A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology
Abstract
:1. Introduction
2. Theoretical Background
2.1. Industrial Symbiosis
2.2. Blockchain Technology
2.3. Smart Contract
2.4. Integration of Industrial Symbiosis, Blockchain Technology and Smart Contracts
3. Methodology
4. Blockchain Technology Applied to Industrial Symbiosis: Drivers and Barriers
4.1. Drivers of Applying Blockchain Technology to Industrial Symbiosis
Type of Driver | Code and Driver Name | Description | References |
---|---|---|---|
Organizational | D1—Facilitate data collection | BCT can help to better structure the logistical chain between stakeholders through the introduction of instruments and devices that help standardize and formalize the functioning of IS. | [50] |
D2—Facilitate administrative procedures | BCT can simplify administrative procedures through smart and tamper-proof contracts | [49] | |
Financial | D3—Optimization of financing programs | BCT can guarantee the traceability of waste and co-products exchanged between the stakeholders of an IS, which can reassure the administrative authorities in the future of waste on their territory and help to evaluate the efficacy of IS programs | [67,68] |
Technological | D4—Traceability of information | BCT can facilitate the flow of information between the stakeholders of an IS at the scale of an eco-industrial park, a county or a province | [50,72] |
D5—Optimize the operation of IS | Most of the time, there is no information system in industrial symbioses. BCT could be a way to develop and facilitate the collection and storage of information and working with operational data. This could make it possible to better control and optimize the operation of IS | [50,67,71] | |
D6—Improving security | BCT can guarantee a certain level of security in its operation, unlike a traditional database | [37,49] | |
D7—Trust between stakeholders | BCT can foster trust and transparency between the actors involved in an IS | [19,50,68,71] |
4.2. Barriers to the Adoption of Blockchain Technology in Industrial Symbiosis
Type of Barrier | Code and Barrier Name | Description | References |
---|---|---|---|
Cultural and social | B1—Negative perception of technology | Lack of confidence or perception in one or more actors in new information and communication technologies | [74] |
B2—Resistance to change | The reluctance on the part of the actors involved in the IS to use the BCT | [73,75] | |
Organizational | B3—Lack of coordination and collaboration | Lack of coordination and collaboration among stakeholders to make the BCT works on a daily basis | [76] |
B4—Lack of expertise | Lack of management and technical knowledge within organizations to operate the BCT | [77,78] | |
Financial | B5—Financial constraints | The initial investment in the development of a BCT architecture and in the operating costs that this entails | [79,80,81] |
Technological | B6—Immaturity of technology | The immaturity of the BCT can be a barrier to its adoption in IS | [74] |
B7—Challenge to energy consumption | BCT is known to consume a lot of energy to operate | [74,80] | |
B8—Lack of devices to run BCT | Lack of IT infrastructure to allow the operation of the BCT in industrial sites | [82,83] | |
Political and economic | B9—Lack of incentives | Lack of reward and incentive systems to promote BCT and IS by government, local authorities and professional organizations | [84] |
5. A Path to Facilitate Drivers and Overcome Barriers
5.1. A Smart Contract Architecture Framework
5.2. Strategies to Overcome the Barriers
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neves, A.; Godina, R.; Azevedo, S.G.; Matias, J.C.O. Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal. Sustainability 2019, 11, 5497. [Google Scholar] [CrossRef][Green Version]
- Bruel, A.; Kronenberg, J.; Troussier, N.; Guillaume, B. Linking Industrial Ecology and Ecological Economics: A Theoretical and Empirical Foundation for the Circular Economy. J. Ind. Ecol. 2019, 23, 12–21. [Google Scholar] [CrossRef][Green Version]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Saavedra, Y.M.B.; Iritani, D.R.; Pavan, A.L.R.; Ometto, A.R. Theoretical Contribution of Industrial Ecology to Circular Economy. J. Clean. Prod. 2018, 170, 1514–1522. [Google Scholar] [CrossRef]
- Frosch, R.; Gallopoulos, N. Strategies for Manufacturing. Sci. Am. 1989, 261, 144–153. [Google Scholar] [CrossRef]
- Chertow, M.; Park, J. Scholarship and Practice in Industrial Symbiosis: 1989–2014. In Taking Stock of Industrial Ecology; Springer: Cham, Switzerland, 2016; pp. 87–116. [Google Scholar]
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef][Green Version]
- Ehrenfeld, J.; Gertler, N. Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg. J. Ind. Ecol. 1997, 1, 67–79. [Google Scholar] [CrossRef][Green Version]
- Jacobsen, N.B. Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects. J. Ind. Ecol. 2006, 10, 239–255. [Google Scholar] [CrossRef]
- Valentine, S.V. Kalundborg Symbiosis: Fostering Progressive Innovation in Environmental Networks. J. Clean. Prod. 2016, 118, 65–77. [Google Scholar] [CrossRef]
- Jacobsen, N.B. The Industrial Symbiosis in Kalundborg, Denmark: An Approach to Cleaner Industrial Production. In Eco-Industrial Strategies: Unleashing Synergy between Economic Development and the Environment; Routledge: London, UK, 2017; pp. 270–275. ISBN 978-1-351-28148-5. [Google Scholar]
- Neves, A.; Godina, R.; Azevedo, S.G.; Matias, J.C.O. A Comprehensive Review of Industrial Symbiosis. J. Clean. Prod. 2020, 247, 119113. [Google Scholar] [CrossRef]
- Benedict, M.; Kosmol, L.; Esswein, W. Designing Industrial Symbiosis Platforms—From Platform Ecosystems to Industrial Ecosystems. In Proceedings of the 22nd Pacific Asia Conference on Information Systems—Opportunities and Challenges for the Digitized Society: Are We Ready? PACIS 2018, Yokohama, Japan, 26–30 June 2018. [Google Scholar]
- Lombardi, R. Non-Technical Barriers to (and Drivers for) the Circular Economy through Industrial Symbiosis: A Practical Input. Econ. Policy Energy Environ. 2017, 2017, 171–189. [Google Scholar] [CrossRef]
- Desrochers, P. Industrial Symbiosis: The Case for Market Coordination. J. Clean. Prod. 2004, 12, 1099–1110. [Google Scholar] [CrossRef]
- Cervo, H.; Ogé, S.; Maqbool, A.S.; Alva, F.M.; Lessard, L.; Bredimas, A.; Ferrasse, J.H.; Van Eetvelde, G. A Case Study of Industrial Symbiosis in the Humber Region Using the EPOS Methodology. Sustainability 2019, 11, 6940. [Google Scholar] [CrossRef][Green Version]
- Ventura, V.; Bortolini, M.; Galizia, F.G. Industrial Symbiosis and Industry 4.0: Literature Review and Research Steps Toward Sustainability. In Sustainable Design and Manufacturing; Scholz, S.G., Howlett, R.J., Setchi, R., Eds.; Springer Nature: Singapore, 2023; pp. 361–369. [Google Scholar]
- Godina, R.; Bruel, A.; Neves, A.; Matias, J.C.O. The Potential of Blockchain Applications in Urban Industrial Symbiosis. IFAC-Pap. 2022, 55, 3310–3315. [Google Scholar] [CrossRef]
- Gonçalves, R.; Ferreira, I.; Godina, R.; Pinto, P.; Pinto, A. A Smart Contract Architecture to Enhance the Industrial Symbiosis Process Between the Pulp and Paper Companies—A Case Study. In Blockchain and Applications; Prieto, J., Partida, A., Leitão, P., Pinto, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 252–260. [Google Scholar]
- Ahmad Termizi, S.N.A.; Wan Alwi, S.R.; Manan, Z.A.; Varbanov, P.S. Potential Application of Blockchain Technology in Eco-Industrial Park Development. Sustainability 2023, 15, 52. [Google Scholar] [CrossRef]
- Domenech, T.; Bleischwitz, R.; Doranova, A.; Panayotopoulos, D.; Roman, L. Mapping Industrial Symbiosis Development in Europe_ Typologies of Networks, Characteristics, Performance and Contribution to the Circular Economy. Resour. Conserv. Recycl. 2019, 141, 76–98. [Google Scholar] [CrossRef]
- Neves, A.; Godina, R.; Carvalho, H.; Azevedo, S.G.; Matias, J.C.O. Industrial Symbiosis Initiatives in United States of America and Canada: Current Status and Challenges. In Proceedings of the 2019 8th International Conference on Industrial Technology and Management (ICITM), Cambridge, UK, 2–4 March 2019; pp. 247–251. [Google Scholar]
- Jensen, P.D.; Basson, L.; Hellawell, E.E.; Bailey, M.R.; Leach, M. Quantifying ‘Geographic Proximity’: Experiences from the United Kingdom’s National Industrial Symbiosis Programme. Resour. Conserv. Recycl. 2011, 55, 703–712. [Google Scholar] [CrossRef][Green Version]
- De Abreu, M.C.S.; Ceglia, D. On the Implementation of a Circular Economy: The Role of Institutional Capacity-Building through Industrial Symbiosis. Resour. Conserv. Recycl. 2018, 138, 99–109. [Google Scholar] [CrossRef]
- Shi, H.; Chertow, M.; Song, Y. Developing Country Experience with Eco-Industrial Parks: A Case Study of the Tianjin Economic-Technological Development Area in China. J. Clean. Prod. 2010, 18, 191–199. [Google Scholar] [CrossRef]
- Ashton, W.S. Managing Performance Expectations of Industrial Symbiosis. Bus. Strategy Environ. 2011, 20, 297–309. [Google Scholar] [CrossRef]
- Belaud, J.P.; Adoue, C.; Vialle, C.; Chorro, A.; Sablayrolles, C. A Circular Economy and Industrial Ecology Toolbox for Developing an Eco-Industrial Park: Perspectives from French Policy. Clean Technol. Environ. Policy 2019, 21, 967–985. [Google Scholar] [CrossRef][Green Version]
- Yeo, Z.; Masi, D.; Low, J.S.C.; Ng, Y.T.; Tan, P.S.; Barnes, S. Tools for Promoting Industrial Symbiosis: A Systematic Review. J. Ind. Ecol. 2019, 23, 1087–1108. [Google Scholar] [CrossRef][Green Version]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A Systematic Literature Review of Blockchain-Based Applications: Current Status, Classification and Open Issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Pilkington, M. Blockchain Technology: Principles and Applications. In Research Handbook on Digital Transformations; Edward Elgar Publishing: Cheltenham, UK, 2016. [Google Scholar]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Manubot. 2009. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 20 October 2022).
- Bekrar, A.; El Cadi, A.A.; Todosijevic, R.; Sarkis, J. Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective. Sustainability 2021, 13, 2895. [Google Scholar] [CrossRef]
- Lu, Y. Blockchain and the Related Issues: A Review of Current Research Topics. J. Manag. Anal. 2018, 5, 231–255. [Google Scholar] [CrossRef]
- Lu, Y. The Blockchain: State-of-the-Art and Research Challenges. J. Ind. Inf. Integr. 2019, 15, 80–90. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Notheisen, B.; Beer, C.; Dauer, D.; Weinhardt, C. A Blockchain-Based Smart Grid: Towards Sustainable Local Energy Markets. Comput. Sci.-Res. Dev. 2018, 33, 207–214. [Google Scholar] [CrossRef]
- Mettler, M. Blockchain Technology in Healthcare: The Revolution Starts Here. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–3. [Google Scholar]
- Kouhizadeh, M.; Zhu, Q.; Sarkis, J. Blockchain and the Circular Economy: Potential Tensions and Critical Reflections from Practice. Prod. Plan. Control 2020, 31, 950–966. [Google Scholar] [CrossRef]
- Pauer, E.; Tacker, M.; Gabriel, V.; Krauter, V. Sustainability of Flexible Multilayer Packaging: Environmental Impacts and Recyclability of Packaging for Bacon in Block. Clean. Environ. Syst. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Puthal, D.; Malik, N.; Mohanty, S.P.; Kougianos, E.; Das, G. Everything You Wanted to Know About the Blockchain: Its Promise, Components, Processes, and Problems. IEEE Consum. Electron. Mag. 2018, 7, 6–14. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In Proceedings of the 2017 IEEE 6th International Congress on Big Data, BigData Congress, Honolulu, HI, USA, 25–30 June 2017; pp. 557–564. [Google Scholar]
- Zhong, B.; Wu, H.; Ding, L.; Luo, H.; Luo, Y.; Pan, X. Hyperledger Fabric-Based Consortium Blockchain for Construction Quality Information Management. Front. Eng. Manag. 2020, 7, 512–527. [Google Scholar] [CrossRef]
- Szabo, N. Formalizing and Securing Relationships on Public Networks. First Monday 1997, 2. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D. An Overview of Smart Contract and Use Cases in Blockchain Technology. In Proceedings of the 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–4. [Google Scholar]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain Technology and Its Relationships to Sustainable Supply Chain Management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef][Green Version]
- Zhang, T.; Li, J.; Jiang, X. Supply Chain Finance Based on Smart Contract. Procedia Comput. Sci. 2021, 187, 12–17. [Google Scholar] [CrossRef]
- Rudolphi, J.T. Blockchain for a Circular Economy—Explorative Research towards the Possibilities for Blockchain Technology to Enhance the Implementation of Material Passports. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2018. [Google Scholar]
- Vacca, A.; Di Sorbo, A.; Visaggio, C.A.; Canfora, G. A Systematic Literature Review of Blockchain and Smart Contract Development: Techniques, Tools, and Open Challenges. J. Syst. Softw. 2021, 174, 110891. [Google Scholar] [CrossRef]
- Al Sadawi, A.; Madani, B.; Saboor, S.; Ndiaye, M.; Abu-Lebdeh, G. A Comprehensive Hierarchical Blockchain System for Carbon Emission Trading Utilizing Blockchain of Things and Smart Contract. Technol. Forecast. Soc. Change 2021, 173, 121124. [Google Scholar] [CrossRef]
- Bredimas, A.; Ogé, S.; Sockeel, C.; Quintana, J.; Camuzeaux, E. Panorama Des Outils de Gestion Des Flux de Matières Énergie Dans Le Cadre de L’économie Circulaire, Outils Logiciels Utilisables Dans Les Démarches D’écologie Industrielle et Territoriale. 2019. Available online: https://record-net.org/storage/etudes/17-0162-1A/synthese/Synth_record17-0162_1A.pdf (accessed on 20 October 2022).
- Kouhizadeh, M.; Sarkis, J.; Zhu, Q. At the Nexus of Blockchain Technology, the Circular Economy, and Product Deletion. Appl. Sci. 2019, 9, 1712. [Google Scholar] [CrossRef][Green Version]
- Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the Future of Sustainable Supply Chain Management in Industry 4.0. Resour. Conserv. Recycl. 2020, 163, 105064. [Google Scholar] [CrossRef]
- Aneta, K.; Jerzy, P. Abductive and Deductive Approach in Learning from Examples Method for Technological Decisions Making. Procedia Eng. 2013, 57, 583–588. [Google Scholar] [CrossRef][Green Version]
- Azungah, T. Qualitative Research: Deductive and Inductive Approaches to Data Analysis. Qual. Res. J. 2018, 18, 383–400. [Google Scholar] [CrossRef]
- O’Reilly, C.J. Creative Engineers: Is Abductive Reasoning Encouraged Enough in Degree Project Work? Procedia CIRP 2016, 50, 547–552. [Google Scholar] [CrossRef][Green Version]
- Janiszewski, C.; Van Osselaer, S.M.J. Abductive Theory Construction. J. Consum. Psychol. 2022, 32, 175–193. [Google Scholar] [CrossRef]
- Behfar, K.; Okhuysen, G.A. Perspective—Discovery Within Validation Logic: Deliberately Surfacing, Complementing, and Substituting Abductive Reasoning in Hypothetico-Deductive Inquiry. Organ. Sci. 2018, 29, 323–340. [Google Scholar] [CrossRef][Green Version]
- Timmermans, S.; Tavory, I. Theory Construction in Qualitative Research: From Grounded Theory to Abductive Analysis. Sociol. Theory 2012, 30, 167–186. [Google Scholar] [CrossRef]
- Upmeier zu Belzen, A.; Engelschalt, P.; Krüger, D. Modeling as Scientific Reasoning—The Role of Abductive Reasoning for Modeling Competence. Educ. Sci. 2021, 11, 495. [Google Scholar] [CrossRef]
- Bandoophanit, T.; Pumprasert, S. The Paradoxes of Just-in-Time System: An Abductive Analysis of a Public Food Manufacturing and Exporting Company in Thailand. Manag. Res. Rev. 2022, 45, 1019–1043. [Google Scholar] [CrossRef]
- Dib, O.; Brousmiche, K.-L.; Durand, A.; Thea, E.; Hamida, E.B. Consortium Blockchains: Overview, Applications and Challenges. Int. J. Adv. Telecommun. 2018, 11, 51–64. [Google Scholar]
- Yadav, V.S.; Singh, A.R.; Raut, R.D.; Govindarajan, U.H. Blockchain Technology Adoption Barriers in the Indian Agricultural Supply Chain: An Integrated Approach. Resour. Conserv. Recycl. 2020, 161, 104877. [Google Scholar] [CrossRef]
- Koscina, M.; Lombard-Platet, M.; Cluchet, P. PlasticCoin: An ERC20 Implementation on Hyperledger Fabric for Circular Economy and Plastic Reuse. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence—Companion Volume, Thessaloniki, Greece, 14 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 223–230. [Google Scholar]
- Koscina, M.; Lombard-Platet, M.; Negri-Ribalta, C. A Blockchain-Based Marketplace Platform for Circular Economy. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual Event, 22 April 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1746–1749. [Google Scholar]
- Erol, I.; Murat Ar, I.; Peker, I.; Searcy, C. Alleviating the Impact of the Barriers to Circular Economy Adoption Through Blockchain: An Investigation Using an Integrated MCDM-Based QFD With Hesitant Fuzzy Linguistic Term Sets. Comput. Ind. Eng. 2022, 165, 107962. [Google Scholar] [CrossRef]
- Böhmecke-Schwafert, M.; Wehinger, M.; Teigland, R. Blockchain for the Circular Economy: Theorizing Blockchain’s Role in the Transition to a Circular Economy through an Empirical Investigation. Bus. Strategy Environ. 2022, 31, 3786–3801. [Google Scholar] [CrossRef]
- Boons, F.; Chertow, M.; Park, J.; Spekkink, W.; Shi, H. Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework. J. Ind. Ecol. 2017, 21, 938–952. [Google Scholar] [CrossRef]
- Böckel, A.; Nuzum, A.K.; Weissbrod, I. Blockchain for the Circular Economy: Analysis of the Research-Practice Gap. Sustain. Prod. Consum. 2021, 25, 525–539. [Google Scholar] [CrossRef]
- Ponis, S.T. Industrial Symbiosis Networks in Greece: Utilising the Power of Blockchain-Based B2B Marketplaces. J. Br. Blockchain Assoc. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Antikainen, M.; Uusitalo, T.; Kivikytö-Reponen, P. Digitalisation as an Enabler of Circular Economy. Procedia CIRP 2018, 73, 45–49. [Google Scholar] [CrossRef]
- Tseng, M.-L.; Tan, R.R.; Chiu, A.S.F.; Chien, C.-F.; Kuo, T.C. Circular Economy Meets Industry 4.0: Can Big Data Drive Industrial Symbiosis? Resour. Conserv. Recycl. 2018, 131, 146–147. [Google Scholar] [CrossRef]
- Alexandris, G.; Katos, V.; Alexaki, S.; Hatzivasilis, G. Blockchains as Enablers for Auditing Cooperative Circular Economy Networks. In Proceedings of the IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD, Barcelona, Spain, 17–19 September 2018. [Google Scholar]
- Sikorski, J.J.; Haughton, J.; Kraft, M. Blockchain Technology in the Chemical Industry: Machine-to-Machine Electricity Market. Appl. Energy 2017, 195, 234–246. [Google Scholar] [CrossRef]
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015; ISBN 149-1-92047-5. [Google Scholar]
- Kouhizadeh, M.; Saberi, S.; Sarkis, J. Blockchain Technology and the Sustainable Supply Chain: Theoretically Exploring Adoption Barriers. Int. J. Prod. Econ. 2021, 231, 107831. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J. Blockchain Technology: A Panacea or Pariah for Resources Conservation and Recycling? Resour. Conserv. Recycl. 2018, 130, 80–81. [Google Scholar] [CrossRef]
- Behnke, K.; Janssen, M.F.W.H.A. Boundary Conditions for Traceability in Food Supply Chains Using Blockchain Technology. Int. J. Inf. Manag. 2020, 52, 101969. [Google Scholar] [CrossRef]
- Angelis, J.; Ribeiro da Silva, E. Blockchain Adoption: A Value Driver Perspective. Bus. Horiz. 2019, 62, 307–314. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Arha, H. Understanding the Blockchain Technology Adoption in Supply Chains-Indian Context. Int. J. Prod. Res. 2019, 57, 2009–2033. [Google Scholar] [CrossRef]
- Staples, M.; Chen, S.; Falamaki, S.; Ponomarev, A.; Rimba, P.; Tran, A.B.; Weber, I.; Xu, X.; Zhu, J. Risks and Opportunities for Systems Using Blockchain and Smart Contracts; CSIRO: Sydney, Australia, 2017. [Google Scholar]
- Biswas, B.; Gupta, R. Analysis of Barriers to Implement Blockchain in Industry and Service Sectors. Comput. Ind. Eng. 2019, 136, 225–241. [Google Scholar] [CrossRef]
- Hughes, L.; Dwivedi, Y.K.; Misra, S.K.; Rana, N.P.; Raghavan, V.; Akella, V. Blockchain Research, Practice and Policy: Applications, Benefits, Limitations, Emerging Research Themes and Research Agenda. Int. J. Inf. Manag. 2019, 49, 114–129. [Google Scholar] [CrossRef]
- Abeyratne, S.; Monfared, R. Blockchain Ready Manufacturing Supply Chain Using Distributed Ledger. Int. J. Res. Eng. Technol. 2016, 5, 1–10. [Google Scholar]
- Morabito, V. Business Innovation Through Blockchain; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-31948-477-8. [Google Scholar]
- Wang, Y.; Singgih, M.; Wang, J.; Rit, M. Making Sense of Blockchain Technology: How Will It Transform Supply Chains? Int. J. Prod. Econ. 2019, 211, 221–236. [Google Scholar] [CrossRef]
- Bacudio, L.R.; Benjamin, M.F.D.; Eusebio, R.C.P.; Holaysan, S.A.K.; Promentilla, M.A.B.; Yu, K.D.S.; Aviso, K.B. Analyzing Barriers to Implementing Industrial Symbiosis Networks Using DEMATEL. Sustain. Prod. Consum. 2016, 7, 57–65. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Sarkis, J. Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains. Sustainability 2018, 10, 3652. [Google Scholar] [CrossRef][Green Version]
- Kröhling, D.E.; Mione, F.; Hernández, F.; Martínez, E.C. A Peer-to-Peer Market for Utility Exchanges in Eco-Industrial Parks Using Automated Negotiations. Expert Syst. Appl. 2022, 191, 116211. [Google Scholar] [CrossRef]
- Ferreira, I.A.; Godina, R.; Pinto, A.; Pinto, P.; Carvalho, H. Boosting Additive Circular Economy Ecosystems Using Blockchain: An Exploratory Case Study. Comput. Ind. Eng. 2023, 175, 108916. [Google Scholar] [CrossRef]
- Banerjee, A. Blockchain Technology: Supply Chain Insights from ERP, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 111, ISBN 978-0-12813-852-6. [Google Scholar]
- Udokwu, C.; Kormiltsyn, A.; Thangalimodzi, K.; Norta, A. An Exploration of Blockchain Enabled Smart-Contracts Application in the Enterprise. 2018. Available online: https://www.researchgate.net/publication/326060734_An_Exploration_of_Blockchain_enabled_Smart-Contracts_Application_in_the_Enterprise (accessed on 20 October 2022).
- Kröhling, D.E.; Mione, F.; Hernandez, F.; Martinez, E. Automated Negotiation of Smart Contracts for Utility Exchanges between Prosumers in Eco-Industrial Parks. In Proceedings of the Simposio Argentino de Informatica Industrial e Investigacion Operativa, Virtual, 18–29 October 2021; 2021; pp. 32–45. [Google Scholar]
- Peck, M.E. Blockchain World—Do You Need a Blockchain? This Chart Will Tell You If the Technology Can Solve Your Problem. IEEE Spectr. 2017, 54, 38–60. [Google Scholar] [CrossRef]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; et al. Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains. In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–15. [Google Scholar]
- George, J.T. Hyperledger Fabric. In Introducing Blockchain Applications: Understand and Develop Blockchain Applications Through Distributed Systems; George, J.T., Ed.; Apress: Berkeley, CA, USA, 2022; pp. 125–147. ISBN 978-1-4842-7480-4. [Google Scholar]
- Foschini, L.; Gavagna, A.; Martuscelli, G.; Montanari, R. Hyperledger Fabric Blockchain: Chaincode Performance Analysis. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Aggarwal, S.; Kumar, N. Chapter Sixteen—Hyperledger. In Advances in Computers; Aggarwal, S., Kumar, N., Raj, P., Eds.; The Blockchain Technology for Secure and Smart Applications across Industry Verticals; Elsevier: Amsterdam, The Netherlands, 2021; Volume 121, pp. 323–343. [Google Scholar]
- Elrom, E. Hyperledger. In The Blockchain Developer: A Practical Guide for Designing, Implementing, Publishing, Testing, and Securing Distributed Blockchain-Based Projects; Elrom, E., Ed.; Apress: Berkeley, CA, USA, 2019; pp. 299–348. ISBN 978-1-4842-4847-8. [Google Scholar]
- Mougayar, W. The Business Blockchain: Promise, Practice, and Application of the next Internet Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 111-9-30031-2. [Google Scholar]
- Gopalakrishnan, P.K.; Hall, J.; Behdad, S. Cost Analysis and Optimization of Blockchain-Based Solid Waste Management Traceability System. Waste Manag. 2021, 120, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Mukhuty, S.; Kumar, V.; Kazancoglu, Y. Blockchain Technology and the Circular Economy: Implications for Sustainability and Social Responsibility. J. Clean. Prod. 2021, 293, 126130. [Google Scholar] [CrossRef]
Advantages for IS | Disadvantages for IS | |
---|---|---|
Public architecture | Improves transparency and auditability of information | Any entity can join the network, access the data and use blockchain ledger Low efficiency No specific validation nodes |
Private architecture | High efficiency Facilitates private sharing and exchange of data between a group of individuals (in a single organization) or between multiple organizations Unknown users cannot access the blockchain | The network tends towards centralization |
Consortium architecture | High efficiency The consensus process is controlled by pre-authorized nodes Possible to limit the reading of the blockchain to specific participants It is decided by the consortium whether read or write permissions will be public or restricted to network participants. | Restricting consensus to a set of nodes does not guarantee immutability and irreversibility, as majority control of the consortium can lead to tampering with the blockchain. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruel, A.; Godina, R. A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology. Sustainability 2023, 15, 5884. https://doi.org/10.3390/su15075884
Bruel A, Godina R. A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology. Sustainability. 2023; 15(7):5884. https://doi.org/10.3390/su15075884
Chicago/Turabian StyleBruel, Aurélien, and Radu Godina. 2023. "A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology" Sustainability 15, no. 7: 5884. https://doi.org/10.3390/su15075884