of 0 and 1 [45].

4. ConvNets over Traditional Machine Learning

The process of machine learning involves the use of algorithms to analyze data, draw
conclusions from that analysis, and make decisions based on those conclusions. In the
case of DL, it uses multiple layers to create an ANN [7]. Each layer provides different
information about the data which is fed to them. To perform classification work using
machine learning techniques, several preprocessing steps, such as feature selection, [46],
feature extraction [47], and classification are required [48]. Even the selection of features
can have a significant impact on the efficiency gains achieved through various machine-
learning strategies. DL techniques can perform automated feature sets for various tasks.
Deep learning has simplified the improvement of object detection, image super-resolution,
image classification, and image recognition fields [49].

Typical healthcare applications of classification tasks of images include Alzheimer’s
disease (AD) classification using MRI [50], dermatological identification of skin condi-
tions [51], breast cancer diagnosis using histopathological images [17], and diagnosis of
eye diseases in the field of ophthalmology (such as diabetic retinopathy [52], corneal dis-
eases [53], and glaucoma [54]). With advances in 2021, DL has become a key popular tool for
the automatic detection of COVID-19 and classifying healthy and not-healthy individuals
using X-rays and CT scan images [50].
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4.1. The Problem with Traditional Neural Networks

The main significant distinction between the traditional ANNs and CNNs is the
primary usage of ConvNets in the field of pattern recognition, in particular of medical
images. This usage enables the developers to encode features of input images into the
architecture and makes the convolutional neural network more beneficial for image-specific
tasks, while also lowering the number of parameters needed to set up and build the model.
Traditional neural networks are known as multilayer perceptrons (MLPs). MLPs have
several limitations, particularly when it comes to the processing of images [55]. For each
input, MLPs are going to use a single perceptron, which means if we input an RGB image,
each pixel is going to be multiplied by three since there are three channels in RGB. Therefore,
here is where the problem arises; the number of weights to be used in each perceptron
rapidly increases for large images, so it becomes unmanageable for the model. There are
approximately 187,000 weights to train for a 250 × 250-pixel image with three channels.
Hence, overfitting can happen, and training becomes difficult [56].

4.2. Feature Extraction

Feature extraction entails the process of obtaining a high level of patterns from raw
pixel values to seize the uniqueness of the distinction between the various categories that
are being used. The extraction of these features is carried out without the presence of any
supervision (unsupervised manner). This indicates that the information that is extracted
from the pixels of the image has nothing to do whatsoever with the classes of the image,
and, in CNN, the convolution layer is the backbone of feature extraction [57]. This allows
for the sharing of parameters. Following the extraction of the features [58], a classifier is
then trained using the images and the labels that are associated with them, for example,
logistic regression, random forests, decision trees, support vector machines, etc. This
pipeline has a problem due to the fact that the feature extraction cannot be changed based
on the classes and images. So, no matter what type of classification technique is used, the
accuracy of the model is severely compromised as a result if the chosen feature does not
give enough information to tell the categories apart [59]. Picking various feature extractors
and clubbing them ingeniously to achieve better feature extraction has been a recurrent
subject among state of the art studies. However, this necessitates an excessive number
of heuristics and tedious manual work to adjust settings depending on the domain. The
main philosophy behind deep learning is that there is no predetermined way to extract
features (no hard-coding) from data [60]. The CNN learns to extract data by differentiating
representations from the input images and to categorize them based on supervised data, all
inside a single integrated system.

4.3. Parameter Sharing

With ConvNets, a large dataset like ImageNet can be used to train the whole network
from scratch [61]. ImageNet is an ongoing project that has so far collected 14,197,122 images
in 21,841 different categories. Sharing parameters cuts down on the total parameters in the
network and shortens the training time required for the network [59].

5. Literature Review

For the last few years, researchers have been using CNN-based models to extract
unique and useful features for the diagnosis of various diseases, including but not limited
to brain cancer, heart disease, Alzheimer’s disease (AD), COVID-19, Parkinson’s disease,
breast cancer, etc. [62], by using medical images. According to previous studies, using
convolutional neural network-based models achieved a good level of accuracy when
compared with traditional machine learning and volumetric techniques that are manually
performed by physicians. Therefore, this section summarized the CNN-based methods
using medical images.

In the Alexander et al. [63] study, a CNN model using MRI and diffusion-tensor
imaging (DIO) was used for the classification of AD patients. According to their study, the
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classification performance demonstrates that the size of the hippocampal region of interest
(ROI) does not matter when bigger ROIs are combined with using CNN architecture for
the classification. Using a six-layered convolutional neural network with 48 × 48 × 48 ROI
with a data fusion model achieved a good accuracy of 96.7% for their case (AD-Normal
Control).

The Liu et al. [64] study first segmented the MRI image into two segments, grey and
white matter. Then they used a Multiscale ConvNet (MSCNet) for the diagnosis of AD.
According to their study, white matter is more effective for the detection of AD than gray
matter. In terms of accuracy, the MSCNet has a higher performance level than ResNet-50
in the NC and MCI classes of grey and white matter, respectively; however, the standard
deviation is lower in ResNet-50. The accuracy of the MSCNet model with grey and white
matter is 98.85% and 98.11%, and the ResNet-50 model accuracy is 96.01% and 95.88%,
respectively. Therefore, this study shows that with lower computational power and fewer
parameters, the CNN-based MSCNet model performs well for the medical image dataset.

Ajagbe et al. [65] wrote an article on their use of Deep CNN and transfer learning
models (VGG-16 and VGG-19) for the diagnosis of AD with the help of MRI images.
However, in terms of six performance metrics such as Area Under the Curve (AUC),
accuracy, F-1 score, precision, computational time, and recall, VGG-16 performed best in
one, VGG-19 in three, and CNN best in two metrics. The limitations of this study are the
high computational power and the lack of a self-created dataset.

In the study by Villa-Pulgarin et al. [66], the focus was to classify skin lesion cancers
by using CNN-based models DensNet-201, Inception-ResNet-V2, and Inception-V3. In
their work, they tested the models with different workflows, fine-tuning the optimization
and using data augmentation. The best results of their model were obtained by using
the HAM10000 dataset, with an accuracy of 98% using the data augmentation stage,
and 93% by using the ISIC 2019 dataset using the optimized DenseNet-201 model. El-
Din Hemdan et al. [67] presented the COVIDX-Net model for the earlier diagnosis of
COVID-19 patients based on seven different CNN-based architectures: MobileNetV2,
DenseNet-201, ResNetV2, InceptionV3, Xception, Visual Geometry Group (VGG-19), and
InceptionResNetV2. According to their results, the DenseNet-19 and VGG-19 models
performed well in determining which cases were COVID-19 negative and which were
positive, and the Inception model performed the worst, with an accuracy of 50% and an F1
score of 67 for normal and zero for COVID-19 cases.

The Horry et al. [68] study aimed to focus on important features by removing noise
from medical images for the detection of COVID-19 disease. The Horry et al. study
selected the VGG-19 with transfer learning in order to classify NC and pneumonia cases
accurately. However, the authors reported that the VGG-19 model performed best, with a
precision of 100%, using ultrasound images compared with X-ray and CT images. It is a
very interesting finding that the pre-trained method tuned very well for the ultrasound
data samples, which are very noisy and difficult to interpret by the human eye. Neal Joshua
et al. [69] proposed a 3D-CNN architecture for the detection of nonlinear 3D information
of the lung nodule using CT scan images. Moreover, they used gradient class activation
for visualizing the internal structure of the CT images to get more information. From their
lightweight proposed model, they achieved a very good classification accuracy of 97.17%
using gradient-weighted class activation when compared with existing AlexNet 2D-CNN
and AlexNet 3D-CNN models.

Li et al. [70] used the CNN model for the classification of lung image patches with
interstitial lung disease (ILD) patterns. Their proposed architecture can correctly identify
the features of the image from the lung patches of ILD. The authors have compared
their classification results with three different methods of feature extraction: the rotation-
invariant local binary pattens (LBP) feature with three resolutions; the Scale-Invariant
Feature Transform (SIFT) feature with a key point located at the patch center; as well
as feature learning without supervision through the use of the unsupervised restricted
Boltzmann machine (RBM). These three techniques are classified by using SVM. However,
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the proposed automatic CNN model did not use any extra classifier such as SVM, as
their classifier model is trained by the three fully connected layers. Therefore, using the
ANN model for the classification training has the advantage that the potential to use the
backpropagation method to fine-tune the parameters in each of the layers may achieve a
more accurate final classification approach. Out of all three techniques, their customized
CNN model performed the best. A multiclass CNN architecture using MRI images was
used for the detection of brain tumors. The presented model achieved an accuracy of
99% for classifying the four different classes (glioma, tumor, meningioma, and pituitary
tumors). The primary objective of this research was to get a faster learning rate with higher
classification results while comparing with traditional deep learning models [71]. Yildirim
et al. [72] used the CNN-based MA_ColonNET model for identifying colon cancer using
colon histopathological images. The proposed model used 45 layers for classifying two
classes of colon cancer with an accuracy rate of 99.75%. Additionally, this CNN-based
model is applicable for pre-diagnosis purposes in non-specialist locations and reduces
the workload pressure of experts, which can help them to avoid mistakes. Ravi et al. [73]
used the penultimate layer (global-avg-pooling) of CNN-based efficient net pre-trained
models for the extraction of features, and principal component analysis (PCA) was used to
reduce the dimensionality of extracted features. After that, the feature fusion technique
was used to combine the features of different data and pass them into the stacked-meta
classifier. In the first stage, a stacked meta classifier employed the SVM and random forest
(RF) algorithm for prediction. The results of this stage were then passed on to the second
stage, where they were classified using logistic regression according to whether or not they
contained COVID-19. The proposed model produced an overall result that achieved an
accuracy of 0.9946 while maintaining a misclassification rate of 0.0054 for the CT data, and
an accuracy of 0.9948 with a 0.0052 misclassification rate for the CRX data. This indicates
that the proposed efficient net models are capable of classifying new COVID-19 patients
using CT and X-ray images.

A VGG-19 model was trained on 3,797 chest X-ray images [74] for classification of
Covid19, pneumonia and healthy cases. An accuracy of 97.11% on the test dataset was
obtained. In addition, for further study, the original images and their matching categories
were then stored in a Mango DB database.

Another study [75] assessed how well the transfer learning-based CNN models VGG-
16, ResNet-50, and Inception-v3 predict the presence of brain tumor cells. The models
were trained and tested using a dataset of 233 MRIs. Accuracy was used to measure
performance, and the findings revealed that the VGG-16 model gave results that were
extremely accurate as compared to the other models. The trainable data for the VGG-
16 model, which employs 3 × 3 convolution kernels and 2 × 2 max-pool kernels and
includes 138 million hyperparameters, was decreased by 44.9 percent. As a result, learning
rates increased and overfitting was decreased. The ResNet50 model is a pretrained CNN
model that permits training with more convolution layers without increasing training
error rates. The Inception-v3 model uses parallel Inception modules to reduce depth in
convolution layers.

EfficientNet, GoogLeNet, and XceptionNet were integrated [76] in a study to classify
patients as positive for COVID-19, pneumonia, or tuberculosis, or healthy. For a binary
classifier the accuracy was 98%, while for multiclass, the accuracy was 99%. The dataset
used for training and testing was taken from two sources. The authors also tried to keep
the possible false predictions to a minimum, and hence obtained a better accuracy and
generalized model. Another parameter was for no false positives, to have the model
maintain a high specificity rate, which keeps the model much more reliable.

For diagnosing monkeypox, the author uses generalization- and regularization-based
transfer learning techniques. While ResNet-101 had the best result for multiclass classi-
fication, with an accuracy ranging from 84 percent to 99 percent, the proposed strategy
paired it with Extreme Inception, which produced an accuracy ranging from 77 percent to
88 percent in binary classification trials.
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Transfer learning has been shown to be an effective technique for leveraging pre-
trained CNN models to improve the performance of medical image analysis tasks. CNNs
have demonstrated high accuracy and robustness in identifying and classifying various
medical conditions from medical images. Overall, these findings underscore the crucial
role that transfer learning and CNNs play in advancing medical imaging diagnosis, and
further research in this area has the potential to significantly improve patient outcomes.

As shown in Table 1, CNN-based models are successful in applications that handle
multiple modalities for various tasks involving medical image analysis, such as detection
and classification tasks and computer-aided diagnosis. The CNN-based model will be an
essential component in the design of upcoming medical image analysis systems, regardless
of the number of data, classes, and the deep CNN model used. When compared to other
techniques used in comparable application domains, deep ConvNets have demonstrated
outstanding performance in the domain of medical image analysis. On the other hand,
transfer learning involves leveraging pre-trained CNN models that have been trained on
large datasets, such as ImageNet, and fine-tuning them for the specific medical imaging
task at hand. Transfer learning has been shown to be an effective technique for reducing
the amount of data needed to train a CNN. This is because pre-trained CNN models have
already learned general features that are useful for a wide range of computer vision tasks,
including medical imaging diagnosis. From a computational perspective, using transfer
learning with CNNs can significantly reduce the time and resources needed to train a CNN
from scratch, as well as improve the performance of the network on the target task. This is
because transfer learning allows for the efficient transfer of knowledge from pre-trained
models to new tasks, thereby reducing the amount of data and computation needed to
achieve high accuracy. While these techniques show promising results in the medical field,
there are still some challenges and limitations like a lack of diversity in the training data.
CNNs and transfer learning techniques rely heavily on large and diverse datasets to learn
relevant features and patterns. The interpretability of learned features where CNNs and
transfer learning techniques are involved is often considered as a “black box,” since the
features learned by the network are difficult to interpret by medical experts. Another factor
can be the limited availability of annotated medical imaging data.

Table 1. Some of the studies that used CNN-based methods for medical images.

Authors Modalities Methods Number of
Images Content Accuracy

Alexander et al.
[63] sMRI, DTI CNN

ADNI (Normal
data—214,

Augmented
data—3240)

Hippocampal ROI
AD-NC—96.7%,
AD-MCI—80%,

MCI-NC—65.8%

Liu et al. [64] 3D-MRI MSCNet

GM-AD—160,
MCI—200,
NC—160

WM-AD—160,
MCI—200,
NC—160

Grey matter and
white matter

AD-NC—98.96%,
AD-MCI—95.37%,
MCI-NC—92.59%
(GM—98.85% and

WM—98. 11%)

Ajagbe et al.
[65] MRIs CNN, VGG16,

VGG-19 Kaggle (6400) NA
4 classes-CNN—71%,

VGG16—77%,
VGG-19—77%

Villa—
Pulgarin et al.

[66]
Dermatoscopic

DenseNet versin 201,
Inception-ResNet

version 2, Inception
version 3

Human Against
Machine

(HAM10000)
Normal

data—10015
Augmented
data—42925

8 classes—Akiec,
bkl, bcc, mel, df,
nv, vasc, and scc

DenseNet—98%,
Inception

ResNet—97%,
Inception—96%
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Table 1. Cont.

Authors Modalities Methods Number of
Images Content Accuracy

EI—Din
Hemdan et al.

n.d. [67]
X-ray COVIDX-Net

Total—50
(Normal—25,
Positive—25)

NA

MobileNetV2—60%,
DenseNet-201—90%,

ResNetV2—70%,
InceptionV3—50%,

Xception—80%,
VGG-19—90%,

InceptionResNetV2—
80%

Horry et al.
[68]

X-ray,
ultrasound, and

CT scan
VGG-19

Curated dataset—
729 (X-ray),

746 (CT), 911
(ultrasound)
Augmented

dataset—11,680
(X-Ray), 12,000

(CT), 10,880
(ultrasound)

Lung

VGG-19—Precision—
100% (Ultrasound),
83% (X—Ray), 84%

(CT scan)

Neal Joshua
et al. [69] CT 3D-CNN with

Grad-CAM images
LUNA 16

database—888 Lung nodule 3D-CNN—97.17%

Li et al. [70] HRCT CNN

Total
samples—16,220
(92 HRCT image
dataset, 4348 N
patches, 1953 G
patches, 1047 E
patches, 2591 F
patches, 6281 M

patches)

Lung images
CNN—

Precision—76%
Recall—77.4%

Tiwari et al.
[71] MRIs CNN

Total—3264 (MRIs)
Four classes
(training &

testing)—glioma—
826 and 100,

meningioma—822
and 115, no

tumor—395 and
105, pituitary
tumor—827

and 74.

Brain images CNN—99%

Yildirim et al.
[72]

Histopathological
images MA_ColonNET

Total—10,000
Two classes (Colon
adenocarcinoma—
500, Colon benign

tissue—9500)

Colon images MA_ColonNET—
99.75%

Ravi et al. [73] CT scan and
Chest X-ray EfficientNet

Total–
CT—8055

(train—5638,
test—2417);
CXR—9544

(train—6680,
test—2864)

Chest EfficientNet—99%
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Table 1. Cont.

Authors Modalities Methods Number of
Images Content Accuracy

Soarov et al.
[74] X-ray Chest VGG-19

COVID-19 (1,184
images)

Pneumonia (1294
images)

Healthy (1319
images)

Chest
97.11% accuracy,

97% average precision,
97% average recall

Srinivas, C
et al. [75] MRI scans

Classfiers: VGG-16,
Inception-v3,

ReseNet50

tumor: 158
malignant tumor:

98
Brain

VGG—16 accuracy
0.96

Inception-v3 0.78
ResNet50x—0.95

N. Kumar et al.
[76] X-ray

Binary and
Multiclass

Classification

Two datasets:
Source 1: null
Source 2: 9300

divided for each
four class

Chest

Multiclass accuracy
99.21%

Binary accuracy
98.95%

6. What is Transfer Learning?

Transfer learning is a method of learning where a model learns about one problem
before this serves as the starting point for another task. This is a suitable approach for
problems when a procedure near the primary issue already exists and the related task
requires a lot of data [77].

Transfer learning uses the technique of feature extraction from a pre-trained model;
this eliminates the need for developers to start over when training a model. A TL model is
typically trained on a large dataset (for example, ImageNet) [78] and the related parameters
obtained from the trained model can then be used with a custom neural network for any
other related application. These types of models can be used directly for predictions on new
tasks or in any other related application training processes of the model. For instance, in the
process of image classification, the model, such as an ANN, which is used for prediction will
be trained and learned with a large number of images or datasets of the specific domain [79],
like dogs and cats. Model weights are one option for the first step in the process. The
traits which the machine has previously mastered for a more extensive mission, such as
retrieving shapes, patterns, and lines, are also useful for different objectives.

One more problem to consider with traditional neural networks is that when we
apply these kinds of models in clinical practice, the model is likely to fail due to unseen
data, which is nothing but data that is not used while training the model. Therefore, the
capacity to generalize to previously encountered clinical data is still a major shortcoming
of these algorithms. Another shortcoming is when the data is limited; we know that the
running performance of a deep network is impacted by the amount of data. One way
to overcome this shortcoming is to collect more data, specifically looking for data that
is exactly supervised data. Hence, there are transfer learning techniques that may be
considered as choices. Rather than starting from scratch, we can use an existing network
to train a new one; LeNet-5, AlexNet, VGG-16 Net, Inception Net ResNet, and DenseNet
have been widely used as pre-trained networks for the classification of images in medical
domains. All these architectures were trained on the well-known dataset (ImageNet) [80]
consisting of 1000 object category classifications [81]. There are more than a million images
in ImageNet’s training set, around fifty thousand in its validation set, and one hundred
thousand in its test set. [82]. These models not only reduce training time but also reduce
generalization errors. Table 2 shows the main differences between traditional ML and
transfer learning.
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Table 2. A brief description of traditional ML vs transfer learning.

Traditional ML Transfer Learning

1. Isolated, single task learning
2. Knowledge is not retained or

accumulated. Learning is performed
without consideration for knowledge
learned from other tasks.

1. The learning of new activities is
dependent on previously learnt ones

2. The learning process could be more
efficient, more accurate, or need fewer
training data sets.

6.1. LeNet5

In 1889, Yann LeCun et al. published a paper that proposed a technique for document
recognition which is called gradient-based learning [83]; their work described LeNet-5,
which was probably the first widely recognized and effective implementation of CNN.
The author trained the model for the recognition of handwritten characters based on a
standard famous dataset called MNIST (Modified National Institute of Standards and
Technology dataset). As a result, a significant classification result of 99.2% accuracy and
a low error rate was achieved. The LeNet-5 architecture receives the input image as a
grayscale 32× 32 image size, and the model is a composite of seven layers, including layers
of convolution and average pooling followed by a layer that is fully connected. Figure 5
shows the comparison transfer learning and transfer machine learning. Figure 6b depicts
the LeNet-5 architecture. Interestingly, in LeNet-5, the filters used for capturing feature
maps are increased as the network progresses in depth [81].
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Key facts:

• This network is very easy to understand and served as a good introduction to the field
of neural networks. Character recognition works well.

• Due to the shallowness (not deep enough) of the model, it has a difficult time searching
for all features, leading to models with poor performance.

• This model does not work with color images.

6.2. AlexNet

In 2012, another researcher named Alex Krizhevsky, and his co-workers developed
a model known as AlexNet [84]. The paper proposed and discussed the deep ConvNets
for the classification of ImageNet. This was done due to a competition in 2010 called the
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ILSVRC (ImageNet Large-Scale Visual Recognition Challenge) [85], whose purpose was to
detect and classify objects. This was where, later on, the importance of image classification
using CNNs became the buzzword. AlexNet is like LeNet but much larger and with a
greater number of filters for each layer. Another major change in AlexNet was to replace
the traditional S-shaped functions, like Tanh or logistic, with new nonlinear functions called
ReLU (rectified linear), which are placed after every convolutional layer. Additionally, in
the output layer of AlexNet, another activation function called Softmax is placed, Figure 6c
shows AlexNet architecture. Moreover, this model uses the max-pooling technique instead
of average pooling, and a new method called dropout has been utilized between the fully
connected layers to address overfitting and enhance generalization error. The AlexNet
architecture takes a fixed input of 224x224x3 size and is built upon eight layers. In total,
five layers go to convolutional operations and three layers go to fully connected operations.

Key facts:

• The first significant CNN model to use GPU training, which leads to faster training,
was AlexNet.

• In comparison to another model like LeNet, the AlexNet model has eight layers and a
deeper structural design, making it better able to extract important features. It also
performed admirably for color images.

• As compared to future models, it takes longer to obtain results with high accuracy
with AlexNet.

6.3. VGG Net

In 2014 [85], two Oxford researchers at the Visual Geometry Group lab came up with
an idea of a much deeper CNN with better performance named VGG; this again happened
through the ILSVRC 2014 [57] competition. There are different variants of the VGG net
architecture, such as the VGG-19 and the VGG-16. Their names refer to the number of
learned layers in the architecture. In VGG, before max pooling is performed, several
convolutional layers are stacked together, such as two, three, and even four. The reason for
stacking the conv-layers together is to define a block. The employment of many tiny filters
is the first significant change that has a de facto standard; this CNN utilizes filters of size 1
× 1 and 3 × 3, and a stride of one, as opposed to LeNet-5′s large filters. The number of
filters rises with the mode’s depth, starting at 64 and increasing to 128, 256, and 512 filters
after extracting features from the model. Figure 6a represent the architecture of VGG Net

Key facts:

• VGG is simple to comprehend and explain.
• A baseline of about 80 percent is recommended for classic problems like classifying

cats and dogs.
• A longer inference time is caused by the greater number of weight parameters.

6.4. Inception Net

Christian Szegedy et al. published a paper titled “Going Deeper with Convolu-
tions” [85], which described another complex and heavily engineered architecture named
the Inception network. The key goal of the author was to use a lot of techniques to increase
performance in terms of precision, accuracy, and speed. The network’s ongoing evolution
resulted in the production of multiple versions, such as Inception v1, v2, and v3 [86]. Each
new version is a step forward from the preceding one [81]. The Inception module is the
major innovative element in this network, the model architecture is given in Figure 7a. It is
nothing but a parallel block of convolutional layers consisting of 3 different kernel sizes
such as 5 × 5, 1 × 1, and 3 × 3, with a max-pooling layer of 3 × 3. Further, all the results
are concatenated. Version 3 of Inception, which is an optimized and upgraded version
of Inception, is made of 42 layers and, compared to other versions, it has a lower error
rate [81].

Key facts:
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• As a result of applying multiple convolution filters to the same input in the case of
multi-level feature extraction, computational costs are reduced.

• Increased performance can be achieved on this CNN.
• Inception model can be train more quickly than the VGG model and VGG model is

relatively bigger in size as compared to LeNet-5.

6.5. ResNet

Image recognition is further considered using deep residual learning by Kaiming
He et al. in 2016 [81]. The ResNet152V2 is built with a total number of 152 layers, and
the concept of residual blocks in the network that utilize shortcut connections is crucial
to the mode’s construction. A residual block is a combination of two conv-layers with
an activation function, such as ReLU. The problem of vanishing gradient which exists in
deep networks is solved by ResNet skip-or-shortcut connections by letting the gradient
flow through an additional path (shortcut path) [81]. The main difference between ResNet
v1 and v2 is that the batch-normalization technique is applied before each weight layer.
Architecture of Resnet is depicted in Figure 7a.

Key facts:

• Skip-or-shortcut connections aid in addressing the issue of vanishing gradients.
• The structure increases the training pace.
• ResNet provides greater accuracy, particularly in classification.
• It makes an effort to distinguish between learned features, and if a learned feature is

not relevant to the decision at hand, its weight is reduced to zero.
• Since it is incorporating skip connections between layers that may take dimensionality

into account, it also increases architectural complexity [78].

6.6. DenseNet

Gao Huang and colleagues developed the DenseNet in 2017, which consists of layers
that are densely connected to one another and are all associated with one another. This
method helps to reuse features, because each layer obtains its input from the levels that
came before it and produces its feature mappings to be used by the layers that come after
it. Additionally, each layer provides its input to all subsequent layers. The structure of
DenseNet includes two dense blocks with two transition blocks in between each pair of
dense blocks. Figure 8 shows the DenseNet architecture. [87]. The following are important
concepts in DenseNet:

1. Growth rate: This determines the number of feature maps that are output into indi-
vidual layers within dense blocks;

2. Dense connectivity: Dense connectivity refers to the fact that within a dense block,
each successive layer is able to obtain input feature maps from the layer below it [88];

3. Composite functions: The following is an explanation of the order in which operations
take place within a layer. First, we begin with batch normalization, then move on
to applying activation functions (e.g., ReLU), and finally, arrive at the convolution
layer [87];

4. Transition layers: The transition layers reduce the dimensions of the dense block
by aggregating the feature maps that are contained within it. Therefore, maximum
pooling has been enabled.

Key facts:

• Each subsequent layer adds only a small number of parameters; for example, only
about 12 kernels are learned in each subsequent layer. Therefore, parameter efficiency
is achieved.

• Better distribution of the gradient throughout the network for all of the feature maps
can enable the CNN to directly access the loss function and its gradient, which gives
implicit deep supervision [89].
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7. Practical Perspective and Fine-Tuning of Transfer Learning Techniques

• Training the entire model: In this approach, the entire pre-trained model is used as a
starting point, and all the parameters of the model are fine-tuned for the new task. This
is suitable when the new task is similar to the original task for which the pre-trained
model was trained [92].

• Freezing some layers: In this approach, some of the layers in the pre-trained model
are frozen and the remaining layers are fine-tuned for the new task. Typically, the
lower-level layers of the pre-trained model, which capture low-level features such
as edges and corners, are frozen, while the higher-level layers, which capture more
complex features, are fine-tuned. This is suitable when the new task is related to the
original task but requires some modification of the model [93].

• Fine-tuning some layers: In this approach, some of the layers in the pre-trained model
are fine-tuned while the remaining layers are frozen. Typically, the higher-level layers
of the pre-trained model, which capture more complex features, are fine-tuned, while
the lower-level layers are frozen. This is suitable when the new task is significantly
different from the original task, but the higher-level features of the pre-trained model
can still be useful [93].

• Freezing the convolutional base: In this approach, the convolutional base of the pre-
trained model is frozen, and a new classifier is added on top of it. The new classifier
is then trained on the new task [94]. This is suitable when the new task requires a
different classification scheme than the original task, but the pre-trained convolutional
base can still be used to extract features from the input data [95].

In general, transfer learning can be a powerful tool for machine learning tasks, as it
allows for the reuse of pre-trained models that have already learned useful representations
from large amounts of data. The appropriate transfer learning method will depend on the
specifics of the new task and the pre-trained model. To choose a pre-trained model for
your problem, you can select from a variety of options such as VGG [96], InceptionV3 [97],
ResNet5, DenseNet, and so on.
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8. Important Things for Consideration
8.1. Generalization: Problems and Key Concepts to Mitigate

We say that a model generalizes well if the model is tested on unlabeled data after
training on known labeled data and the machine performs well on testing data. However,
when a network performs well on the training set, but poorly overall, it is said to overfit [98].
This problem is common in deep learning models because there are so many parameters
for the model to learn; therefore, these types of models are prone to overfitting.

One of the hardest problems is enhancing the generalization capability to prevent
the overfitting of machine or deep learning models. Plotting the training and validation
accuracy rate at each iteration during training is one method of identifying overfitting [99].

• Data augmentation: One approach to avoid overfitting is to simply expand the quan-
tity of data, However, gathering large amounts of data in real-world situations is a
laborious and time-consuming task, so collecting new data is not a practical option.
Increasing the total size of the dataset [37] used for training is one of the best methods
for reducing overfitting. Since we are talking about CNNs for image-based data, the
easiest way to add variety to our data and expand it is to add more images to the
dataset. This process is referred to as data augmentation [100]. This has potential for
narrowing the gap between the training and validation set, as well as between those
two sets and any future test sets [98], because the augmented data will represent a
comprehensive collection of possible data points. Therefore, augmentation is a highly
effective strategy.

Several other common techniques that have been used to tackle the overfitting problem
are listed below:

• Batch normalization: This approach is the one that is utilized most frequently in deep
learning, as it increases the speed at which neural networks learn new information
and provides regularization, thereby preventing the problem of overfitting. In CNN
convolutions, shared filters follow input feature maps and are the same on every
feature map [101]. When this occurs, it is reasonable to normalize the output in the
same manner, and then share it across the feature maps. Therefore, each map will have
a single standard deviation and mean for all its features [102];

• Dropout: This is a training method in which some neurons are selectively ignored.
A model with applied dropout cannot rely on any single feature and must instead
learn robust features. This method has been shown to effectively decrease overfitting
in numerous issues [103]. Tompson [104] expanded on this concept by applying it to a
convolutional neural network using a technique called spatial dropout. This technique
eliminates entire feature maps as opposed to individual neurons;

• Weight decay: In model training, large weights mean that the prediction relies heavily
on one pixel; therefore, a more interesting method comes to the picture, which is weight
decay, which says that large weights are penalized [105]. Intuitively, the classification
of an image based on one or a few pixels seems to not make sense;

• Transfer learning: This involves training a machine model on a large amount of data
like ImageNet and using those weights in a new classification task [106].

8.2. Computational Accelerators within the Scope of DL

The majority of ConvNets have extremely high memory and computation require-
ments, particularly while they are being trained. As a result, this should be one of your
primary concerns. For example, deploying a model to run locally on mobile, you should
give careful consideration to the size of the trained model after it has been completed.
Increasing the amount of computational work done by a network is necessary to achieve
higher levels of accuracy [59]. Therefore, there is always a compromise that needs to be
made between accuracy and computational speed. In addition to these factors, there are a
great number of other considerations, such as the simplicity of training, the capacity of a
network to generalize data effectively, etc.
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It is stated [107] that the increased ratio of the total amount of layers accumulated
over time appears to be significantly quicker than the growth ratio predicted by Moore’s
Law. The use of graphics processing units (GPUs) and tensor processing units (TPUs)
acts as a means of enhancing the performance of central processing units (CPUs) when
running deep nets; therefore, it is necessary to have an understanding of the technologies
that underpin the CPU, GPU, and TPU in order to maintain a competitive edge in terms of
both performance and efficiency.

The main difference between CPU, GPU, and TPU is thatwhile the CPU is used
for general-purpose processing, the GPU and TPU, on the other hand, are more like the
computer’s muscles. GPUis a performance accelerator that helps computer graphics and
artificial intelligence work [108], while TPUs are Google’s processors designed to speed up
machine learning tasks using frameworks such as TensorFlow.

9. Discussion

Medical imaging is an essential tool that unites societal and scientific requirements
and can create a significant synergy that could promote research in both fields. Machine
learning, particularly deep learning (DL), is a fast-moving research subject with promising
imaging and therapeutic applications. DL has already permeated medical image analysis.
Although recent advances in DL approaches have been astounding, there are still obstacles
to their implementation in healthcare. Because it does not leave an audit trail to explain
the decisions it makes, DL is often referred to as a black box. Image analysis was not
meant to replace radiologists, but to serve as a second opinion. There is no denying
that improvements in the digital imaging industry have had and will continue to have a
favorable impact on medical imaging. CNNs have positively contributed to many fields,
including medical research and radiology, and they are becoming more and more popular.
As a result, with the capability to learn high-level features from medical images without
requiring a step of feature engineering, they become a viable alternative to machine learning
algorithms. In this manuscript, a comprehensive review of the strengths, performance, and
limitations of the latest DL-based approaches is presented [109] for applications dealing
with medical imaging domains.

As per the data from MetaAI [110], we have found that the majority of work has been
done on classification problems, specifically in image classification as shown in below
Figure 9 [111].

We also determined that, after reviewing many research articles, the most common
and efficient activation function which has been adopted in the building of CNN is ReLU. In
the field of DL, ReLU is a non-linear function, meaning that it converts all negative values
to 0, and it has become an increasingly prominent activation function. The primary benefit
that the ReLU function has over other activations is that it does not fire all of the neurons at
the same time, as other functions do [112]. This is mostly used on every conv-layer, as well
as each and every dense layer [113]. The following are the most common reasons behind
using this activation function:

• Vanishing gradient: Since the derivative of this activation can only be either on the
value 0 or 1, it cannot fall within the range [0, 1] [114]. As a consequence of this result,
the product of various derivatives would also be either 0 or 1. Therefore, the problem
of vanishing gradients does not arise when backpropagation is being performed;

• Sparsity: An ReLU will always produce an output value of 0 in response to negative
input. This indicates that a smaller percentage of the network’s neurons are actively
firing. As a result, the neural network possesses activations that are both sparse
and efficient;

• Speedier training: Better convergence performance is typically demonstrated by
networks that have the ReLU function and offer faster training. As a result, our total
running time is significantly shorter [111].
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Even though there are a few methods, like the ones listed above, that make it easier
to learn from smaller datasets, it is still important to have large, well-annotated medical
datasets because most of the big achievements of deep learning are usually based on huge
datasets. Building these kinds of medical datasets is expensive, takes a lot of work from
experts, and may have ethical and privacy problems. However, once such datasets are
made accessible, specialized medical pre-trained networks would likely be presented,
which might encourage deep-learning research on medical imaging.

• Furthermore, due to the complex structures of data, training a deep learning model
is extremely expensive. They often require expensive GPUs and a large number of
computers, which raises the cost for users.

• Training performance worsens as a result of the large computational load required by
the growing complexity of multiple layers. To tackle the vanishing gradient issue, over-
fitting concerns, improved activation, and cost function design, dropout techniques
have been employed [113].

• Utilizing hardware with a high degree of parallelism, such as GPUs and normalization
techniques, allowed for the large computational-weight issue to be resolved [61].
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From a practical point of view, transfer learning techniques for image classification
problems are mainly based on the size and similarity of the dataset. The strategies are
summarized into four categories as follows [92]:

• Category 1: Large dataset, but different from the pre-trained model’s dataset. Strat-
egy 1 is recommended, which involves training a model from scratch but using the
architecture and weights of a pre-trained model to initialize the model.

• Category 2: Large dataset and similar to the pre-trained model’s dataset. Any option
can work, but Strategy 2 is the most efficient. This involves training the classifier and
top layers of the convolutional base, leveraging previous knowledge.

• Category 3: Small dataset and different from the pre-trained model’s dataset. Strategy
2 is recommended, but it can be challenging to find the right balance between the
number of layers to train and freeze. Data augmentation techniques may be necessary.

• Category 4: Small dataset, but similar to the pre-trained model’s dataset. Strategy
3 is the best option, which involves using the pre-trained model as a fixed feature
extractor, removing the last fully connected layer, and training a new classifier using
the resulting features.

A learning model that is subject to supervision, either for classification or regression
problems, must learn from training data to produce accurate predictions. Unfortunately,
the problem arises that whenever we make an effort to train a complicated model with
an insufficient amount of data for training purposes, overfitting occurs [114]. Overfitting
is the most critical issue in deep learning, so understanding, finding, and avoiding it is
important. Researchers have described many methods to tackle this problem such as data
augmentation, weight decay, transfer learning, batch normalization, dropout, etc.

As for the computational approach, is a concern. It has been demonstrated by re-
searchers from Harvard that different platforms give advantages to different models based
on their individual qualities. These advantages might be advantageous for the model’s
overall performance. Below are the key takeaways:

• CPU: It is responsible for achieving the highest FLOPS utilization for Recurrent Neural
Networks and is capable of supporting the largest models due to its vast memory
capacity;

• GPU: For irregular computations, such as tiny batches and nonMatMul computations,
the GPU demonstrates more flexibility and programmability than other processing
units;

• TPU: It is highly optimized for large batches and boasts the best possible training
throughput.

10. Conclusions

This article gives people in the field of DL a place to start. It could also help them
to choose the best way to go about their work in order to come up with more accurate
models. The study further provides an analysis of the various architectures of CNNs used
in the classification of medical images, and also demonstrates how developments in deep
learning algorithms produce promising findings that can assist and act as a second eye to
many radiologists. CNN-based architectures have been utilized in the medical domain in
various disease detection and prediction cases. The following points are given to wrap up
our review and show where things are going in the current and the future.

• To make accurate predictions and train deep learning models, these models need
access to large datasets, preferably with labels. When processing data in real-time is
necessary, to be specific in the case of healthcare data, this problem becomes more
difficult. Over the past few years, researchers have investigated potential solutions to
this problem, such as data augmentation and pre-trained CNN models.

• Changes to the hyperparameter settings will have a significant impact on the deep
learning-based models’ overall performance. Therefore, developing an optimization



Sustainability 2023, 15, 5930 23 of 28

technique requires careful consideration of parameter choices; for example, there are
various techniques to mitigate this problem such as Keras Tuner, Ray Tuner, etc.

• In order to train a CNN model effectively, powerful computational approaches are
required like GPUs or TPUs. Therefore, there is a significant amount of ongoing work
being conducted to think of ways to speed up these resources.

• Generalizability of the CNN in the case of medical imaging is very important; therefore,
concepts like dropout, batch-normalization, weight decay, transfer learning, and data
augmentation are presented.

• To find the solution to not having enough data for training, we discussed data aug-
mentation, which is one way to help in the creation of more data from the existing
data, and it is likely that different pre-trained CNN models will utilize this solution.
For example, a CNN could be trained on a huge amount of unlabeled data, and then
that knowledge could be used to train that CNN on a smaller amount of labeled data
for the same job.

• It is anticipated that a variety of approaches to learning through transfer will be taken
into consideration and choosing the right strategy for utilizing such models in image
classification depends on the similarity and the amount of the dataset.

• While utilizing a CNN alone can be computationally costly, using transfer learning
with pre-trained CNN models can greatly lower the cost of training a CNN for medical
imaging diagnosis while simultaneously enhancing its performance.
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