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Abstract: Nuclear power is a sustainable energy source, but radiation management is required for its
safe use. Radiation-detection technology has been developed for the safe management of radioactive
materials in nuclear facilities but its performance may vary depending on the size and complexity
of the structure of nuclear facilities. In this study, a nuclear monitoring system using a multi-sensor
network was designed to monitor radioactive materials in a large nuclear facility. Additionally, an
artificial-intelligence-based localization algorithm was developed to accurately locate radioactive
materials. The system parameters were optimized using the Geant4 Application for Tomographic
emission (GATE) toolkit, and the localization algorithm was developed based on the performance
evaluation of the Artificial Neural Network (ANN) and Decision Tree (D-Tree) models. In this article,
we present the feasibility of the proposed monitoring system by converging the radiation detection
system and artificial intelligence technology.

Keywords: multi-sensor network; artificial intelligence; radiation monitoring; nuclear energy; ra-
dioactive material

1. Introduction

According to the policy briefing of the World Summit on Sustainable Development
(WSSD), the energy sector is emerging as a key topic for sustainable development. Recent
energy-related policies emphasize stability and the possibility of sustainable development
in environmental, social, and economic aspects. In particular, governments around the
world are researching the sustainable use of natural energy such as coal, gas, and crude oil
while striving to develop and distribute new energy technologies [1].

A new technology to obtain energy safely and sustainably is nuclear power plant
energy. Currently, nuclear power accounts for more than 11% of global electricity [2,3].
However, nuclear power plants have a disadvantage in that follow-up management is
required due to nuclear fuel and radioactive waste generated in the process of using
nuclear materials. For the continuous and safe supply of nuclear energy, it is important to
prevent accidents and conduct research on safety-related technology to protect people, the
environment, and workers from radiation hazards [4]. Various radioactive materials such
as nuclear fuel and waste exist in the nuclear energy production process, and their safe
management is essential to prevent illegal nuclear use such as nuclear terrorism. In order
to prevent accidents, technology that can quickly and accurately monitor nuclear facilities
is needed.

In this study, we intend to design a high-precision radiation monitoring system that
integrates measurement equipment and artificial intelligence technology to monitor natural
uranium (UO2), which is a material for nuclear fuel. This thesis contains research contents
on the design optimization stage for the development of a monitoring system.
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1.1. Radiation-Monitoring Technology

Uranium compounds such as UO2 are used and stored in loading facilities to provide
nuclear fuel for nuclear power plants. According to the International Atomic Energy
Agency (IAEA), uranium compounds must be safely managed in a series of enrichment,
fuel manufacturing, and storage processes. Therefore, accurate monitoring of uranium-
filled facilities is necessary to detect and regulate the use of nuclear materials [5,6].

Gamma rays emitted from 235U (143.7, 163.3, 185.7, 205.3 keV, etc.) are not detectable
by the naked eye. Thus, the use of radiation detection equipment is essential to identify
and prevent radiation leakage accidents.

Recently, research on radiation-monitoring technology has aimed to develop new
detection devices and software that can measure radiation with high accuracy rates for
very low amounts of radiation while at the same time serving as a form of radiation-
measurement technology for a wide range of environments and facilities [7].

Several radiation detection instruments have been used for decades, including gamma
spectrometers, gas-based ion chambers, and gamma cameras [8]. A gamma spectrometer
can determine radionuclides by measuring gamma-ray counts and energy, and a gas-
based ion chamber can measure radiation dose rates. However, these two methods have
limitations in tracking the location of the radionuclide [9–13]. Although a gamma camera
can be used to monitor the distribution of radionuclides, its detection efficiency is low and
large-area monitoring is limited due to the use of a collimator and scintillator coupled to
photomultiplier tubes (PMTs) [14,15].

However, new designs of detectors, applications, and software have been developed
and studied by many researchers to improve performance and shortcomings in the field of
radiation-monitoring systems. Representatively, many studies on wireless-based monitor-
ing systems have been conducted to reduce unnecessary radiation exposure [16–19].

The advances in hardware technology such as materials, processes, and software
including AI will be utilized as technological elements to improve the accuracy of radiation
detection systems and to ensure the safety of workers, the environment, and people.

1.2. Artificial Intelligence (AI)

Artificial intelligence is a key technology that can quickly analyze and derive results
using data sets in various research fields such as education, agriculture, finance, medicine
and human-judgement assistance [20–22].

Research utilizing artificial intelligence is conducted in the field of radiation monitor-
ing. The research of unstructured data such as supervision of an object-detection method
using a deep convolutional neural network (DCNN) in a loading facility of radioactive
materials is currently underway [23].

Artificial neural network (ANN) technology is one of these technologies, which con-
nects of numerous neurons and builds multiple layers of neurons, just like the nervous
system of a living organism, to increase the learning ability of a neural network. An artificial
neural network uses input and output layers as weighting values to train and connect
synapses of neurons. Each layer optimizes the training data to produce accurate answers.
UO2 powder storage facilities targeted in this study require various measurement variables
to standardize the location, size (volume), energy, and radioactivity of the target nuclear
material. The structure of the nuclear material storage facility was investigated in advance
and described through simulation. In addition, an artificial-intelligence-based model was
implemented and trained for various environmental variables according to the monitoring
location. Then, a location-tracking algorithm was developed and applied to the monitoring
system to quickly and accurately locate radioactive materials.

1.3. Radiation-Monitoring System Using Multiple Sensors and AI

The system is proposed to monitor a storage facility housing natural uranium UO2
powder used for nuclear fuel. The UO2 powder storage facility is a low-level radiation fa-
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cility with a low criticality risk. However, the standards for theft and loss control including
monitoring and management must be thorough due to its nuclear fuel properties.

In this study, in order to overcome the limitations of existing radiation-monitoring
systems, we developed a nuclear facility monitoring system using a multi-sensor network
using multiple gamma spectrometers and artificial intelligence data analysis technology.
The multi-sensor network is based on a database obtained from networked gamma spec-
trometer data. The data obtained depending on the configuration of the sensor network was
analyzed with an AI training mechanism to determine the location of the radioactive source.
Various cases of monitoring environments for a UO2 radioactive source were simulated.
The simulated count rates of each detector module were built into a database. The database
was used as training and validation data for AI-based algorithms. The performance eval-
uation of the AI algorithm was performed by measuring the localization accuracy of the
missing UO2 radioactive source.

2. Materials and Methods
2.1. Configuration of Monitoring System Using AI and Multi-Sensor Network

Figure 1 shows the schematic diagram of the proposed unmanned large-area nuclear
facility monitoring system composed of a multi-sensor network, signal processing circuits,
and AI-based data- and image-processing algorithms.
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Figure 1. Configuration of radioactive-material-monitoring system using artificial intelligence and
sensor network.

The designed system uses a multi-sensor network to track the location of the radioac-
tive source and identify the radionuclide type. The multi-sensor network consists of several
detector modules, and a single detector module is composed of a scintillator, PMT, and lead
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collimator, thus allowing radionuclide identification and limiting the effective field of view.
The multi-sensor network was configured using an array of detector modules according to
the geometry of the monitoring environment. The count rate of each detector module is
acquired and digitized through analog and digital signal processing circuits and used to
track the location of the UO2 radioactive source. The measurement time, detector module
number, and energy of each radiation signal data are acquired by a field programmable
gate array (FPGA) and implemented in AI training to track the location of the radioactive
source.

2.2. Modeling of UO2 Powder Drums and Storage Facility Using GATE Tool

In this study, the database was obtained through Monte Carlo simulations to develop
an AI-based algorithm using the multi-sensor network, and the accuracy of the proposed
AI-based algorithm was evaluated.

The Geant4 Application for Tomographic Emission (GATE) tool was used to evaluate
the AI-based algorithm. Figure 2 shows the monitoring environment of a UO2 drum storage
facility and the multi-sensor network designed using GATE.
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Figure 2. Geometry of a UO2 drum storage facility (Left) and 5 × 5 drum array (Right) simulated by
GATE tool.

The UO2 drum storage facility was designed with a size of 2500 m3 (25 × 25 × 4 m3)
to accommodate 40 × 40 UO2 drums according to the ‘Low-Level Radioactive Waste
Repositories’ published in 2011 [24]. The cylindrical UO2 drum is 61 cm in diameter and
70 cm in height and can store 200 L of UO2 powder. Each drum was placed on a 62 cm
pitch. UO2 drums and detectors were arranged in a uniformly repeating pattern. The count
rate obtained from each detector was constant for a given condition. Therefore, to reduce
the repetitive execution time of the computational simulation, a simulation environment
was established by designating 5 × 5 drums as the minimum unit.

In the initial storage state, the loaded drum was set to be stored in a fixed state in order
to track the abnormal position caused by the change in radiation dose. The initial state was
set with all 25 drums present in the storage. The simulation was performed with a missing
number of drums to obtain the database.

2.3. Design of Radiation Detector Module Using Multi-Sensor Network

Figure 3 shows the detector module modeled in the GATE simulation. A NaI(Tl)
scintillator coupled to a lead collimator was used as the detector module to measure the
gamma-rays and minimize the effective field of view. The diameter and height of the
cylindrical scintillator were both set to 2.54 cm. The thickness of the lead collimator was set
to 1 cm to shield background and fission product radiation.
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Figure 3. Structure of a single detector module designed for the measurement of radioactive materials.

Figure 4 shows the multi-sensor network configuration used for monitoring the storage
environment. The yellow circles represent the UO2 drums placed on the floor, and the red
squares inside the yellow circles represent the locations of each of the six detector modules
installed in the ceiling. The six detector modules were arranged in a 2 × 3 array. Each
detector module monitored a 3 × 3 drum array with an effective field of view. For example,
the detector module 1 monitored 01, 02, 03, 06, 07, 08, 11, 12, and 13 UO2 drums. Detector
modules 1 and 2 were positioned adjacently, and the effective field of view of each partially
overlapped. The experiment was designed in such a way as to make a difference in the
radiation count rate according to the geometrical arrangement of the detector module and
the UO2 drums, thus enabling detailed location analysis according to the combination of
these factors in the sensor network.
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2.4. D-Tree and ANN Model for Location Tracking

Each UO2 drum was removed to obtain a database of various simulation cases and to
evaluate the positioning accuracy of the algorithm. In this study, D-Tree and ANN models,
which show high performance in vector format data, were used.
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Figure 5 demonstrates the process of the D-Tree model. D-Tree is a machine learning
program based on a classification algorithm that classifies data by creating rules based on
the uniformity of the data. Then, the data is applied to classification and prediction [25–27].
A defect classification model based on the D-Tree algorithm was developed using the
decreasing count value measured by the detector that monitors the missing drum. The
algorithm model features the count values obtained from the six detectors as input to
produce the probability of a missing drum as the output.
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Table 1 shows the parameters used in the D-Tree model. The gini that demonstrates the
degree of data congestion is used as the criterion for splitting the data. The learning process
generates decision rules to minimize impurities. At this time, as a parameter, the degree
of splitting until the class is completely classified (max_depth) is set and the minimum
number of samples (min_sample_split) to be split by the node is set to 10 to prevent data
overfitting. This generates rules for reliable decision-making by constructing an algorithm
that trains to the maximum depth until it contains a small number of samples.

Table 1. Parameters for D-Tree model.

Parameter Explanation Option

Criterion Indicator of impurity Gini
Min_sample_split Minimum number of samples for segmentation 10

An ANN is a learning algorithm that mathematically models the human nervous
system [28,29]. The system makes predictions using various weights in a network that
connects neurons in layers. The algorithm consists of three structures: an input layer, a
hidden layer, and an output layer. The neuron maps the sum of input signals received
from the previous layer in a non-linear form through an activation function and transmits
them to the neuron of the next layer. As training progresses, the model learns the optimal
connection weight between neurons. Figure 6 shows the process of the ANN model using
the count rates obtained from six detectors. The parameters of the ANN used in this study
are as follows: the input layer consists of six neurons corresponding to the input signals
of the six detector modules, and the hidden layer consists of 512 neurons and two layers,
respectively. The output layer consists of 25 nodes, which is the number of all UO2 storage
drums. The activation function of each layer used tanh, and the activation function of the
last output layer was constructed using sigmoid.
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Figure 6. Process of ANN model.

Figure 7 A,C show some of the simulated cases where the loaded drums are removed
one by one, and the removed location is circled in red. A total of 26 cases were considered
with one case containing all 25 UO2 drums and 25 different cases with one UO2 drum
removed. We ran 100 simulations for 26 cases each to generate a total of 2600 datasets.
Data from 2600 simulations were acquired and preprocessed with count rate, module
numbers, and energy information. The preprocessed data were converted into a database
on a case-by-case basis.
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Figure 7. Simulation cases of one drum removal (A,C) and count rate comparison of each detector
module (B,D).

The cross-validation method was used to evaluate the reliability of the simulation.
The data was divided into training data (1820) and verification data (780) at a ratio of 7:3.
The accuracy of D-Tree and the ANN-based positioning algorithm was derived through
the following data division. Table 2 and Equation (1) show the evaluation indicator for the
accuracy of each algorithm. The evaluation was classified using actual and predicted values.
A true positive (TP) predicts an actual true value as true, a false positive (FP) predicts an
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actual false value as true, a false negative (FN) predicts an actual true value as false, and a
true negative (TN) predicts an actual false value as false.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Table 2. Indicator for the evaluation of AI-based positioning algorithm.

Actual Value

True False

Predicted value
True True Positive False Positive

False False Negative True Negative

Accuracy was calculated by counting the number of TP + TN over the total number of
all prediction cases (TP + TN + FP + FN).

3. Results

Figure 7 shows the count rates of the six detector modules for each simulated case.
It was confirmed that the count rates of each detector module were different due to the
positional relationship between the detector module and the removed UO2 drum.

For case 1, the count rate decreased due to source loss within the FOV for detector
number 1(D1), but not for D2-6. This shows that the location of the missing UO2 drum can
be identified by analyzing different count rates using the geometric location arrangement
between the detector module and the UO2 drum. For case 2, the count rates of detector
modules 1 and 2 were 88% and 91% of the mean count rate of detector modules 3 to
6, respectively. Compared to D2, D1 was relatively more affected by the drum removal
because it was closer to the missing UO2 drum.

The count rates obtained from each detector module were used as training data to
find missing UO2 drum for both D-Tree and ANN algorithms. Figure 8 shows the accuracy
of localization according to the training and validation data of D-Tree and ANN training
models. It shows that the accuracy of the two models is similar, and no overfitting of the
data was identified.
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The accuracy of training and validation were 99.5% and 97.8% for the D-Tree model,
respectively. Both the training and validation accuracies of the ANN model were 99.9%,
which was higher than that of the D-Tree model.
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Both D-Tree and ANN models are representative artificial intelligence algorithms that
show good performance in solving classification problems. However, D-Tree tends to be less
efficient in multi-class classification problems than in binary classification problems [30,31].
Because of these characteristics, the ANN model shows higher accuracy than the D-Tree
model in this study.

4. Discussion

The database obtained using the Monte Carlo simulation was applied to the D-Tree
and ANN-based algorithmic models to improve the accurate localization of removed UO2
drums in nuclear and radioactive material storage facilities. In this study, a multi-sensor
network arranged in a 2 × 3 array was positioned to monitor a 5 × 5 array of UO2 drums.
We trained an AI-based algorithm to track the location of missing sources using the count
rate of each detector module constituting the multi-sensor network. The training and
validation accuracies of the D-Tree model were 99.5% and 97.8%, respectively. The ANN
algorithm model achieved 99.9% accuracy in both training and validation, confirming that
the localization of a removed UO2 drum is possible. In both training and validation, the
ANN model showed higher accuracy performance than the D-Tree model. As a result of
deriving various rules from the raw data of neurons configured in the ANN, it showed
higher performance than D-Tree.

Figure 9 represents the errors encountered during the localization. The location of
UO2 drum 1 was incorrectly predicted as drum 6, and drum 25’s location was incorrectly
predicted as drum 20. The lack of count rate data resulted in incorrect position predictions
for adjacent drums located in the corners of the storage facility. This misplacement error
can be solved by increasing the number of cases in further studies.
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Further studies are ongoing into various abnormal situations, including multiple
missing UO2 drums. The accuracy of the localization of radioactive materials in an AI-
based monitoring system can be improved when it continuously learns by considering
various variables in the measurement environment.

5. Conclusions

In this study, a nuclear material monitoring system based on a multi-sensor network
and AI algorithm was implemented through Monte Carlo simulations. Performance tests
were conducted to evaluate the accuracy of the system. It was confirmed that the developed
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D-Tree and ANN-based algorithm showed high performance in determining the location
of missing sources in radiation and nuclear facilities.

In further research, the proposed monitoring system will be developed and evaluated
through experiments in radioactive source storage facilities. The fabrication of a detector
module consisting of a PMT and a 2.54 cm sized diameter and thickness scintillator will be
conducted to verify the simulation. The energy resolution and sensitivity of the detector
module will be evaluated to identify the type of radiation source in the storage facility and to
utilize the multi-sensor network, respectively. In addition, concealed sources such as Co-57
and Cs-137 will be placed in a test storage facility to configure a measurement environment.
The obtained data for each source location can be applied to the algorithm to evaluate
the location tracking accuracy. The data can also be used to develop a software-based
program tool that applies to the monitoring system. Additionally, although structured data
are currently used as input data for the AI model, we want to evaluate the possibility of
location tracking using unstructured data such as images.

The proposed research can be used for safe nuclear power plant management through
accurate detection and localization of nuclear materials by converging the existing radiation
monitoring system and artificial intelligence technology. Based on the following research,
public awareness of nuclear safety and radioactive waste management will guide nuclear
power as a safe and sustainable energy source in the future.
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