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Abstract: Predicting the rainfall status of a region has a great impact on certain factors, such as
arranging agricultural activities, enabling efficient water planning, and taking precautionary measures
for possible disasters (flood/drought). Due to the seriousness of the subject, the timely and accurate
prediction of rainfall is highly desirable and critical for environmentally sustainable development. In
this study, an ensemble of K-stars (EK-stars) approach was proposed to predict the next-day rainfall
status using meteorological data, such as the temperature, humidity, pressure, and sunshine, that were
collected between the years 2007 and 2017 in Australia. This study also introduced the probability-
based aggregating (pagging) approach when building and combining multiple classifiers for rainfall
prediction. In the implementation of the EK-stars, different experimental setups were carried out,
including the change of input parameter of the algorithm, the use of different methods in the pagging
step, and whether the feature selection was performed or not. The EK-stars outperformed the original
K-star algorithm and the recently proposed studies in terms of the classification accuracy by making
predictions that were the closest to reality. This study shows that the proposed method is promising
for generating accurate predictions for the sustainable development of environmental systems.

Keywords: rainfall prediction; machine learning; K-star classifier; classification; ensemble learning

1. Introduction

Achieving sustainable economic growth is intrinsically linked to advanced climate
modeling that informs policymakers about the potential risks, costs, and benefits of climate
change on the economy. Predicting weather events, such as rainfall, is of great importance in
this context, and it should be carefully handled. Predicting rainfall would help the planners,
researchers, and technicians involved in the decision-making process of water-related
issues improve sustainable management and development.

The recent study in [1] comprehensively focused on the assessment of the resilience
(including the social and economic infrastructure, build environment, and institutional
resilience) and livability (including the accessibility, economic vibrancy, and community
well-being) of smart cities using machine learning models. For this purpose, a metric
distance-based weighting approach was applied to obtain the composite scores for each
aspect under the resilience and livability concepts. Then, the smart cities were sorted
according to the degree of performance using fuzzy c-means clustering and six classifiers
that included naïve Bayes (NB), k-nearest neighbors (KNNs), support vector machines
(SVMs), classification and regression trees (CARTs), and two ensemble models, including
the random forest (RF) and gradient boosting machine (GBM). The best performance in
terms of the three performance measures (accuracy, Cohen’s kappa, and the average area
under the precision-recall curve (AUC)) was succeeded by the ensemble GBM method. As
a result of this study, the coping capacities of the cities were determined as high, medium,
or low based on their clustered performance in addressing the resilience and livability
paradigm. Following this concept, the aim of our study is to develop a machine learning-
based strategy for rainfall prediction in the hopes that our findings will help generate a
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more prosperous and sustainable living environment and increase the quality of life for
city residents.

Erratic rainfall can seriously threaten agriculture by undermining access to food, water,
and energy. It can also trigger variable river flows and groundwater recharge, thus affecting
all water sources. If a warning system informs authorities about the possibility of flooding,
necessary measures can be taken in a timely manner to enhance life safety and prevent
material losses in these regions. If there is a possibility of either drought or very little rainfall
for a certain period, the necessary irrigation systems in these places can be established in
advance so agricultural activities can operate regularly without any problems. Furthermore,
water planning is another issue that needs to be addressed carefully. Properly managed
and planned water storage can increase the agricultural productivity, water security, and
adaptive capacity by protecting the livelihood of residents and reducing rural poverty. On
the contrary, poorly planned water storage is a waste of financial resources and it could
worsen the impacts of climate change. If rainfall is estimated successfully, authorities can
cope with increased rainfall variability using adaptive water planning.

Rainfall prediction methods can be grouped under three categories: physical methods,
statistical methods, and machine learning methods. The physical methods are conventional
models that are developed using numerical weather prediction, rule-based approaches,
or simulations and require a thorough description of the physical and dynamic processes
of the interactions between the variables, i.e., the mathematical equations [2]. However,
these models usually have a limited efficiency, computational capacity, and resolution [2].
The statistical methods aim to uncover the mathematical relationship and investigate the
features of the historical time series, such as the autoregressive integrated moving average
(ARIMA), the multivariate adaptive regression splines (MARS), and the Holt–Winters
and hidden Markov models. However, the limitations of these conventional methods are
as follows: (i) they assume that the data are stable, and therefore, the ability to capture
unstable data is limited [3]; (ii) they are only suitable for linear applications and have
difficulty in addressing non-linear, stochastic, and complex patterns within the data [4,5];
(iii) they require complex computing power [6]; (iv) they can be time consuming with
minimal effects [6]; and (v) they are applicable to fewer parameters [4]. On the other hand,
machine learning models have been used due to their ability to identify highly non-linear
and irregular patterns in rainfall data [4]. The dynamic nature of the atmosphere makes
machine learning methods preferable over other approaches. The superiority of machine
learning models over conventional models has been proven in many studies [2,3,5]. Due to
the seriousness of the issue, building a machine learning-based model is highly desirable
for the sustainable development of environmental systems.

Machine learning is a branch of computer science that focuses on the use of data
related to a problem domain for learning a model and finding a solution by proposing algo-
rithms. Considering the environmental problems, its application areas cover forecasting
air pollutant concentrations [7], estimating water contamination [8], forecasting green-
house gas emissions [9], predicting soil moisture [10], modeling future changes in runoff
and streamflow extremes [11], assessing the risk of resources exposed to rainfall-induced
landslides [12], and many others. Rainfall prediction is one of the widely studied areas in
this context. The proposed study in [13] was used to classify the rainfall status as yes or
no in different zones of Ghana considering various climatic features that were collected
between the years 1980 and 2019. Well-known classification algorithms, including the
decision tree (DT), multilayer perceptron (MLP), KNN, RF, and extreme gradient boosting
(XGBoost) were applied for this aim. The ensemble learning models were reported as the
best candidates for rainfall prediction. Based on this motivation, in this study, we focus on
employing an ensemble learning approach.

In this study, the aim is to predict the next-day rainfall status as “yes” or “no” consid-
ering the various meteorological attributes collected between the years 2007 and 2017 in
different cities in Australia. For this purpose, the EK-stars approach, which is an ensemble
of K-star classifiers, was proposed and tested using different experimental setups. The
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results show that our method accurately classified the rainfall data and outperformed both
the original K-star classifier and the recently proposed studies.

The main contributions of this study are listed as follows:

• Rainfall prediction, which is one of the major challenges of climate modeling, was
successfully handled by building a machine learning model.

• The ensembles of K-stars (EK-stars) learning approach was proposed for rainfall prediction.
• This study was original in that it proposed a probability-based aggregating (pagging)

approach against bagging (bootstrap aggregating), dagging (disjoint aggregating), and
boosting approaches.

• The proposed EK-stars method outperformed the standard K-star method on the
same dataset.

• Compared to the state-of-the-art studies in the literature, the proposed method
achieved a better classification accuracy for the rainfall prediction.

The remainder of this paper is organized as follows. In Section 2, the recent studies
in rainfall prediction are briefly described. In the same section, the literature studies
considering the “K-star” method are explored, along with why it was selected as the base
learner of the proposed method. The methodologies and the definitions of the components
of the EK-stars approach are explained in detail in Section 3. The dataset description and
the statistical summary of the attributes are mentioned in Section 4. The experimental
results and a general discussion are given in Section 5. The final comments and future
directions are addressed in the conclusions.

2. Related Work

Using the right method for rainfall forecasting has been the primary concern of many
researchers. Table 1 summarizes the studies [14–19] that were recently proposed on the
subject of rainfall prediction by mentioning their methods, the datasets used, and the best
results that were obtained. While some studies used classical machine learning methods
such as the SVM [14], NB [14], and artificial neural networks (ANN) [15], some utilized
deep learning methods such as convolutional neural networks (CNN) and long short-term
memory (LSTM) [16]. In another study [20], the time series data (monthly rainfall data
from 1951 to 2021) were handled using a hybrid deep learning technique for the monthly
rainfall forecasting in China.

Rahman et al. [14] handled the rainfall prediction by using a machine learning fusion
technique. The results of the machine learning models were given to another layer where
fuzzy logic-based rules were applied for the final prediction. In the classification part,
DT, NB, KNN, and SVM were used. The fuzzy layer contained the test data along with
the output class and the predictions of the applied classifiers. The results were examined
using a number of measures such as the accuracy, miss rate, specificity, sensitivity, false
positive/negative value, likelihood ratio positive, and positive/negative prediction value.
Their proposed fused ML algorithm managed to perform the best with a 94% accuracy in the
experiments. The novelty of this study was stated as the use of machine learning fusion for
real-time rainfall prediction. Adaryani et al. [16] developed deep learning-based models for
short-term rainfall forecasting (5-min and 15-min forecasts). Initially, the selected models
performed on the entire dataset. The LSTM achieved the best results in terms of R2 as 0.724
in a 5-min time step and 0.532 in a 15-min time step and in terms of RMSE as 0.139 mm
in a 5-min time step and 0.143 in a 15-min time step. The rainfall events were categorized
into four classes according to their severity and duration using KNN in the event-based
modeling part. This categorization step increased the accuracy of the forecasting models.
In the other experiments, they also used additional predictors such as the rainfall depth
differences and the rainfall depth fluctuations over shorter time stamps than the forecast
lead time, which was the novel aspect of this study. These additions significantly improved
the accuracies of the PSO-SVR (support vector regression optimized by particle swarm
optimization) and the LSTM models. As a result of the experiments, the PSO-SVR and
LSTM approaches performed better than the CNN. Balamurugan and Manojkumar [17]
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compared the statistical methods and machine learning models for rain prediction. It was
shown that the traditional methods could not perform as well as the machine learning
methods. The LR obtained a 84% overall accuracy and a 0.86 precision while the statistical
approach had a 72.6% accuracy and a 0.72 precision. Aguasca-Colomo et al. [19] proposed
a study to estimate the monthly rainfall as rainy or dry by considering a region with a
complex orography. They used global and local meteorological parameters. Linear, non-
linear, and ensemble models were selected to be used in the experiments. According to
the performance metrics, the ensemble XGBoost method outperformed the other models
with an 77–86% accuracy for the training/test set and a 0.34–0.54 kappa coefficient for the
training/test set. They concluded that the influence of the global variables, such as the
North Atlantic Oscillation index (NAO), was very low on the obtained predictive model
while the local variables, such as the geopotential height (GPH), were relatively more
significant than the measured variables in the meteorological stations.

Table 1. Recent studies in rainfall prediction using machine learning techniques.

Ref Year Applied Methods Characteristics of the
Dataset Location The Best Result Method

[14] 2022
DT, NB, KNN, and SVM, and

their combination with
fuzzy logic

12 years (2005 to 2017) of
weather data with 11 features

(temperature, visibility,
relative humidity, etc.).

Lahore,
Pakistan

94% accuracy—proposed
fused ML

[15] 2022 KNN, SVR, ANN,
XGBoost, Stacking

Monthly rainfall series data
between 1961 and 2019,

large-scale climatic indices,
local meteorological variables,

and large-scale
atmospheric variables.

Taihu Basin,
China

0.532 R2—ANN (for
all months)

[16] 2022 Hybrid optimized by PSO SVR,
LSTM, and CNN

Precipitation time series data
from 1974 to 2014 measured

for 5- and 15-min
time intervals.

Tehran,
Iran

0.724 and 0.532 R2—LSTM
for 5-min time step and

15-min time step,
respectively, on the

entire dataset.

[17] 2021
Neural network models based

on LR, DT, RF, and
statistical approach

Ten years of weather data
(temperature, humidity,

pressure, etc.).
84% accuracy—LR

[18] 2020

Ensemble-learning-based
models, including NB, DT, SVM,

RF, and ANN using
average/maximum probability

and majority voting
as combiners

Six weather data containing
temperature, relative

humidity, river flow, rainfall,
and water level.

Malaysia

76%
precision—combination of
SVM, DT, and ANN using

majority voting.

[19] 2019

RF, logistic model trees (LMT),
linear discriminant analysis

(LDA), generalized linear model
(GLM), SVM, XGBoost, GBM

Climate data for a period of
41 years on Tenerife Island

considering dry or
wet weather.

Tenerife,
Spain

77% and 86% accuracies
corresponding to training
and test errors—XGBoost.

Due to human nature, when it is difficult to reach a decision on a subject, the final
decision is made by considering the opinions of more than one expert. In computer
science, this logic is used in ensemble learning applications where, instead of sticking to the
decision of a single model, a solution to that problem is offered on a common denominator
by utilizing the predictive power of more than one model. In this way, the weakness of a
single model for a specific problem can be supplemented by other models so that more
accurate predictions can be obtained. Apart from its application in many fields, ensemble
machine learning models have also been used for rainfall prediction. In the study [15], a
stacking ensemble model combining different machine learning models was presented for
the monthly rainfall prediction in the Taihu Basin, China using large-scale climate indices,
large-scale atmospheric variables, and local meteorological variables as the predictors. The
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experimental studies on nine stations were conducted in five different settings, such as
all the months, the annual aggregation scale, the seasonal, dry/intermediate/wet months,
and the months of extreme rainfall. The R2, RMSE, and MAE measures were used to
evaluate the applied models, which included four base learners (KNN, XGBoost, support
vector regression (SVR), and ANN) and the stacking model. According to the results, the
proposed stacking model produced reasonable and satisfactory predictions in general, and
in many settings, it achieved even better results than the ANN models that usually obtained
good results in the literature. This study strengthened the belief that ensemble learning
models can show a promising performance for rainfall forecasting. In another paper [18],
ensemble learning was analyzed under three different aggregation techniques (the average
probability, maximum probability, and majority voting) to predict the rainfall status. In
terms of the precision, recall, and f-score metrics, different combinations of the NB, DT,
SVM, ANN, and RF methods were evaluated using the voting ensemble learning strategy.
The results showed that majority voting as a combiner obtained the best results among the
others when the voting strategy was applied with SVM, DT, and ANN. In this direction,
a learning approach based on ensemble learning is proposed in our paper using majority
voting as the selected combiner.

An enhanced variation of the K-star algorithm was developed and proposed in this
study for the rainfall prediction. The K-star has been applied in a wide range of areas
such as agriculture [21], bioinformatics [22], surgery [23], mechanical engineering [24], civil
engineering [25], and transportation [26]. The reason why the K-star algorithm was chosen
as the base classifier of the proposed method is that it has achieved good results in many
studies [21–26].

In one of these studies [21], plum kernel cultivars were classified by different algo-
rithms such as a rule-based PART (partial decision tree) classifier and a tree-based LMT
(logistic model trees) classifier in addition to a K-star classifier. According to the various
performance metrics (accuracy, precision, f-score, Matthews correlation coefficient (MCC),
etc.), the K-star acquired the highest discrimination performance metrics with significant
average accuracies compared to the others. In another study [24], the classification of
gear faults was analyzed by comparing three lazy learners, namely the KNN, K-star, and
locally weighted learning algorithms. In terms of the classification accuracy, the optimal
blending parameter was determined as 20 for the K-star classifier, which achieved the
best results compared to the others. In the study [22], 58 classifiers from seven categories
were tested, including Bayes, lazy, function, misc., meta, rules, and trees from the Weka
package. The K-star surpassed them all for the purpose of predicting the protein thermal
stability changes.

In order to identify the risky driving behaviors, the DT, RF, ANN, SVM, KNN, NB, and
K-star were implemented in [26]. Only the K-star perfectly predicted all the types of driving
behaviors by obtaining 100% accuracy, precision, recall, and f-score values. The prediction
of the strength of the geosynthetic-reinforced subgrade soil was made using the ANN,
Gaussian process regression, least median of squares regression, elastic net regularization
regression, K-star, alternating model trees, M5 model trees, and random forest in [25] to
construct safe and sustainable pavement structures. With even better performance than the
ANN and RF, which usually achieved the best results, the K-star had a superior prediction
capability compared to the others. In [23], the psychomotor laparoscopic skills of surgeons
were classified using three different approaches: the radial basis function networks, K-
star, and RF. According to the applied validation techniques, the K-star obtained the best
mean accuracy. The comparisons with the previous methods (linear discriminant analysis,
SVM, and MLP) were also analyzed considering three different tasks (the peg transfer,
intracorporeal knot suture, and pattern cutting task) in terms of the accuracy, sensitivity,
specificity, the area under the curve (AUC), and F1-score. The K-star outperformed all of
them with the highest scores.

Apart from these studies, the K-star was applied in this paper to help solve a specific
environmental problem, namely rainfall prediction. It was selected as the base learner
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of the proposed EK-stars method to utilize its predictive power. The key point was in
selecting strong samples for the training set using a probabilistic approach in the ensemble
learning phase.

3. Materials and Methods
3.1. Proposed Method

In this study, we proposed an ensemble learning approach, abbreviated as EK-stars,
which combines a number of K-star classifiers for achieving a low-prediction error. It
increases the selection possibility of the instances that are highly predicted by a classifier,
thus both the base models and the final ensemble model converge at a strong learner.
In other words, the EK-stars method increases the impact of strong training instances to
prevent mislearning so that the probability of misclassification is reduced.

Figure 1 shows the general overview of the rainfall prediction system which uses
the proposed EK-stars method. First, in the data acquisition step, the meteorological data
(temperature, rainfall, evaporation, sunshine, wind, humidity, pressure, and cloud) were
obtained from the observation stations, leading to the generation of big data. The collected
data were stored in a cloud environment to be accessed wherever and whenever required.
In the next step, the data were passed through a data preparation stage which included
the missing data elimination, data transformation, and feature selection. Then, data were
prepared for the implementation of the EK-stars method. In the training phase, the EK-stars
method built a classifier based on the training set and then computed the classification
probability for each instance by using the classifier. The classification probability is the
probability of an instance being assigned to a category. After that, the method randomly
selected a subset of instances using a probability-based strategy. The method increased
the likelihood of the observations that were highly predicted by a classifier by a factor that
depended on the classification probability. It should be noted here that the randomness
in the probabilistic sampling ensured that each model in the ensemble would be trained
on different instance subsets to promote diversity. Multiple training sets were generated
from the original data. After that, a K-star model was built on each probabilistic sample. In
the testing stage, another set of data was utilized to assess the accuracy of the developed
ensemble model. In the prediction phase, an output for previously given unseen data was
produced using majority voting on the decisions of the individual K-star models in the
ensemble, which were built on the training sets generated using probabilistic sampling.
After that, the predicted result was ready to be presented as an assistant to the decision-
maker in a way that the prediction could be utilized for many different purposes, including
water planning, flood prevention, and farm improvement.

Our study meets the Sustainable Development Goals (SDG) adopted by the United
Nations in 2015 in three aspects, namely for “Good Health and Well-Being”, “Sustainable
Cities and Communities”, and “Life on Land”, as shown in Figure 2. In case of low rainfall,
water resources are likely to decrease over time. Inaccessibility to water in this case may
trigger the risk of epidemic diseases. In addition, in regions where there is very low
precipitation and high temperatures, drought and wind erosion could occur. On the other
hand, when a dramatic increase is observed through early warning systems, flood control
could be managed in advance to possibly prevent loss of both life and property. Since the
system powered by the proposed machine learning model could detect the rainfall status
in advance, human risks and environmental risks could be prevented without serious
consequences by serving the “Good Health and Well-Being” and “Life on Land” purposes.
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In times of heavy rainfall, urban infrastructure can be seriously affected to an ex-
tent that drainage systems become overwhelmed and structural damage to the buildings
becomes highly probable, resulting in an increased disruption. In terms of urban transporta-
tion, there is a possibility of dangerous driving conditions, as unexpected precipitation
can cause vehicles to slip on the highway. Our predictions can act in these scenarios as
a decision support system (DSS) that helps to determine the urban areas where stronger
infrastructure resources should be spent, improve protective measures for preventing
accidents caused by heavy rainfall on highways by meeting the “Sustainable Cities and
Communities” goal, and provide citizens’ satisfaction and prosperity.

Another consideration could be observed in agricultural activities. Plants, agricultural
products, and crops need different amounts of water to produce an efficient yield. Rainfall
is the most important water resource used in agriculture and its accurate prediction is
significant. At this point, an early warning system, supported by our machine learning
model, can help the commissioned agricultural authorities take the necessary precautions
for low/high precipitation situations. For example, if a dry period is expected, the necessary
irrigation systems could be activated on time for the products that need more water, or on
the contrary, when high precipitation is expected authorities could use the systems that will
reduce the humidity for the products that require less moisture. On this occasion, the food
availability for citizens could increase in direct proportion to the increase in the agricultural
yield. Furthermore, economic development could be achieved with an increase in the
income generated from agriculture. Therefore, both the “Life on Land” and “Sustainable
Cities and Communities” aspects could be met as a consequence by our study.

3.2. Formal Definitions

Suppose there is a dataset D with n data instances such that D = {di}n
i=1 = {d1, d2, . . . , dn}.

A data instance di consists of an input vector xi and its corresponding output yi such
that di = (xi, yi). The input xi is an m-dimensional vector with the feature values
F = (F1, F2, . . . , Fm) Therefore, xi can be denoted as xi =

(
x1

i , x2
i , . . . , xm

i
)
, where xj

i is the
value of the j-th attribute of the i-th data sample. The output yi is one of the L distinct class
labels such as yiεY = {c1, c2, . . . , cL}. Here, yi = cj means that the data instance di belongs
to the j-th class in the pre-defined label set. The aim of the EK-stars method is to learn a
mapping function f : X → Y between the input space xi ε X and output space yi ε Y to
minimize the prediction error.

The primary aim of the EK-stars method is to improve the accuracy by taking advan-
tage of the strengths of ensemble learning in handling a classification problem. To create an
ensemble E, the algorithm generates several new training sets {D1, D2, . . . , Dk} from the
original dataset D based on a systematic sampling approach, called probabilistic sampling.

Definition 1. (Probabilistic Sampling) Probabilistic sampling refers to selecting a sample from
a collection of observations based on the principle of giving a higher chance of being selected to the
instances with a high probability.

The algorithm builds an initial classifier, and then calculates the probability distribu-
tion over all the classes for a given query instance xi using this classifier, and finally finds
the highest probability as given in Equation (1).

p(xi) = arg max
jε{1,...,L}

p(xi|cj) (1)

where p(xi) is the maximum probability that a given data instance (xi) can assign to a
class, and p(xi

∣∣cj) is the probability that instance xi belongs to the class cj. The maximum
probability values for all the data instances P = {p1, p2, . . . , pn} are computed to be used in
the selection of the samples which will be utilized to construct the models in the ensemble.
All the data instances have a different likelihood of being selected as the sample and a
conclusion can be drawn from the sample set involving the strong instances.



Sustainability 2023, 15, 5889 9 of 24

Definition 2. (Strong Instance) A strong instance is an observation that can be classified by a
model with a high probability.

Definition 3. (Probabilistic Sample) A probabilistic sample Di is a collection of n instances,
where each element is randomly selected from the original dataset D using replacement by consider-
ing their classification probabilities P.

It is expected that a probabilistic sample will mostly consist of the strong instances. In
other words, the instances with a higher probability possess a higher chance of selection.
In contrast, weak instances have the lowest probability values, and the algorithm aims to
select these observations as minimally as possible. If a data instance has a low probability
of being classified as a label, this means that it is an uncertain observation, so, it may cause
the model to learn incorrectly during the training phase.

The proposed EK-stars method constructed a collection of K-star classifiers such that
each one is built on a different probabilistic sample Di. In this article, we proposed a new
type of ensemble learning approach, called pagging, to encourage the method to give more
credit to the stronger samples as defined in Definition (4).

Definition 4. (Probability-based Aggregating—Pagging) Probability-based aggregating (pag-
ging) is an ensemble learning approach that generates multiple prediction models, denoted by
E = {M1, M2, . . . , Mk}, on the probabilistic samples (randomly selected—probably strong—instances
by considering their classification probabilities). Each model Mi produces an output for a given
input x, and the majority result or average result is taken to make the final decision.

Pagging utilizes the strong instances with high classification probabilities. This means
that the instances with a high classification probability have a more significant impact on
the construction of the predictive model compared to the instances with a low classification
probability. The classification probability is the probability that an instance will be classified
into a class.

Figure 3 illustrates the differences between the bagging, boosting, dagging, and
pagging techniques. Bagging (bootstrap aggregating) creates multiple training sets by
taking random samples using replacements (bootstrap sampling) from the original dataset
and building one classifier on each bootstrap sample. On the other hand, dagging (disjoint
aggregating) generates a number of disjoint and stratified folds from the data and uses
the base learning algorithm for each part of the data such that each dataset has samples
that differ from the others. Boosting sequentially adds ensemble members by identifying
the errors for the weighting and gives priority to the classifiers for the weighted voting.
There are two major differences between pagging and the others. Firstly, pagging builds
an initial classifier to determine the classification probabilities for each instance. Secondly,
it uses a function that increases the chance for the instances to be selected as a training
sample during the sampling process, which are predicted by the initial classifier with a
high probability. Majority voting is the common step for pagging, bagging, dagging, and
boosting and corresponds to the “aggregating” phase.

In ensemble E, the i-th model (Mi) is trained on the i-th dataset (Di). In the classifica-
tion step, a sequence of the classification models {M1, M2, . . . , Mk} is considered to make
a prediction using a voting mechanism. The equation for the majority voting is as follows.

Ê(x) = arg maxc

k

∑
i :c=Mi (x)

1 (2)

where Mi(x) is the output predicted by the i-th model, k is the ensemble size, c is a class
label, and Ê(x) is the final predicted class that maximizes the equation for a given input x.
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Definition 5. (EK-stars) The EK-stars is a pagging approach that combines a number of K-star
classifiers to achieve a low-prediction error.

One of the advantages of the EK-stars method is that it builds K-star classifiers on
strong samples as an alternative to bootstrap samples. Due to the application of proba-
bilistic sampling, we expect that the K-star models will be built on strong samples; thus,
a prediction performance improvement could be achieved through the ensemble of all
the classifiers.

Algorithm 1 presents the pseudo-code of the proposed EK-stars method. In the first
step, a classifier (H) is built on the original training set D. After that, the maximum
classification probability (Pi) is found separately for each instance. At the same time, the
cumulative total is assigned to each instance. In this way, the EK-stars method decreases
the likelihood of low-classified instances and increases the chance of the instances that are
predicted with a high probability, which increases the focus on the strong instances. As
a result, the first loop produces a cumulative probability list (C). In the next main loop,
a new training dataset Di is created using probabilistic sampling at each i-th iteration.
Here, a random number is generated n times to choose the instances for the generation
of a new training dataset for each ensemble iteration. The algorithm gives more selection
chances to the instances that are classified with a high probability in order to overcome
the class noise problem. Class noise can not only affect the complexity of the learned
models but also the learning performance. The EK-stars method increases the selection
likelihoods of the certain learning samples and decreases the selection of the uncertain
learning samples. The algorithm builds k models {M1, M2, . . . , Mk} on the probabilistic
samples {D1, D2, . . . , Dk}, which are added to the ensemble E. Finally, to classify an input
sample x, the models under E are utilized and each predicts an output for that sample. The
final output is then determined using a voting mechanism, i.e., majority voting.
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Algorithm 1. Ensemble of K-stars (EK-stars)
Inputs:

D: the dataset D = {(x1, y1), (x2, y2), . . . ., (xn, yn)}
k: ensemble size
x: a given input to be classified

Outputs:
E: ensemble model
Ê(x): the predicted class label for an input sample x

Begin:
H = Train(D)
cumulative = 0
for i = 1 to n do

pi = ClassificationProbability(H, xi)
cumulative = cumulative + pi
C.Add (cumulative)

end for
E = Ø
for i = 1 to k do

for j = 1 to n do
rnd = Random(0, C(n))
for q = 1 to n do

if rnd <= C(q)
Di.Add(xq, yq)

break
end if

end for
end for
Mi = KStar(Di)
E = E ∪Mi

end for

Ê(x) = arg maxc

k
∑

i :y= Mi (x)
1

End Algorithm

The time complexity of the EK-stars algorithm is O(k. L(n) + T), where k is the ensemble
size, L(n) is the time needed for the execution of a classification algorithm on n instances,
and T represents the time required for the probabilistic sampling process.

4. Dataset Description

The experiments were carried out on the rainfall data obtained from the kaggle.com
web page [27]. The dataset includes the observations related to the meteorological variables
between the years 2007 and 2017. The data from 26 regions of Australia were considered in
the experiments, and their locations are shown on the map in Figure 4.

The statistical summary of the features is given separately in Tables 2 and 3 for the nu-
merical and categorical attributes, respectively. In the training dataset, the “RainTomorrow”
values were assigned as yes if the amount of the next-day precipitation was above 1 mm,
otherwise they were attributed as no. The aim was to correctly predict the target attribute
“RainTomorrow” for a given day by considering the input variables. In other words, for
the given input variables regarding a day, a forecast for whether the rain will happen the
next day or not was expected.
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Table 2. Continuous features.

Feature Description Unit
# of

Missing
Data

Min 1st
Qrt. Mean 3rd

Qrt.
Std.
Dev. Max

MinTemp The lowest temperature in degrees ◦C 637 −8.5 7.6 12.1864 16.8 6.40328 33.9

MaxTemp The highest temperature
in degrees

◦C 322 −4.8 17.9 23.2268 28.2 7.11762 48.1

Rainfall The amount of rain recorded
during the day mm 1406 0 0 2.34997 0.8 8.46517 371

Evaporation Class A pan evaporation in 24 h
until 9 a.m. mm 60,843 0 2.6 5.46982 7.4 4.18854 145

Sunshine The number of hours of radiant
sunshine in the day hours 67,816 0 4.9 7.62485 10.6 3.78152 14.5

WindGustSpeed The speed of the strongest wind
gust in the 24 h to midnight km/h 9270 6 31 39.9843 48 13.5888 135

WindSpeed3pm Wind speed averaged over 10 min
before 3 p.m. km/h 2630 0 13 18.6376 24 8.80335 87

WindSpeed9am Wind speed averaged over 10 min
before 9 a.m. km/h 1348 0 7 14.0020 19 8.89334 130

Humidity3pm Humidity at 3 p.m. % 3610 0 37 51.4826 66 20.7978 100
Humidity9am Humidity at 9 a.m. % 1774 0 57 68.8438 83 19.0513 100

Pressure3pm Atmospheric pressure reduced to
mean sea level at 3 p.m. hpa 13,981 977.1 1010.4 1015.26 1020 7.03668 1039.6

Pressure9am Atmospheric pressure reduced to
mean sea level at 9 a.m. hpa 14,014 980.5 1012.9 1017.65 1022.4 7.10548 1041

Cloud3pm Fraction of sky obscured by cloud
at 3 p.m. oktas 57,094 0 2 4.50317 7 2.72063 9

Cloud9am Fraction of sky obscured by cloud
at 9 a.m. oktas 53,657 0 1 4.43719 7 2.88702 9

Temp3pm Observed temperature at 3 p.m. ◦C 2726 −5.4 16.6 21.6872 26.4 6.93759 46.7
Temp9am Observed temperature at 9 a.m. ◦C 904 −7.2 12.3 16.9875 21.6 6.49284 40.2
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Table 3. Categorical features.

Feature Description % of Missing Data Cardinality Mode Mode Freq.

Date Date on which the measurement
was done 0 3456 2013-12-12 49

Location Location name of the weather station 0 49 Canberra 3418

WindGustDir Direction of the strongest wind gust in
the 24 h to midnight 0.065114 17 W 9780

WindDir9am The direction of the wind at 9 a.m. 0.070134 17 N 11,393
WindDir3pm The direction of the wind at 3 p.m. 0.026443 17 SE 10,663

RainToday “Yes” if precipitation exceeded 1 mm,
otherwise “No” 0.010013 3 No 109,332

Initially, there were 24 features, including the “RISK_MM” feature (the amount of rain
for the next day in mm). Since the aim was a classification task instead of a regression
task and there was a significantly high correlation between the target attribute and the
“RISK_MM” feature, the “RISK_MM” feature was dropped. The “Date” attribute was split
into two distinct features (month and season) and the original date column was removed.
The missing observations were eliminated. As a result, 56,420 instances remained. In the ex-
perimental studies, undersampling was applied by producing random subsamples without
replacement using 10% of the observations to improve the accuracy of the predictions.

5. Results and Discussion

The conducted studies were performed by investigating the effects of three cases
on the classification accuracy while constructing the proposed EK-stars method. These
were selecting the different blending parameter values for the K-star classifier, applying
the different methods in the pagging step to identify the probabilities, and the effect of
the feature selection. All the experiments were implemented using the Weka library [28]
on Visual Studio. Splitting of the training and test sets was arranged as 80 to 20, respec-
tively. The number of K-star classifiers (ensemble size) was 10 for all the experiments,
which represented a compromise between the satisfactory model performance and the
computational efficiency.

Reasonably determining the hyperparameter value of the K-star classifier was a
crucial step in the EK-stars because it was the base learner of the ensemble strategy. The
performance of the K-star algorithm was directly related to its blending parameter, with
values between 0% and 100%. If the blending parameter was selected as very small, a
probability distribution was formed as if the nearest neighbor measure was used. In the
opposite case, almost all the samples had the same transformation and were weighted
equally [29]. Using this information, the EK-stars was tested using different blending
parameter values from 10 to 90 when Naive Bayes was used in the pagging phase. Figure 5
shows the change in the classification accuracy for each value. It is apparent that there was
an enhancement in the performance until the blending parameter was selected as 70 (the
best value, 85.64% accuracy). After that, the accuracy decreased. Therefore, the EK-stars
was implemented using 70 as the blending parameter.

The strong instances determined by the classification probabilities were more likely
to be selected in the pagging step of the EK-stars. These probabilities were obtained
by applying different methods. In this study, the naive Bayes (NB), logistic regression
(LR), decision tree (DT), and K-star (KS) classifiers were separately applied with their
default parameters in the Weka library to identify the classification probabilities of the
instances. Figure 6 displays these experimental results based on the accuracy when the
blending parameter was 70. The EK-stars was named from the method used in the pagging
step. For example, the EK-stars using NB as the probabilistic method was depicted as
EK-starsNB. According to the results, EK-starsNB predicted the next-day rainfall status
more accurately than the others with an accuracy of 85.64%. The accuracy (85.55%) of
the original K-star classifier was also compared to the EK-stars, although there was not
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a very remarkable variation. An improvement in the performance was observed when
EK-starsNB was applied.
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Apart from the accuracy metric, the other performance measures were also considered
to analyze the results from different perspectives. For this purpose, weighted averages
of the recall, precision and f-score measures, and Cohen’s kappa coefficient were also
measured and the considered findings are shown in Table 4. The recall presents the
information on how many samples with a real positive class are predicted as positive.
Nevertheless, it does not give any information about the prediction quality on the negative
class. The precision gives the information on how many of the samples predicted in the
positive class are actually positive. Separately, the recall and precision metrics can be
useless. If a classifier always predicts the positive class, the recall will be high. On the
contrary, if the model never predicts the positive class, the precision will be high. Their
results cannot be reliable in such cases. The f-score can be a good solution to this problem
by taking the harmonic average of the recall and precision. Table 4 shows that there was
no significant difference among the results of the applied methods from considering the
weighted averages of the recall (around 0.85), precision (around 0.84), and f-score values



Sustainability 2023, 15, 5889 15 of 24

(around 0.84). In addition to the classification accuracy, these metrics also proved that the
EK-stars had a considerably high prediction capability.

Table 4. Evaluation of the applied methods under the other performance metrics when the blending
parameter was 70.

Method Recall Precision F-Score Kappa Coef.

K-star 0.855 0.844 0.844 0.483
EK-starsLR 0.855 0.843 0.842 0.475
EK-starsDT 0.848 0.836 0.838 0.468
EK-starsKS 0.852 0.840 0.839 0.468
EK-starsNB 0.856 0.845 0.844 0.485

The kappa statistic is a measure of how closely the samples classified by a machine
learning classifier match the data labeled as the ground truth by comparing it to the expected
accuracy of a random classifier. That means it considers random chance. According to the
study in [30], the value of the kappa coefficient was interpreted in the interval < 0.00 as
poor, 0.00–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial,
and 0.81–1.00 as almost perfect. According to the results in Table 4, all the applied methods
obtained a moderate agreement (around 0.470) in terms of the kappa statistic. Although
the results were very close to each other, the EK-starsNB was ahead of the others by a
fractional difference.

Another study was conducted on the region-based rainfall forecast. The original
K-star classifier and the best-performing classifier from the previous part mentioned as
EK-starsNB were compared to determine each region’s rainfall status by using the blending
parameter of 70. Table 5 demonstrates the classification accuracies of both methods for the
different locations. EK-starsNB performed better or with an equal accuracy in 21 out of the
26 regions. In some regions, for example in Portland, EK-starsNB increased the accuracy to
a large extent (from 62.86% to 71.43%). Considering the average classification accuracies of
all the regions, EK-starsNB outperformed the K-star with an 81.86% accuracy.

The selection of the important features increased the accuracy of the classifiers in
many cases. In this direction, the most important ten features were determined for further
evaluation in the experiments. For this purpose, Pearson’s correlation technique was used
to determine the relationship between the features and the class attribute. These selected
attributes were Sunshine, Humidity3pm, Cloud3pm, Cloud9am, RainToday, Rainfall, Hu-
midity9am, Pressure9am, WindGustSpeed, and Pressure3pm. Figure 7 displays the worth
of each attribute (0.2297 to 0.4563) by measuring the Pearson’s correlation values between
the target attribute “RainTomorrow”. Sunshine was the most relevant feature since the
radiation from the Sun would be directly related to a less or more cloudy day. Therefore,
there would be a lower or higher probability of rain. Humidity was the second most
correlated variable since the higher the humidity, the greater the possibility of rain. A high
correlation with cloudiness was reasonable since the greater the number of clouds, the
more likely it would rain. Rainfall was a feature that indicated the rain that had fallen (in
mm), so it was an important measure that indicated whether it would rain tomorrow.
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Table 5. Comparison of the proposed method with the original K-star classifier in terms of the
classification accuracy while predicting the rainfall for the different locations.

Location
Accuracy (%)

K-star EK-stars

Alice Springs 91.11 91.11
Brisbane 75.44 73.68
Cairns 75.56 80.00

Canberra 81.82 81.82
Cobar 90.91 90.91

Coffs Harbour 75.00 75.00
Darwin 73.77 77.05
Hobart 88.10 88.10

Melbourne 78.38 72.97
Melbourne Airport 80.36 82.14

Mildura 83.02 83.02
Moree 86.49 89.19

Mount Gambier 71.11 75.56
Norfolk Island 73.47 71.43

Nuriootpa 78.26 78.26
Perth 91.04 88.06

Perth Airport 90.16 86.89
Portland 62.86 71.43

Sale 79.41 82.35
Sydney 88.57 88.57

Sydney Airport 73.21 78.57
Townsville 92.50 92.50

Wagga Wagga 82.35 86.27
Watsonia 75.44 75.44

Williamtown 76.00 76.00
Woomera 92.11 92.11

Avg. 81.02 81.86
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The experiment to select the best blending parameter was repeated on the data after
the feature selection was applied. Since the most accurate predictions were achieved using
logistic regression in the pagging phase of the EK-stars, logistic regression was used in the
experiments. Figure 8 shows the changing trend of the classification accuracy using the
blending parameters from 10 to 90. It was a bell-shaped curve. The worst performance was
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82.57% when 90 was selected as the blending parameter, and the best was 87.15% when the
value was 50. The general accuracy also increased from 85.64% to 87.15% after the selection
of the significant features.
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The performance of the EK-stars was monitored by applying four different methods
in pagging after the feature selection, using 50 as the blending parameter. The original
K-star was also implemented using the same blending parameter of 50 without the feature
selection. Then, it was compared to our method to show the effect of using both the
feature selection and the proposed method on the classification accuracy. Before the feature
selection, the predictions of EK-starsNB were the most accurate with an 85.64% accuracy
compared to the others. However, EK-starsLR outperformed EK-starsNB and obtained the
best classification accuracy of 87.15%. The original K-star without the feature selection fell
behind all the EK-stars variations with an accuracy of 83.33%. As shown in Figure 9, the
feature selection enhanced the performance.
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The other performance metrics (such as Cohen’s kappa coefficient and the weighted
averages of the recall, precision, and f-score) were also evaluated after the feature selection
using the optimum value (50) of the blending parameter, as given in Table 6. Compared to
the results in Table 4, the performance of the EK-stars algorithms in terms of the mentioned
metrics increased when the feature selection was applied. For example, the weighted recall
value of EK-starsDT increased from 0.848 to 0.865. The kappa statistics still produced values
in the moderate range. However, their strength increased (for example it was updated from
0.475 to 0.524 for EK-starsLR). It was apparent that the K-star fell behind all the EK-stars
methods for each metric while EK-starsLR performed the best compared to the others.
The results of the different metrics proved that the EK-stars algorithms outperformed the
traditional K-star classifier.

Table 6. Evaluation of the applied methods under the other performance metrics after the feature
selection was applied using the blending parameter of 50.

Method Recall Precision F-Score Kappa Coef.

K-star 0.833 0.825 0.828 0.449
EK-starsLR 0.871 0.866 0.858 0.524
EK-starsDT 0.865 0.857 0.851 0.502
EK-starsKS 0.867 0.862 0.850 0.497
EK-starsNB 0.869 0.862 0.855 0.515

A region-wide analysis was repeated using EK-starsLR as the predictor on the data
after the feature selection was applied. The accuracies obtained by the original K-star
applied using the blending parameter of 50 on the data without the feature selection were
also compared to the accuracies obtained by EK-starsLR. In the majority of the regions
(17 out of 26) shown in Table 7, EK-starsLR performed the best in terms of the accuracy.
Additionally, it succeeded in the same performance with the original K-star in three out of
the 26 locations. Performing the feature selection significantly increased the accuracy in a
number of cities compared to the case without the feature selection. For example, in the city
of Coffs Harbour, the accuracy escalated from 75% to 83.33%. When the average accuracy of
all the cities was taken into consideration, the general performance was positively changed
on behalf of EK-starsLR, which increased from 81.86% to 82.08%. On the other side, the
original K-star obtained an 80.34% accuracy, and it could not predict the rainfall status as
well as EK-starsLR.

In the final step, the literature studies that took the same subject as the main aim and
used the same dataset were investigated and compared to our study. Table 8 displays the
accuracies obtained in these studies and the results of our method. The comparisons were
made by applying the optimum model EK-starsLR with the blending parameter of 50,
which will be mentioned as EK-stars in short. In the study [31], various machine learning
methods, including the KNN, DT, RF, and NN were performed, and parameter tuning
was applied to determine the optimum values of the parameters. The best accuracy was
obtained using NN at 84% when the ratio of 75–25 was used as the training and test split.
In order to make a valid comparison, the EK-stars algorithm was also trained using a
75–25 split ratio. According to the results, the EK-stars obtained a 85.60% accuracy and
outperformed the NN. In addition, the kappa coefficient and the weighted averages of the
precision, recall, and f-score values were also analyzed. Even though the kappa coefficient
with the value of 0.5 was higher than ours (0.472) when the RF was applied, the results of the
other metrics were obtained using EK-stars with the highest precision (0.849), recall (0.856),
and f-score (0.838) values. In another study [32], the KNN, DT, and LR were implemented
using the meteorological data, and the LSTM was also applied to analyze the effect of
the previous weather of the week on the rainfall data. Two ensemble learning methods,
bagging and adaptive boosting (AdaBoost), were also performed. The best-performing
predictor was identified as the LR with an 85% accuracy when an 80 to 20 training and
test split was used. However, the LR did not manage to obtain better results than the
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EK-stars. The CART, SVM, and KNN were the predictors in the study [33], and they were
applied on both the processed data, where the data preprocessing and feature selection
were performed, and the original dataset when the ratio of the training and test split was
80 to 20. The KNN was the most accurate method using the original dataset with a value of
85%. Our proposed method correctly classified more samples compared to the results of
this study in terms of the accuracy. Furthermore, other analyses were also conducted on
the weighted averages of the precision, recall, and f-score. The best model (KNN) in the
mentioned study resulted in values of 0.672, 0.480, and 0.560 for the precision, recall, and
f-score, respectively. On the other side, the EK-stars performed very well and showed a
considerable difference compared to the KNN by obtaining 0.866, 0.871, and 0.858 for these
same measures. In [34], after several feature engineering steps were practiced on the dataset,
the categorical boosting (CatBoost) and perceptron methods were performed, and at most,
an 81% accuracy was obtained, which was lower than the EK-stars. Dieber and Kirrane [35]
applied four models (DT, RF, LR, and XGBoost) using a 70 to 30 ratio for the training and
test set under their proposed framework that was designed for an easy interpretation of
the experimental outputs. The XGBoost achieved the best accuracy compared to the others.
In this direction, the EK-stars was implemented using a 70–30 ratio and obtained an 85.05%
accuracy. The weighted averages of the precision, recall, and f-score metrics were also
conducted, and it was shown that our method and the XGBoost gave similar results of
approximately 0.850 for all the metrics. The study in [36] presented a method based on
neural networks to learn spatiotemporal knowledge in the form of weighted graph-based
signal temporal logic (w-GSTL-NN) formulas. The experiments were conducted on 20%
of the whole dataset. Their proposed method could not achieve the most accurate results
compared to the other applied models and our model EK-stars, which obtained an 81.69%
accuracy. The sequential ANN model and SVM were found to be better for obtaining
the accuracy values, with approximately 85% and 83%, respectively. Umamaheswari and
Ramaswamy [37] proposed a novel methodology using both preprocessing (the moving
average probabilistic regression filtering (MV-PRF)) and optimization techniques (the time
variant particle swarm optimization (TVPSO)). Then, neural network methods such as back
propagation neural networks (BPNN), iterative convolutional neural networks (ICNN),
and deep convolutional neural networks (DCNN)) were applied. The DCNNs classified
the test samples better than the others with nearly an 80% accuracy. However, they didn’t
state the training test split ratio, so it was meaningless to compare it to our results. The
different optimization algorithms of the neural networks, such as the adaptive moment
estimation (Adam), an extension of the Adam optimizer (Adamax), adaptive gradient
(Adagrad), Nesterov-accelerated Adam (Nadam), stochastic gradient descent (SGD), and
root mean square propagation (RMSProp), were analyzed in the study of Pilošta [38].
They achieved accuracy values very close to each other (approximately 85%). The test set
ratio was missing in this study too. By including and applying the Moon’s phases as a
new feature to the original rainfall dataset, the predictions were made by the LR and RF
in the study [39]. The best accuracy was mentioned as 86% by the RF. The ratio of the
training and test split was not stated. He [40] used pool-based active learning to forecast
the rainfall status and compared its results with the random sampling using the logistic
regression model. It was reported that they had almost the same prediction accuracy
(82%). They did not clearly state the training and test set ratios. In [41], the rain prediction
was performed to obtain an opinion on a probable wildfire, so a system based on the
RF was developed. They obtained 84.70% classification accuracy but did not comment
on which setup was used in the training/test set. Deng [42] used the LR and DT with
a 70 to 30 training and test split, and the LR outperformed DT in the experiments. A
new sample selection framework (self-sampling (SS)) for the boosting algorithms was
proposed in [43]. Several boosting algorithms, including the logistic boosting (LogitBoost),
Gentle AdaBoost (GentleBoost), robust boosting (RBoost), conditional risk-based AdaBoost
(CB-AdaBoost), and self-sampling gradient boosting (SSGB), were practiced. One of their
proposed models (self-sampling AdaBoost (SSAdaBoost)) obtained the most accurate
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rainfall predictions compared to the others. Moreover, the weighted average of the f-score
metric was also measured and the SSAdaBoost achieved 0.629 as the best predictor. The
EK-stars outperformed the SSAdaBoost in terms of the f-score with a value of 0.858. In [44],
the feature selection and resampling (undersampling and oversampling) techniques were
implemented on the dataset. The LR, DT, KNN, RF, AdaBoost, and gradient boosting were
used in the experiments. Approximately an 85% accuracy was obtained by the KNN using
the original data when the ratio of the training and test split was 75 to 25 and a stratified
10-fold approach was used. In summary, the neural network models or ensemble learning
strategies were generally preferred in the mentioned studies due to their predictive power.

Table 7. Comparison of the proposed method with the original K-star classifier in terms of the
classification accuracy while predicting the rainfall for the different locations after the feature selection
was applied.

Location
Accuracy (%)

K-star EK-stars

Alice Springs 91.11 91.11
Brisbane 78.95 70.18
Cairns 73.33 86.67

Canberra 81.82 68.18
Cobar 90.91 81.82

Coffs Harbour 75.00 83.33
Darwin 72.13 78.69
Hobart 88.10 85.71

Melbourne 72.97 81.08
Melbourne Airport 82.14 83.93

Mildura 83.02 84.91
Moree 89.19 91.89

Mount Gambier 68.89 75.56
Norfolk Island 71.43 75.51

Nuriootpa 76.09 80.43
Perth 89.55 83.58

Perth Airport 88.52 88.52
Portland 74.29 77.14

Sale 76.47 70.59
Sydney 88.57 91.43

Sydney Airport 71.43 85.71
Townsville 90.00 92.50

Wagga Wagga 82.35 84.31
Watsonia 68.42 77.19

Williamtown 72.00 72.00
Woomera 92.11 92.11

Avg. 80.34 82.08

As shown in Table 8, the proposed EK-stars method outperformed the recent studies
in three scenarios based on the different training/test split ratios. When the 70:30 split ratio
was applied, the average accuracy of the studies [28,29,36] was 81.28% while the EK-stars
achieved an 85.05% accuracy. In the experiments with the 75:25 ratio, the studies in [25,38]
were performed with an accuracy of 83.85% on average while the EK-stars concluded
with 85.60%. Finally, when tested with the 80:20 split ratio, the average accuracy of the
mentioned methods [26,27,30,37] was 82.66% compared to 87.15% in the EK-stars. The
improvements made by the EK-stars were approximately 4%, 2%, and 4.5%, respectively.
As the training data increased, the success rate of the EK-stars increased accordingly, which
was reasonable because the number of samples representing each class was increased.
To make a general conclusion, the average classification accuracy for all the mentioned
studies and the average accuracy of the EK-stars were obtained by taking their mean. As
a result, the proposed EK-stars method performed the best on average compared to the
recent studies (82.68%) in terms of the classification accuracy with a value of 85.93%. Thus,
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our method demonstrated its superiority over the others with an over 3% improvement
on average by utilizing the power of a new ensemble learning strategy. Furthermore, the
results of the other performance metrics (recall, precision, f-score, and kappa coefficient)
proved that the EK-stars managed to produce satisfactory and reliable predictions.

Table 8. Comparison of the proposed method with the state-of-the-art studies in the literature.

Reference Year Method Split
Ratio Accuracy (%) Recall Precision F-Score Kappa

Coef.

Sarasa-Cabezuelo [31] 2022

NN

75:25

84.00 0.530 0.650 0.590 0.490
DT 83.00 0.460 0.610 0.520 0.420
RF 83.00 0.660 0.570 0.610 0.500

KNN 83.00 0.320 0.700 0.440 0.360
Proposed Method EK-stars 85.60 0.856 0.849 0.838 0.472

Zhao et al. [32] 2022

LR

80:20

85.00

- - - -

DT 78.00
LSTM 85.00

AdaBoost 82.00
Bagging 79.80

KNN 80.00
Proposed Method EK-stars 87.15 0.871 0.866 0.858 0.524

Ahmad [33] 2022
KNN

80:20
85.00 0.480 0.672 0.560 -

CART 80.19 0.200 0.560 0.300 -
Proposed Method EK-stars 87.15 0.871 0.866 0.858 0.524

Mahadware et al. [34] 2022
CatBoost

70:30
81.37 - - - -

Perceptron 77.60
Proposed Method EK-stars 85.05 0.850 0.844 0.831 0.465

Dieber and Kirrane [35] 2022

DT

70:30

79.00 0.790 0.830 0.800 -
RF 80.00 0.800 0.830 0.810 -
LR 79.00 0.790 0.840 0.800 -

XGBoost 85.00 0.850 0.850 0.840 -
Proposed Method EK-stars 85.05 0.850 0.844 0.831 0.465

Baharisangari et al. [36] 2022

DT

80:20

76.14

- - - -
KNN 81.04
SVM 82.61
ANN 84.73

w-GSTL-NN 81.69
Proposed Method EK-stars 87.15 0.871 0.866 0.858 0.524

Deng [42] 2020
LR

70:30
84.95 - - - -

DT 83.32
Proposed Method EK-stars 85.05 0.850 0.844 0.831 0.465

Liu et al. [43] 2020

AdaBoost

80:20

84.70

- -

0.614

-

LogitBoost 83.94 0.546
GentleBoost 84.19 0.581

Rboost 84.39 0.567
CB-AdaBoost 84.39 0.567

Gradient Boosting 84.07 0.517
SSAdaBoost 84.77 0.629

SSGB 84.23 0.560
Proposed Method EK-stars 87.15 0.871 0.866 0.858 0.524

Oswal [44] 2019

RF

75:25

84.38

- - - -

Gradient Boosting 84.45
LR 83.71

AdaBoost 84.90
KNN 85.04

DT 83.06
Proposed Method EK-stars 85.60 0.856 0.849 0.838 0.472
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6. Conclusions and Future Work

The estimation of rainfall, which is one of the crucial issues in the environmental field,
was handled using a machine learning approach in this study. Ten years of historical data
consisting of the temperature, pressure, sunshine, humidity, wind direction, etc. collected
in the regions of Australia were used to predict the next-day rainfall status. An approach
abbreviated as the EK-stars, which was based on ensemble learning, was presented for this
aim. The general mechanism of this method was that a number of K-star classifiers were
performed in each ensemble iteration by randomly selecting the strong instances using
a probabilistic technique. Three different scenarios were considered in the experimental
study. The determination of the optimal value of the blending parameter for the K-star
classifier, implementing the EK-stars with different methods, including the DT, LR, NB, and
K-star in the pagging step, and applying the feature selection were carried out to obtain the
best classification accuracy. Furthermore, the weighted averages of the precision, recall,
f-score, and Cohen’s kappa coefficient values were also analyzed.

The main findings of this study can be summarized as follows.

� The EK-stars method (87.15%) achieved a higher classification accuracy than the
standard K-star method (83.33%) on the same dataset.

� The best accuracy was obtained by the EK-stars with the logistic regression technique
as the base learner.

� The performance of the model was evaluated using the different hyperparameter
values and achieved the highest accuracy with the blending parameter of 50.

� When the significance of the features was investigated by the Pearson’s correlation
technique, it was revealed that sunshine had the highest score. It was followed by the
humidity and cloud variables.

� Our method (85.93%) outperformed the state-of-the-art methods (82.68%) on average.
Therefore, the proposed method demonstrated its superiority over the previously
reported methods [30–35,41–43], with an improvement of over 3%.

This study mainly contributed to the following subjects.

• The areas that will be badly affected by drought can be predicted using the proposed
system. Agricultural activities in these locations continue to operate regularly us-
ing appropriate irrigation systems according to the recommendations based on the
prediction results.

• When the prediction system based on the EK-stars is put into practice, it can provide
an early warning alarm in case of possible flooding, and inform the authorized persons
about the situation, thus enabling the necessary measures to be taken in advance.

One of the limitations of this study was the lack of an application development. Future
work can include the development of an application based on the EK-stars approach
that runs on the dataset, the periodic insertion of new transactional data in a storage
system, and the automatic updating of the model over time. In this way, the designers
and decision-makers can benefit from the predictions of the machine learning model for
sustainable development. Another limitation of this study was that it did not focus on the
seasonal changes. In the future, this study can be extended to either investigate the seasonal
changes of rainfall in different locations or perform and test the EK-stars in different fields
of expertise.
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