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Abstract: Solar-induced chlorophyll fluorescence (SIF) can accurately reflect the photosynthetic
capacity of vegetation and information on the physiological status of vegetation, which is of great
research significance and application value. However, the low resolution of the solar-induced
chlorophyll fluorescence product of the inverse performance makes it difficult to perform fine-
scale studies. Therefore, concerning the above problem, this study proposes a random-forest-based
downscaling method based on random forest. We used MODIS reflectance data to analyze GOME-2
SIF data at 0.5° resolution over the Chinese mainland in 2011 and created a monthly SIF product at
0.05° resolution for the Chinese mainland through downscaling. Then we performed a veracity check
on the downscaled SIF data, analyzed factors (land cover type, climate zone type, and DEM) that
could affect its accuracy, and explored the feasibility of using MODIS data in future GOME-2 SIF
downscaling studies. The results show that the downscaled SIF is in remarkable agreement with
the GOME-2 SIF, with an improved spatial resolution from 0.5° to 0.05°, and that the structural and
physiological information of the SIF is well represented in the downscaled SIF, which is essential for
assessing global photosynthesis. In addition, in the region with grassland land cover type, temperate
grassland climate region, alpine vegetation climate region of Qinghai–Tibet Plateau, as well as the
region with high altitude and complex terrain, the accuracy of using MODIS to downscale the
GOME-2 SIF data is low.

Keywords: GOME-2 SIF; downscaling; solar-induced chlorophyll fluorescence; authenticity check

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) can accurately reflect information on
the photosynthetic capacity and physiological status of vegetation, and can be used as
an indicator of plant health, which has important research significance and application
value [1–3]. Remote sensing of solar-induced chlorophyll fluorescence is an emerging
vegetation remote sensing technique that has been developed in recent years. The use of SIF
remote sensing can make up for the shortcomings of traditional vegetation remote sensing
observations of vegetation and provide new ideas and techniques for the monitoring of
global terrestrial ecosystems [2,4,5]. In recent years, scholars from various countries have
carried out many related studies on chlorophyll fluorescence remote sensing. Based on
the high-resolution spectrum of the Fourier Transform Spectrometer (FTS) mounted on
GOSAT, Joiner [6] used the Fraunhofer line near 770 nm to obtain chlorophyll fluorescence
information and related parameters by using the least square fitting method, and plotted
the global chlorophyll fluorescence distribution. Guanter [4] used the simulated data of the
FLEX satellite and based on the improved SFM algorithm obtained the SIF inversion results
of the O2-A and O2-B bands. Using GOSAT satellite data, Liu and Liu [7] created a least-
squares fit-based chlorophyll fluorescence inversion algorithm using the Fraunhofer line in
the range around 770 nm with the help of high-resolution solar irradiance spectra, and thus
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obtained chlorophyll fluorescence information for the Chinese region. Wen [8] generated a
high spatial resolution SIF dataset from 2002 to the present based on the SCIAMACHY SIF
and GOME-2 SIF original datasets provided by Joiner and the GFZ scientific research team.
At present, there are many retrieval products of solar-induced chlorophyll fluorescence,
such as GOME-2 SIF, OCO-2 SIF, and TROPOMI SIF [9–11]. However, most of these datasets
suffer from low spatial resolution and poor spatial continuity, which pose significant
challenges for global applications.

To overcome the challenges posed by low spatial resolution and poor spatial continuity
of existing SIF data products, researchers have employed physical models and machine
learning methods to downscale the data. In essence, SIF downscaling involves using a
predictive model that leverages coarse-resolution SIF data as training samples and one
or more high-resolution ancillary data sources (such as reflectance) to generate fine-scale
SIF products. Yu [12] generated a spatially continuous 0.05° global daily average OCO-
2 SIF data product based on the OCO-2 SIF dataset provided by NASA. Duveiller [13]
improved the spatial resolution of GOME-2 SIF data from 0.5° to 0.05° by using a nonlinear
downscaling function. Li and Xiao [14] proposed a new OCO-2 SIF dataset with a spatial
resolution of 0.05° using the Cubist regression tree model. Hu and Mo [15] conducted a
downscaling study on GOME-2 SIF data based on the statistical relationship between SIF
and normalized difference vegetation index (NDVI), increasing its spatial resolution from
0.5° to 0.05°. Downscaling of SIF data has been extensively studied, with most approaches
utilizing MODIS data and other ancillary variables as input. However, there is a paucity
of research on the feasibility of using MODIS data for downscaling SIF data and on the
validation of downscaled SIF data.

Therefore, this study proposes a downscaling method based on a random forest algo-
rithm to generate monthly scale continuous downscaled SIF data of 0.05° for the Chinese
mainland (excluding Hainan, Taiwan, Hong Kong, and Macao Special Administrative
Regions) using the 2011 GOME-2 SIF dataset and MODIS reflectance data. Then we per-
form a veracity check on the downscaled data, analyze factors that may affect downscaling
accuracy (land cover type, climate zone type, and DEM), and explore the feasibility of
MODIS data in GOME-2 SIF downscaling studies.

2. Study Area and Data
2.1. Overview of the Study Area

China is located in the northern hemisphere, east of the Eurasian continent, on the west
coast of the Pacific Ocean, bordering the sea in the southeast, and extending inland in the
northwest. The terrain in China is complex and diverse, with undulating surfaces, and the
overall characteristics are high in the west and low in the east. The main types of vegetation
cover in China include grassland, evergreen coniferous forest, evergreen broad-leaved
forest, deciduous broad-leaved forest, and farmland. China has a vast territory, a wide
range of latitudes, and a large distance from the sea. In addition, the terrain has large ups
and downs, and the terrain types and mountain ranges are diverse. Therefore, different
combinations of temperature and precipitation have formed a variety of climates.

Combining the characteristics of solar-induced chlorophyll fluorescence and the spatial
continuity of images, this study selects the Chinese mainland (excluding Hainan, Taiwan,
Hong Kong, and Macao Special Administrative Regions) as the research area of this study
to conduct downscaling research on SIF, as shown in Figure 1.
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Figure 1. Study area. Numbers I–VIII in the figure represent: I. cold temperate deciduous coniferous
forest area; II. temperate coniferous broadleaf mixed forest area; III. warm temperate deciduous
broadleaf forest area; IV. subtropical evergreen broadleaf forest area V. tropical monsoon forest,
rainforest area; VI. temperate grassland region; VII. temperate desert region VIII; alpine vegetation
area of the Qinghai–Tibet Plateau.

2.2. Data

The data used in this study mainly include GOME-2 SIF products, surface reflectance
products, and land cover products. These data will be used as input for the downscal-
ing model.

The GOME-2 SIF product (https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/
GOME_F/v28/MetOp-A/level2/ (accessed on 10 June 2022)) is derived from 0.5° fluores-
cence data based on the MetOp-A satellite provided by the German Research Centre for
Geosciences (GFZ).

The surface reflectance product (https://ladsweb.modaps.eosdis.nasa.gov/search/
order/1/MCD43C4--6 (accessed on 10 June 2022)) is derived from MODIS Terra/Aqua
data MCD43C4. It is a global 0.05° spatial resolution, 16-day temporal resolution surface
reflectance dataset using the Bidirectional Reflectance Distribution Function (BRDF) with
subsatellite reflectance adjustment, and contains the original MODIS data in reflectance
bands 1 to 7.

The land cover product (https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/
MCD12C1--6 (accessed on 10 June 2022)) is the MODIS Land Cover Climate Modelling Grid
(CMG) MCD12C1 version 6 data product, which is used in this study for the identification
of vegetation cover areas in the terrestrial regions of China.

3. Method
3.1. Downscaling Algorithm

Currently, there are many methods for downscaling solar-induced chlorophyll fluores-
cence (SIF) data, such as using neural networks [8,16], tree-based methods [17], and semiem-
pirical models [18] to generate high-resolution SIF products. The decision trees in the
random forest algorithm randomly select a subset of features to split at each node, rather
than using all features, so it can effectively predict the output variable even in the presence
of multicollinearity (high correlation) among multiple input variables [19].

In this study, the surface reflectance data of seven bands of MCD43C4 in 2011 was
used as the independent variable and the GOME-2 SIF as the dependent variable, and the
random forest algorithm was used for training and testing. As the relationship between SIF
and MODIS reflectance is considered to vary with biomes, climatic zones, and phenological
stages, sample data with a spatial resolution of 0.5° were trained to better fit the environ-

https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/v28/MetOp-A/ level2/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/v28/MetOp-A/ level2/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD43C4--6
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD43C4--6
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12C1--6
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12C1--6
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mental cycle at a time step of each month in this study. At the same time, the sample data
were randomly divided into 80% for training and 20% for testing, and the performance was
found to be very close to each other, indicating that the prediction model in this study does
not appear to have an overfitting phenomenon. In addition, we tested different models
(number of trees and leaves), and we compared and analyzed the results of these model
training results to select an optimal model. Then the obtained surface reflectance data of
seven bands of MCD43C4 with a spatial resolution of 0.05° were used as the predicted
independent variables to estimate the SIF data at 0.05° resolution for the land area of China
in 2011.

3.2. Data Authenticity Test Method

Authenticity testing is the process of evaluating the accuracy of remote sensing prod-
ucts and analyzing their uncertainties through independent methods [20]. In this study,
after generating downscaled SIF data at 0.05°, the data were verified for authenticity. There
are two main methods that are usually used for verifying the authenticity of downscaled
data: direct and indirect tests. However, it is currently difficult to verify the authenticity of
the SIF dataset at the satellite scale by direct inspection methods. The reasons are mainly
manifested in two aspects: first, SIF is a transient signal that varies with the incident light
intensity, and there are great difficulties in synchronizing measurements with satellites, so
there is a great difference in spatial scale between ground-based SIF data and satellite SIF
remote sensing data, which cannot be directly compared [14]; secondly, due to the weakness
of the SIF signal itself, it cannot be measured directly under natural light conditions and
needs to be estimated by inversion with the help of various methods with uncertainties
and incident irradiance [17], and the SIF signal is affected by atmospheric absorption and
scattering on the satellite platform, which adds uncertainty factors to the SIF data set of the
satellite platform [11]. Therefore, this study uses the cross-test method in the indirect test
to test the accuracy of the downscaled SIF data by using the tested GOME-2 SIF data as
the relative true value and employing the statistical methods of goodness of fit (R2), Bias,
root-mean-square error (RMSE), residual (δ), and relative error (RE). They are calculated
as follows:

Bias =∑n
i=1 Mi

∑n
i=1 Ni

− 1 (1)

RMSE =

√
n

∑
i=1

(Mi − Ni)2/n (2)

δ =Mi − Ni (3)

RE =
n

∑
i=1

|Mi − Ni|
Ni

× 100% (4)

where Mi is the downscaled SIF at 0.05° resolution, Ni is the GOME-2 SIF at the original
resolution of 0.5°, i is a specific pixel, and n is the total number of pixels.

4. Results and Analysis
4.1. Downscale Results

In this study, a downscaling method based on a random forest algorithm was proposed
to downscale the 2011 GOME-2 SIF of the Chinese land area, resulting in SIF data at 0.05°
spatial resolution. Figure 2 shows the distribution of GOME-2 SIF data for the Chinese
mainland in 2011, and Figure 3 shows the distribution of downscaled SIF data in 2011.
There are gaps in some areas of the study area due to the need for quality screening of data
such as MCD43C4 during the data pre-processing stage.
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Figure 2. The 2011 GOME-2 SIF.

As can be seen from Figures 2 and 3, the spatial resolution of the downscaled SIF
data has been significantly improved compared to the original GOME-2 product, and both
the downscaled SIF data and the GOME-2 SIF data can reflect the obvious time-varying
characteristics of the SIF. In terms of the spatial distribution of SIF, the descending scale SIF
data and the spatial distribution of GOME-2 SIF are in good agreement, with both showing
an overall decreasing trend from southeast to northwest. For example, fluorescence values
in May 2011 were higher in most parts of China, mainly in the eastern and southern parts
of China, which are the warm temperate deciduous broadleaf forest area and subtropical
evergreen broadleaf forest area. The overall chlorophyll fluorescence intensity in November
was low, with higher fluorescence values mainly in the southern part of China. These areas
are mostly located in the subtropical evergreen broadleaf forest area, the tropical monsoon
forest, and the rainforest area, where vegetation growth is more vigorous.
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Figure 3. The 2011 downscaled SIF.

4.2. Data Authenticity Check
4.2.1. Monthly Scale Test

In order to better test the authenticity of the downscaled SIF data, the spatial resolution
of the downscaled SIF data is resampled to 0.5°, and statistical methods such as goodness
of fit (R2), root mean square error (RMSE), and bias are used to assess the accuracy of
the obtained downscaled SIF in combination with the GOME-2 SIF data. For comparison
purposes, the downscaled SIF and GOME-2 SIF were normalized in this study and the
results are shown in Table 1 and Figure 4. As can be seen from Table 1 and Figure 4, there is
a good consistency between the 2011 downscaled SIF data and the GOME-2 SIF data on
the monthly time scale. The downscaled SIF has a significant linear relationship with the
GOME-2 SIF, and the downscaled SIF data retains the data characteristics of the GOME-2 SIF
better. The R2 on the monthly scale is above 0.4, especially in April–June and August, where
it reaches above 0.8. The RMSE is distributed between 0.1034 and 0.1725 mW/m2/sr/nm
on the monthly scale. The Bias is less than 0 in January and May–October, indicating an
underestimation in the downscaling of the GOME-2 SIF using MODIS data in these months.
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Figure 4. Monthly scale scatterplot of downscaled SIF data versus GOME-2 SIF data.

Table 1. Monthly scale authenticity test error evaluation index table.

Month R2 RMSE Bias

1 0.4492 * 0.1034 −0.0425
2 0.4634 * 0.1201 0.0896
3 0.6935 0.1126 0.0446
4 0.8422 0.1279 0.0273
5 0.8667 0.1424 −0.0109
6 0.8056 0.1687 −0.0215
7 0.7898 0.1725 −0.0141
8 0.8202 0.1496 −0.0048
9 0.7974 0.1332 −0.0276
10 0.7895 0.1180 −0.0292
11 0.6931 0.1156 0.0471
12 0.5853 0.1050 0.0215

* in the table represents the poor statistical value of each indicator.

In order to evaluate the downscaled SIF results in more detail, this study calculated
the residuals on the image element scale, as shown in Figure 5. We have classified the
residuals in the categories shown in Table 2. The magnitude of the variation in the residuals
determines the level of downscaling accuracy; the larger the range of variation of the resid-
uals, the lower the accuracy. From Figure 5, it can be concluded that there was an obvious
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underestimation phenomenon in the subtropical evergreen broad-leaved forest area from
May to August 2011, which may be mainly due to the influence of local climate conditions.
In summer, there is more cloudy and rainy weather in southern China. The generation of
clouds may affect the accuracy of MODIS reflectance data, resulting in poor accuracy of
downscaled SIF results.

Figure 5. The 2011 prediction residuals.

Table 2. Monthly scale residual categories.

Residuals (mW/m2/sr/nm) Type

<−0.5 Underestimate
−0.5–0.5 Normal

>0.5 Overrate

4.2.2. Seasonal Scale Test

In order to study the accuracy of downscaled SIF data on a seasonal scale, this study
divides March–May in 2011 into spring, June–August into summer, September–November
into autumn, and January–February and December into winter. Table 3 is the authenticity
test error evaluation index table for each season in 2011. Figure 6 is a scatter plot of
downscaled SIF data and GOME-2 SIF data for each season in 2011. It can be seen from
Table 3 and Figure 6 that on the seasonal scale, the correlation between the downscaled
SIF and GOME-2 SIF is better than that on the monthly scale, with R2 above 0.67, and the
correlation in summer is the best, with R2 being 0.8789. RMSE is distributed in the range
of 0.0724–0.1212 mW/m2/sr/nm on the seasonal scale. The Bias of spring, summer, and
autumn are all less than 0, indicating that the downscaled SIF data are underestimated in
these seasons.
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Figure 6. Seasonal scatterplot of downscaled SIF data versus GOME-2 SIF data.

Table 3. Seasonal scale authenticity test error evaluation index table.

Season R2 RMSE Bias

Spring 0.8914 0.0878 −0.0161
Summer 0.8789 0.1212 −0.0379
Autumn 0.8705 0.0780 −0.0572
Winter 0.6702 0.0724 0.0194

4.3. Analysis of Factors Affecting the Accuracy of Downscaling Algorithms

The downscaling estimation of SIF has improved the spatial resolution of GOME-2 SIF
from 0.5° to 0.05°, but the downscaling accuracy in some areas is still unsatisfactory, so it is
necessary to analyze the factors that affect the downscaling accuracy. In this study, GOME-2
SIF and downscaled SIF data are used to calculate the relative error RE, and classify them,
as shown in Table 4, and the spatial distribution is shown in Figure 7.

Table 4. RE classification.

RE Type

<−80% −1
others 0
>80% 1

4.3.1. SIF Data

Although the quality screening operation was performed on the original SIF data
during data preprocessing, the distribution of SIF values in the real world itself has spatial
heterogeneity, and SIF will have outliers, and the values will appear within the range of its
effective values. However, the existence of points is significantly different from the average
or common value. The existence of outliers will inevitably affect the downscaling results,
resulting in higher or lower predicted values and surrounding SIF values [21]. Secondly,
the real-world SIF itself has spatial heterogeneity, and the SIF distribution itself has outliers.
If the real value is an outlier and the predicted value is a normal value, then there will be a
large error in the prediction accuracy.
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Figure 7. Monthly RE distribution chart.

4.3.2. Land Cover Types

Using MCD12C1 land cover data and monthly RE distribution data comprehensively,
the land cover types corresponding to the points with large errors were extracted, as shown
in Figure 8. It can be seen from Figures 7 and 8 that in 2011 the areas with large RE in
each month have the distribution of grassland and barren types. Among them, grassland
occupies a relatively large proportion, accounting for more than 40%. Especially in June,
the error points where the land cover type is grassland accounted for about 80% of the
total. Since special structural features of vegetation affect photosynthesis and plant growth,
such as C3 and C4 plants and monocots and dicots, vegetation coverage levels may not
fully represent light and action intensity levels. Yang [22] found that temperate and
alpine grasslands in China exhibit different phenological and photosynthetic characteristics.
Cui [23] found that the estimation of grassland phenology LSP indicators based on the
MODIS vegetation index is most accurate within 18 days. The time resolution of the MODIS
reflectance data used in this study is one month, so when the land cover type is grassland,
it may affect the SIF downscaling accuracy.
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Figure 8. RE greater than 80% (left) and RE less than −80% (right) correspond to land cover types.

4.3.3. Climate Type

Using climate zone data and monthly RE distribution data comprehensively, the cli-
mate zone types corresponding to points with large errors are extracted, as shown in
Figure 9. It can be seen from Figures 7 and 9 that the distribution of error points have
obvious seasonal variation characteristics, with less distribution in summer and autumn
and more distribution in winter and spring. The climatic regions where the error points
are located also have obvious seasonal distribution characteristics. When the error point is
negative, the spring is mainly concentrated in the warm temperate deciduous broadleaf
forest area and the subtropical evergreen broadleaf forest area, accounting for 25% and
27%, respectively; the summer is mainly concentrated in the temperate grassland region,
accounting for 37%; the autumn is mainly concentrated in the alpine vegetation area of the
Qinghai–Tibet Plateau, accounting for 66%; winter is mainly distributed in the temperate
desert region and alpine vegetation area of the Qinghai–Tibet Plateau, accounting for 16%
and 25%, respectively. The error point is positive. In spring, it is mainly distributed in the
subtropical evergreen broadleaf forest area, temperate grassland region, and alpine vegeta-
tion area of the Qinghai–Tibet Plateau, accounting for 24%, 25%, and 24%, respectively; in
summer, it is mainly distributed in the temperate grassland region and the alpine vegetation
area of the Qinghai–Tibet Plateau, accounting for 23% and 26%, respectively; autumn is
mainly distributed in the temperate grassland region, temperate desert region, and alpine
vegetation area of the Qinghai–Tibet Plateau, accounting for 26%, 26%, and 31%; in winter,
they are mainly distributed in the temperate grassland region and the alpine vegetation
area of the Qinghai–Tibet Plateau, accounting for 25% and 24%, respectively. In general,
the temperate grassland region and the alpine vegetation area of the Qinghai–Tibet Plateau
have the most error points, which will affect the accuracy of MODIS on the GOME-2 SIF
downscaling results.

Figure 9. Climate zones corresponding to RE greater than 80% (left) and RE less than −80% (right).

4.3.4. DEM

Using DEM data and monthly RE distribution data comprehensively, the elevation
values corresponding to points with large errors are extracted, as shown in Figure 10. It can
be seen from Figures 7 and 10 that the highest DEM of the error point is at about 5600 m.
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When the error point is negative, the average monthly DEM is mostly around 2000 m,
but the average DEM from June to September is around 4000 m, and the median also shows
the same pattern, and most of the error points are located at a higher DEM area; the error
point is positive, the monthly DEM average is around 2400 m, and the median is around
2000 m. In areas with higher altitudes, the terrain is complex, and different slopes and slope
directions receive different amounts of solar radiation. It is difficult to accurately represent
the distribution of solar radiation on the ground [24], while the reflected radiation on the
ground is part of the solar radiation. Therefore, in areas with high altitude and complex
terrain, it is difficult for MODIS reflectance data to accurately represent the real situation,
which will affect the results and generate errors during the SIF downscaling process.

Figure 10. DEM corresponding to RE greater than 80% (left) and RE less than −80% (right).

5. Conclusions

In this study, a method was proposed to downscale GOME-2 SIF data based on a
random forest algorithm, and monthly SIF data with a spatial resolution of 0.05° in 2011
were generated. The authenticity of the downscaling results was tested. In addition, we
analyzed the factors that may affect the accuracy of the downscaling results (land cover
type, climate zone type, DEM). The following conclusions were drawn from the results that
were obtained in this study:

(1) The accuracy of the downscaled SIF data obtained based on the downscaling
algorithm is reliable, and has a strong consistency with GOME-2 SIF, and the spatial
resolution of the data is higher. The results show that the spatial resolution and accuracy of
the downscaled SIF data are better than those of the GOME-2 SIF data, the spatial resolution
is increased from 0.5° to 0.05°, the overall R2 is about 0.72, and the RMSE < 0.17.

(2) The accuracy of SIF downscaling results of grassland types is low.
(3) The temperate grassland region and alpine vegetation area of the Qinghai–Tibet

Plateau can affect the accuracy of SIF downscaling results.
(4) Areas with high altitude and complex terrain will affect the downscaling results.

6. Discussion

We applied a random forest downscaling algorithm to process GOME-2 SIF data and
generated downscaled SIF data products at a resolution of 0.05°. Meanwhile, we evaluated
the accuracy of the downscaled SIF data at monthly and seasonal scales, and analyzed
factors that may affect the downscaled accuracy. This study provides relevant assistance
for the development of sun-induced chlorophyll fluorescence remote sensing, but there are
still some shortcomings that need to be further explored in subsequent research.

Direct verification of downscaled SIF data faces challenges such as a lack of ground
validation data and differences in temporal and spatial scales, which makes it difficult to
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directly validate downscaled SIF data. In this study, we resampled the downscaled SIF data
to the same spatial resolution as GOME-2 SIF data and indirectly cross-validated the data.
The results showed that the two datasets have good consistency to some extent. Xing Li [14]
conducted a downscaled study using OCO-2 SIF data and obtained 0.05° downscaled
SIF data at the global scale, which also showed significant spatial correlation with the
original SIF. Currently, most verification methods for downscaled data in research use
ground station measurements for direct validation. However, due to the small proportion of
chlorophyll fluorescence, which is a weak electromagnetic signal and only accounts for 1–2%
of the surface reflection signal [25], it is difficult to capture and measure fluorescence near
the ground. Therefore, there are limited ground data to validate SIF satellite data. The lack
of ground measurement data will affect the accuracy of fluorescence products, which may
limit the future development and application of fluorescence. Therefore, in order to validate
SIF satellite data, it is necessary to expand the ground-based chlorophyll fluorescence
observation system.

In addition, this study analyzed factors that may affect the accuracy of downscaling
SIF, and the results showed that the regions with lower accuracy of downscaling SIF
data are mainly concentrated in regions with land cover types of grassland, temperate
steppe climate regions, alpine vegetation climate regions on the Qinghai–Tibet Plateau,
and regions with complex terrain at higher altitudes. Since MODIS reflectance data vary
among different land use types due to factors such as vegetation type, density, and land
coverage [26], the regions with lower accuracy in this study are mainly concentrated in
the northwestern region of China, where grasslands are the dominant vegetation cover
type, which may be due to the impact of MODIS reflectance, resulting in lower accuracy.
Therefore, it is necessary to focus on improving the SIF downscaling algorithm in these
areas to improve data accuracy in the next research process or to distinguish these areas
separately and find suitable SIF downscaling methods for these regions.

Overall, the downscaling algorithm proposed in this study has proven effective in
improving the spatial resolution of GOME-2 SIF data while retaining its data characteristics.
However, further research is needed to optimize the downscaling algorithm and explore its
application in other regions.
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