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Abstract: The increasing population density and industrialization are adversely affecting the envi-
ronment globally. The contamination of the soil, agricultural lands, and water bodies with petroleum
wastes and other hydrocarbon pollutants has become a serious environmental concern as perceived
by the impacts on the aquatic and marine ecosystem. Various investigations have provided novel
insights into the significant roles of microbial activities in the cleanup of hydrocarbon contaminants.
However, the burden of these pollutants is expected to increase many folds in the next decade.
Therefore, it is necessary to investigate and develop low-cost technologies rapidly, focusing on eco-
sustainable development. An understanding of the details of biodegradation mechanisms paves the
way for enhancing the efficiency of bioremediation technology. The current article reviews the appli-
cability of various bioremediation processes, biodegradation pathways, and treatments, and the role
of microbial activities in achieving efficient eco-sustainable bioremediation of hydrocarbon pollutants.
It is envisaged that an integrated bioremediation approach, including biostimulation and bioaugmen-
tation is preferably advocated for the cost-effective removal of toxic petroleum hydrocarbons and
their derivatives.

Keywords: bioremediation; eco-sustainable biotechnology; environmental cleanup; metabolic
pathways; polycyclic aromatic hydrocarbons

1. Introduction

Bioremediation is an eco-sustainable and efficient treatment method to degrade vari-
ous hydrocarbon pollutants. The microbial activities can, directly and indirectly, lead to
the degradation of hydrocarbon pollutants to simpler molecules. However, it is a com-
plex process involving multiple steps and non-symmetric routes. The notable pollutants
reaching the soil environment are waste sludge from petroleum refineries and processing
industries. Petroleum waste sludge (PS) primarily consists of hydrocarbon (HC), ammonia,
sulphide, etc. The physiochemical methods (incineration, pyrolysis, and solvent extraction)
are incompetent, not feasible, and costly. In addition, the unpredictable alteration to the
ecosystem by the spent chemicals (including its intermediate products and by-products)
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can cause potential threats during their implementation. In this scenario, bioremediation
offers a seemingly sustainable solution for the removal of hydrocarbon pollutants and fulfil
the supplement pre-requisite for sustainable development [1–5].

There has been severe damage to the ecosystem due to the contamination of petroleum
hydrocarbons in the last few decades. The dissemination of contaminants generally occurs
through oil spills from oil tankers, drilling activities, the offshore release of petroleum
by-products, and other anthropogenic activities. Petroleum hydrocarbons are stable and
persist in the ecosystem for a longer period [6–9]. Oil contaminants degrade the water
quality and thus affect aquatic lives. The ingestion of hydrocarbon contaminants can have
serious effects and can lead to various diseases [10]. The olive mill waste (OMW), which
is stored in evaporation ponds due to a lack of economic treatment, is one such example
need attention for eco-friendly treatment [11]. Living organisms are directly or indirectly
affected due to oil contamination. To overcome such problems, bioremediation that uses
microorganisms to degrade oil or hydrocarbon contaminants can be used as an eco-friendly
and cost-effective technology. The site location is important for the feasibility of in situ
bioremediation. Biostimulation and bioaugmentation are the most important types of
bioremediation methods. Bio-stimulation is a process of enhancing the site with nutrients,
aerobic conditions, optimum pH, and temperature to increase the microbial population
for enhanced biodegradation. In contrast to the above, bioaugmentation is the process of
inoculating foreign microorganisms in the field to enhance the biodegradation rate [12].
Another approach is the integrated (bio-stimulation and bio-augmentation) treatment
approach, an ex situ treatment method with enhanced functionality and applicability.

Bioremediation is a promising technology to remediate polycyclic aromatic hydrocar-
bons (PAHs) contaminated soil [13,14]. The treatment method proved to be versatile for the
degradation of various organic hydrocarbon pollutants, including petroleum contaminants,
explosives, pesticides, chlorophenols, and PAHs. Though there are many bio-inspired treat-
ment methods for various organic compounds, a comprehensive overview of advanced
technologies for the most toxic group of petroleum hydrocarbons is not available in the
literature. Most of the field studies have reported limited evidence of any effective bioreme-
diation for a long-term scenario, such as superfund sites. Hence, it is aimed to investigate
the functional and eco-sustainable aspects of various bioremediation treatment methodolo-
gies. The study provides a comparative mechanistic insight into the effectiveness of such
remediation strategies to recommend a suitable treatment combination (in other words,
an integrated remediation approach) for in situ and ex situ conditions. The current review
also highlights the significance of optimizing the microbial conditions for an effective and
sustainable bioremediation implementation plan.

2. An overview of Bioremediation of Petroleum Pollutants

Petroleum contaminants are the most important pollutants worldwide, and they
should be handled effectively to preserve marine lives and the ecosystem. The primary
anticipation has been for evaluating the degradability of the toxic chemicals in the presence
of the native microbial environment [15–18]. The hydrocarbon-contaminated drill mud
waste from different tanks and petroleum waste sludge from refineries depicts the seri-
ousness of the problem [19,20]. The bioremediation trials were made for the OMW sludge
collected from seven long-term evaporation ponds polluted by abundant complex organic
compounds [11]. The understanding of the associated mechanisms and the courses of
action using microbes can guide better approaches for the bioremediation of contaminants.
The treatment method proved to be versatile for the degradation of various organic hydro-
carbon pollutants, including explosives, pesticides, chlorophenols, and PAHs (Figure 1).
Recent works based on the PAH-contaminated aged field soil samples collected from a
producer gas manufacturing plant and soil samples from an old diamond mining field
proved the feasibility of bioremediation [11,21–27]. Many researchers made several trials
to remediate generic hydrocarbon-contaminated soil and performed experiments on oily
sludge collected from refineries [26], using amendment techniques for the pollutant sul-
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famethoxazole during wetland remediation [28]. These efforts are important to understand
the impact of bioremediation in the treatment of hydrocarbon pollutants.
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Figure 1. Schematic representation of the bioremediation used to treat hydrocarbon pollutants.

2.1. Role of Microorganisms in Hydrocarbon Biodegradation

Hydrocarbon degradation can occur by complex mechanisms involving microbial
activities associated with the conversion of the complex hydrocarbons to simpler forms
(Figure 2). The major pathways by aerobic and anaerobic microorganisms follow enzyme
activation and then catalysis to simpler forms in optimized experimental conditions. The
Acinetobacter radioresistens strain KA2 was isolated from oily waste sludge and performed
two-stage methods. The experiment resulted in removing total petroleum hydrocarbon
(TPH) up to 80% in 16 weeks. The technique successfully remediated the crude oil [8,9].
In another study, A. radioresistens strain KA5 and Enterobacter hormaechei strain KA6 were
isolated from petroleum waste sludge (PWS) and two-stage bioremediations conducted for
three months have been reported to remove the TPHs by 84% in 16 weeks. Oily sludge (OS)
contaminant degraded using a culture-based medium consisting of E. hormaechei strain
KA6. The in vessel experiment was conducted for a period of four months, and the rate of
TPH removal was found to be up to 80% [26].
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The rapidly growing bacteria were isolated from heavy oil sludge, including Staphylo-
coccus equorum strain KA4 and E. hormaechei strain KA3. The experiment was performed
in a bioreactor for eight + eight weeks to degrade the mineral-based medium, and the
TPH removal efficiency was up to 89% [7]. The fungal species Fomitopsispinicola, Daedalea
dickinsii, and Gloeophyllum trabeum reduced the DDT contamination in the soil through
bioremediation significantly. A. radioresistens strain KA5 and E. hormaechei strain KA6 were
isolated from petroleum waste sludge (PWS) using 1% crude oil and mineral Bushnell-
Haas (BH) medium. The rate of growth of the cells at various intervals was evaluated
by measuring the optical density using a spectrophotometer. The strains were identified
using the tests, such as catalase, citrate, oxidase, urease, triple sugar iron, nitrate reduction,
H2S production, indole production, and gram staining [20]. The fungal species Aspergillus
ochraceus H2 and Scedosporium apiospermum H16 were isolated from OMW for the in situ
method analysis, and microorganisms, such as Proteobacteria (α, β, γ), Actinobacter, Thermob-
ifida, and Streptomyces for effective biodegradation of pyrene, anthracene, phenanthrene,
fluorene, naphthalene, acenaphthalene, and PAH contamination [11,13].

An experimental study using a hydrocarbon-contaminated drill mud waste along with
cow bile and bacterial species Brevibacterium casei and Bacillus zhangzhouensi (as indigenous
and combined experiments) resulted in TPH removal of up to 90% [19]. Similar observations
have been summarized in Tables 1 and 2. These experimental observations and results
are important for planning and designing large-scale studies for the bioremediation of
hydrocarbons. However, there is a need for physical parameter optimization as well as
scale-up analysis.

Table 1. Petroleum degrading microorganisms isolated from various contaminated sites.

Microorganisms Degrading
Xenobiotics Isolation Sites References

Micrococcus and Pseudomonas Soil samples contaminated with spent engine oil; from a workshop
in Ado-Ekiti [29]

Proteus vulgaris SR1 Freshly killed fish samples close to the point of oil spill in the Niger
Delta, Nigeria [30]

Pseudomonas sp., Achromobacter sp., Bacillus sp. and
Flavobacterium sp.

Soil sample; obtained from a diesel spill region in north-central
Alberta, British Columbia [31]

Flavobacterium sp., and Acinetobacterium calcoaceticum Soil sample; collected from Amanzimtoti, South Africa [32]
Bacillus coagulans CR31, Klebsiella pneumonia CR23,

Klebsiella aerogenes CR21 and
Pseudomonas putrefacience CR33

Rhizosphere soil contaminated with spent engine oil in
Sokoto, Nigeria [33]

Pseudomonas sp., Acinetobacter sp., Bacillus sp.,
Corynebacterium sp. and Flavobacterium sp.

Soil samples from auto-mechanic workshops at
Mgbukankpor, Nigeria [34]

Pseudomonas putida, (Strain G1) and Pseudomonas
aeruginosa (Strain K1)

Soil samples from abandoned coal power plant (PHC) at
Ijora-Olapa, Lagos [25]

Bacillus sp. S6 and S35 Soil samples from storage centre of oil products in Tehran refinery
and Siri Island [35]

Table 2. Summary of the efficiency of the removal of hydrocarbons according to potential microbes,
substrate (s), and duration details.

Substrate Microbes Duration Removal
Efficiency (%) References

Oily sludge Acinetobacter radioresistens KA2 Two stage (8 + 8 weeks) 90 [9]

Petroleum waste sludge Acinetobacter radioresistens KA5,
Enterobacter hormaechei KA6 Two stage composting, 12 weeks 84 [20]

Olive mill wastewater - Two stage composting 84 [29]

Petroleum sludge Acinetobacter radioresistens KA2 In vessel reactor, two phase
composting (8 + 8 weeks) 88 [9]

Oily sludge Enterobacter hormaechei KA6 In vessel experiment, 16 weeks 81 [26]

Contaminated soil - Soil inoculated sewage sludge, wood
chips and incubated for 19 months 99 [23]

Heavy oily sludge Staphylococcus equorum KA4,
Enterobacter hormaechei KA3

Composting bioreactor (2 phase
composting process 8 + 8 weeks) 89 [19]

Hydrocarbon contaminated drill mud waste Brevibacterium casei, Bacillus sp. Composting bioreactor, 6 weeks process 99 [7]
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2.2. Optimization of Bioremediation Conditions

The performance criteria depend on various biotic and abiotic factors, such as mi-
crobial populations, aeration status, moisture content, temperature, etc. [36]. Further, the
selection of a suitable method is significant for efficient bioremediation. There are various
sequencing approaches now available to easily identify novel microbes from unique ex-
treme environments [30,37]. The advancements in genome sequencing have paved the way
for rapid microbial identifications and characterization of microbial strains [38,39].

The right microbial population determines the efficiency of the process. The optimum
moisture conditions to be maintained are in the range of 50–55%. The pH value should
not be too acidic or too basic. The microbial population is sensitive to these changes. The
pH near neutrality is preferable, and a minimum of 40% organic content must be present,
while the C/N ratio is also important and should exist below 50 for rapid biodegradation.
The temperature should be in the range of 65–70 ◦C [40]. It is to be noted that the use of
chemometrics methods can help optimize the conditions for bioremediation and improve
the efficiency of the degradation process [41,42]. By analysing and modelling the relation-
ship between the input variables and the output variables, chemometrics methods can
help identify the key factors, such as temperature, pH, and nutrient concentration, that
affect the efficiency of bioremediation and optimize the conditions accordingly. This is con-
ducted by monitoring the progress of the biodegradation process by analysing the complex
data sets generated, such as the changes in microbial populations and production of the
metabolites [43,44]. Some of the chemometric methods commonly used in the optimization
of bioremediation conditions include the design of experiments (DoE), response surface
methodology (RSM), artificial neural networks (ANN), principal component analysis (PCA),
and genetic algorithms (GA) [45,46]. Based on the current trends in bioinformatics and
data analytics, the applications of chemometrics in bioremediation may give more efficient
and cost-effective solutions for the sustainable implementation of bioremediation plans.

The biodegradation process is said to be of two stages, the maturation stage {including
the mesophilic phase (25–45 ◦C) and the thermophilic phase (>45 ◦C)} and the curing
stage (second mesophilic phase). The process also mainly depends upon the mixing ratio
because inappropriate mixing leads to the inhibition of target microorganisms [13]. These
two-stage methods are widely used for petroleum contaminants. For post-diamond mining
soil, open-state biodegradation was preferred to remediate the contaminated soil [22]. In
another approach, in vessel reactors for the bioremediation of petroleum sludge were
widely preferred for laboratory experiments [7,9,26]. A lab-scale bioreactor was used for
treating the PWS obtained from a petroleum refinery with finished compost of around
three kilograms and pre-inoculum as the bulking material [20,26]. The findings revealed
that maximum degradation can be achieved by near neutral pH and the maximum degrad-
ing ability possessed by isolated species from PWS compared to indigenous microbes. It
was reported that the optimum moisture range is 12–25%, and the biodegradation rate is
directly proportional to temperature and pH [12]. Another in situ bioremediation process
was carried out to degrade the contaminated olive mill waste (OMW) using biowaste and
animal waste, along with vermicomposting techniques [29]. Their finding reveals that
trapezoidal pile methods of vermicomposting are versatile enough to degrade phenol
compounds. Similar observations were found from a bioremediation experiment in an
evaporation pond using a novel microbial-fungal consortium isolated from OMW [11].
For the pyrene-contaminated soil, an additional 14 days in vessel method remediated was
required apart from 60 days under the mesophilic and thermophilic conditions. The pro-
cess degraded various emerging petroleum contaminations, including PAHs, anthracene,
phenanthrene, fluorene, naphthalene, and acenaphthalene [13]. For a 30-day study, an open
vessel method was employed by using cow manure and diamond mining soil and was
found to remove up to 78% of contaminants [22]. Similarly, a static pile method for the
substrate petroleum hydrocarbon and sewage sludge was also performed, and efficient
results were obtained [23].



Sustainability 2023, 15, 5847 6 of 18

An in vessel method using matured compost as bulking material along with oily
sludge in a bioreactor was found to degrade the TPHs successfully [26]. A bioremediation
experiment using a cylindrical bioreactor with heavy oil sludge was reported where fin-
ished compost was made of food waste and green waste for four months [7]. Since the
isolated micro-organisms or microbial consortiums must grow properly to inoculate in the
bioreactors or piles or windrows, the method of inoculation depends upon the substrates,
contaminants, and prevailing biogeochemical conditions [9]. Researchers also inoculated
0.5 Mcfarland isolate solution to the cylindrical bioreactor initially and continued the same
bacterial inoculation after eight weeks [7]. Abtahi et al. (2020) [20] selected two bioreactors
for petroleum biodegradation using 1.5 × 108 CFU/g dry mixture inoculum in it. Another
study reported the usage of 40 L of produced inoculums (7 × 107 CFU/vol. of material) for
the olive mill waste sludge biodegradation [11]. Petroleum hydrocarbon-contaminated soil,
when inoculated with a mix ratio of microbial consortium, has four species: Pseudomonas
poae, Actinobacter bouvetii, Stenotrophomonas rhizophila, and P. rhizosphaerae has resulted in
significant biodegradation of hydrocarbons, indicating the significance of microbial con-
sortia in place of single population type [31]. The inoculation medium details and culture
conditions have been summarized in Table 3.

Table 3. This table summarizes medium and conditions for bioremediation assays.

Substrate (s) Medium Conditions References

Oil sludge Bushnell-Haas, 1% Kerosene 150 rpm shaking, 1 week at 35 ◦C [26]
Heavy oil sludge Bushnell-Haas, 1% Crude Oil 160 rpm shaking, 1 week at 30 ◦C [7]
Oily waste sludge Bushnell-Haas, 1% Crude Oil 160 rpm shaking, 1 week at 30 ◦C [7]
Petroleum sludge Bushnell-Haas, 1% Crude Oil 120 rpm shaking, 12 days at 30 ◦C [9]
Petroleum sludge Bushnell-Haas, 1% Crude Oil 120 rpm shaking, 12 days at 30 ◦C [20]

Olive mill sludge Remazol brilliant blue R (RBBR) plate count agar-tannic acid or
potato dextrose agar-tannic acid

Incubation at 30 ◦C for 48 h
(bacteria) and 96 h fungi [11]

3. Metabolic Pathways for Hydrocarbon Degradation

Hydrocarbon degradation mechanism and metabolism by microbial population follow
diversified pathways and thus make it a complex process. The major challenges in the
degradation of petroleum hydrocarbons and PAHs are attributed to high hydrophobicity.
The presence of both polar molecules, such as phosphates and alcohol derivatives etc. and
non-polar residues, such as fatty acids, on biosurfactants, leads to enhanced molecular
interactions with PAHs and hydrocarbons. Thus, the amphiphilic nature of biosurfactants
and its surface moieties provides better interaction by reducing the surface tension and
interfacial tensions [47,48]. The biosurfactant from the bacterial strain, Bacillus methylotroph-
icus decrease the surface tension of water by approximately 40% and was found to degrade
92% of crude oil [49]. The biosurfactant from another Bacillus strain has shown improved
solubilization and emulsification of oil sludge and enhanced bioavailability and biodegrada-
tion [50]. Thus, increasing the solubility and bioavailability of PAHs contribute to enhanced
degradation of the compounds. The efficacy of a biosurfactant depends on multiple factors,
such as bioavailability, reduced surface tensions, oxygen content or availability, nutrient
availability, etc. [51–53]. Further, the major pathways by aerobic and anaerobic microbial
activities include enzyme activation followed by catalysis. An implicit understanding of
these mechanisms is a prerequisite for designing strategies for an efficient bioremediation
process. A schematic representation of probable paths of degradation of major hydrocarbon
contaminants is provided in Figures 3–8 (summarized from Refs. [35,37–40,54–56]). The
important metabolic points and the sequence of the release of biproducts and endproducts
of metabolism as also mentioned.
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3.1. Major Intermediates and Biproducts

In general, the degradation of alkane compounds by bacteria follows three categories
based on aliphatic hydrocarbon: low molecular weight (C8–C16), medium molecular
weight (C17–C28), and high molecular weight (C29–C35) [24,32]. These alkane compounds
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are initially activated by enzymes, and an oxidation process is carried out by monooxyge-
nase and dioxygenase, which finally broken down into alcohol, acid or carbon dioxide as
end products. The double bond compounds alkenes are more sensitive and higher reactive.
Oxygen is accessed by bacteria using the monooxygenase process and the probable product
is epoxide. In branched chain alkanes, the oxidation resulted in hydroxy acids and dioic
acids, and the possible final product is a mono or dicarboxylic acid. Adipic acid might
be the expected degraded product due to the oxidation of cycloaliphatic compounds by
bacteria. On the other hand, the anaerobic bacteria degrade the hydrocarbon compounds
using anaerobic respiration by nitrate compounds, nitrite and nitrous oxide, sulphate,
thiosulphate, carbonate, and metal ions or through fermentation process or anoxygenic
phototrophic reactions. By using a fumarate addition reaction, possible anaerobic hydrocar-
bon biodegradation takes place. It can be observed that the major biodegradation processes
associated with hydrocarbon metabolism are the oxygen-independent hydroxylation pro-
cess, carboxylation process, saturated bond hydration process, reverse methanogenesis
process, and a few of the anaerobic fermentation processes [3,43,57,58].

The degradation of hydrocarbons by microbes involves a range of enzymes capable of
breaking down complex hydrocarbons into simpler compounds that can be metabolized
by the microbial cells. They are essential biological catalysts that accelerate biochemical
reactions by reducing the activation energy required for the reaction to occur. Enzymes
play a vital role in the degradation of biomolecules, such as carbohydrates, lipids, and
proteins. The degradation of these biomolecules is necessary to provide the cell with energy,
recycle cellular components, and eliminate waste products. Based on the characteristic
structure of the substrates, they can be divided as (i) carbohydrate degrading enzymes
(e.g., amylase, cellulase, and pectinase), (ii) lipid degrading enzymes (e.g., lipase and
phospholipase), and (iii) protein-degrading enzymes (e.g., protease and peptidase). Based
on the functional features, they are classified as oxygenase, hydrolase, dehydrogenase,
decarboxylase, isomerase, and esterase [58–63]. In essence, the specific enzymes involved in
hydrocarbon degradation will vary depending on the type of hydrocarbon and the specific
microbial community involved in the process.

3.2. Mechanisms Used by Microorganisms to Enhance Degradation of Hydrocarbons

Most of the hydrocarbon-degrading microbes produce surfactant compounds to emul-
sify the hydrocarbon molecules to droplets or micelles, and that is again taken back by
microorganisms. The most common role of such biosurfactants is to enhance the scat-
tering of contaminants in the aqueous phase and intensification of the bioavailability of
the hydrophobic substrate to microorganisms, with subsequent removal of contaminants
through biodegradation. It is reported that Candida sphaerica (75% to 92% hydrocarbon
removal rate) [7], Candida tropicalis (78% to 97% hydrocarbon removal rate) [8], and Can-
dida glabrata UCP1002 (up to 92.6% hydrocarbon removal rate) [9] can remove oil spills,
hydrocarbon from contaminated land or seawater by using a biosurfactant, such as a
protein-carbohydrate-lipid complex or sophorolipids. Other microorganism-based bio-
surfactants, such as glucolipid, trehalose lipid, rhamnolipid, lipopeptide, glycolipid, etc.
are also capable of removing the organic contaminants, as mentioned in Table 4. This
table offers a list of diverse types of biosurfactants and their producing microorganisms
with potential applications in the bioremediation of oil-polluted environments. The role of
microbes is very important for understanding the mechanisms of action during a metabolic
process [54,64,65]. These correlations help to decipher the metabolic linkages and the possi-
ble target sites to control the rate of reaction [14,55,56]. The hydrocarbon biodegradation
process by microbial activities with the aid of non-biological agents is more complicated
in nature and needs more intensive investigations to decode the details of the complete
mechanism [47–51,66].
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Table 4. Comparative evaluation of commercial microbial products for bioremediation.

Product
Name Function Source Significance of

Microbes

Cost of
Remediation
($ per acre)

Reference

BioSpill Biodegradation of
hydrocarbons Bacillus sp.

Bacillus sp. can degrade a wide
range of hydrocarbons,

including crude oil, gasoline,
and diesel.

100–500 [67]

Bio-Solve Pink Biodegradation of
petroleum hydrocarbons

Pseudomonas sp. and
other bacterial strains

Pseudomonas sp. is known to
degrade petroleum

hydrocarbons efficiently and
has been widely used in

bioremediation.

200–1000 [68]

Petrox
Biodegradation of
hydrocarbons and
other pollutants

Mixed culture
of microorganisms

The mixed culture of
microorganisms can degrade a

wide range of pollutants,
including crude oil, gasoline,

and diesel.

1000–5000 [69]

Nualgi Biostimulation of
indigenous microbes

Diatomaceous earth
and micronutrients

Nualgi provides micronutrients
to the indigenous microbial
population to enhance their

hydrocarbon-degra-
ding abilities.

100–500 [70]

Oilgone Biodegradation of
hydrocarbons

Bacillus sp. and other
bacterial strains

Bacillus sp. is known to degrade
hydrocarbons efficiently and

has been widely used in
bioremediation. Oilgone

contains a blend
of bacterial strains.

500–2000 [71]

4. Mechanistic Insights of Biodegradation of Phenolic Compounds PAH Pollutants
4.1. Biodegradation of Phenolic Compounds

Biodegradation of phenolic compounds is an effective method to protect the global
environment as they are widely present in industrial effluents and cause adverse effects on
animal lives, marine lives, and humans. Phenol is also the end product of the degradation
of various benzene conjugate compounds. Phenol hydrolase breaks down or converts
phenol to catechol, which is acted upon by dioxygenase (catechol 1, 2 dioxygenases and
2, 3 catechol dioxygenases) to form semialdehyde forms. This is associated with ortho-
and meta-cleavage of the catechol. These forms are further oxidized to oxaloacetate, which
is hydrolyzed to acetaldehyde and pyruvate. These end-products can be metabolized to
degrade it to the simplest form, thus completing the path of the degradation of the phenol
(Figure 3).

4.2. Biodegradation of Naphthalene

Naphthalene is biodegraded to 1-Naphthol, which is the substrate for naphthalene
1,2 dehydrogenase. This enzyme does hydroxylation of 1-Naphthol to Naphthalene-
cis-1,2-dihydrodiol, which is then acted upon by another dehydrogenase to form 1,2-
Dihydroxynaphthalene. Then ring cleavage occurs with the help of an enzyme called 2-
Hydroxychromene-2-carboxylate isomerase to form Trans-o-hydroxy-benzylidene pyruvic
acid, which is acted upon by hydratase aldolase. This aldolase action yields salicylalde-
hyde. Another enzyme is expected to oxidize salicylaldehyde to salicylic acid. Salicylic
acid can act as a substrate for Salicylate 1-hydroxylase, which does hydroxylation and
release carbon from the molecule to form catechol. Catechol is an important point of the
metabolism of hydrocarbons, and it gets converted into different biological precursors,
including ketoadipic acid and pyruvate, which can be processed to simplest forms via the
citric acid cycle (Figure 4).
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4.3. Biodegradation of Phenanthrene

Phenanthrene is a complex conjugated ring compound, which is acted upon by cy-
tochrome P450 monooxygenase to produce two products 3,4-dihydroxyphenanthrene and
9,10-dihydroxyphenanthrene. Out of these, the 3,4-dihydroxyphenanthrene is utilized by an
enzyme called aryl dehydrogenase to form 4-9-dihydroxy(2-naphyhyl))-2-oxobut-3-enoic
acid, which can then be acted upon by dioxygenase or hydratase or aldolase to produce
phthalic acid, and further oxidized to benzoic acid. The benzoic acid can then be con-
verted into catechol. In the second path of the metabolism of 9,10-dihydroxyphenanthrene,
dehydrogenase has a major role which acts on 9,10-dihydroxyphenanthrene to produce
2-biphenoic acid to produce catechol. Hence, it can be observed that the generation of the
catechol is unique in the degradation of phenanthrene compared to the other phenolic
compounds. After catechol formation in the degradation process, there is the formation
of cis-muconic acid, which can be converted to ß-Ketoadipic acid. This further can be
transformed to succinic acid and then to Acetyl CoA for final assimilation and CO2 release,
thus completing the biodegradation of the phenanthrene (Figure 5).

4.4. Biodegradation of Anthracene

Anthracene degradation is very similar to that of phenanthrene in terms of the pro-
duction of intermediate compounds. First, Anthracene is acted upon by cytochrome
P-450 monooxygenase to form 1,2-dihydroxy-1,2-dihydroanthracene, which can be modi-
fied to 3-(2-carboxyvinyl) naphthalene-2-carboxylic acid. This is further oxidized to 2,3-
dihydroxynaphthalene and further forms benzoic acid. The benzoic acid is then converted
to produce catechol. After this, there is the formation of cis-muconic acid, which can be
converted to ß-Ketoadipic acid. This further can be transformed to succinic acid and then to
Acetyl CoA for final assimilation and CO2 release, thus competing with the biodegradation
of the anthracene (Figure 6).

4.5. Biodegradation of Pyrene

Pyrene is a complex ringed structure, which is oxidized by pyrene dioxygenase
to form pyrene-cis-4,5-dihydrodiol. Then, an enzyme dihydrodiol dehydrogenase can
act on the product to form 4,5-dihydroxypyrene, which undergoes cleavage to yield cis-
3,4-dihydroxy-phenanthrene-4-carboxylate, which subsequently can undergo cleavage
step wise step via phenanthrene-4-carboxylate, and phenanthrene-4,5-dicarboxylic acid.
The phenanthrene-4,5-dicarboxylic acid can be acted upon by dihydrodiol dehydroge-
nase to form 3,4-dihydroxyphenanthrene. Then further ring cleavage happens to form
2-hydroxy-2H-benzo[h]chromene-2-carboxylic acid. Then isomerase acts and forms trans-
4-(1=-hydroxynapth-2-yl)-2-oxobut-3-enoic acid. Then hydratase-aldolase acts to form
1-hydroxy-2-naphthaldehyde. Further, 1-hydroxy-2-naphthoic acid is formed by oxidation
with the help of the enzyme aldehyde dehydrogenase. The enzyme 1-hydroxy-2-naphthoate
hydroxylase acts to form naphthalene-cis-1,2-dihydrodiol, which becomes a substrate for
NAD-dependent cis-1,2-naphthalenedihydrodiol dehydrogenase. This enzyme can form
1,2-dihydroxynaphthalene, which can be degraded to simplest forms via 2-hydroxy-2H-
chromene-2-carboxylic acid and Trans-o-hydroxy benzylidene pyruvic acid. Then during
this oxidation process there occurs the formation of salicylaldehyde which can be oxidized
by salicylaldehyde dehydrogenase to salicylic acid, further leading to the formation of
catechol by the activity of enzyme salicylate 1-hydroxylase. Then catechol formation can
happen, which can be degraded to acetyl CoA via succinic acid (Figure 7).

4.6. Biodegradation of Benzopyrene

Biodegradation of Benzopyrene can occur in different ways. Benzopyrene can be bro-
ken down into Benzo[a]pyrene-11,12-epoxide, Benzo[a]pyrene trans-11,12-dihydrodiol by
the activity of epoxide hydrolases and dihydrodiol dehydrogenases which acts on different
conjugate rings to make it open and subsequently degrading it to simpler forms, such
as hydroxymethoxybenzo[a]pyrene and dimethoxybenzo[a]apyrene. All these pathways
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lead to the formation of intermediate molecule catechol which is further broken down
into 2-hydroxymuconic semialdehyde, then to 2-keto-4-pentenoic acid, and finally forming
pyruvic acid by citric acid cycle enzymes or related mechanisms (Figure 8).

5. Challenges in Bioremediation Process and Future Perspectives

The petroleum hydrocarbon pollutants are very stable and are not easy to degrade, per-
sist for longer periods, thus damaging the ecosystem and associated lives. The biodegrad-
ability of hydrocarbons is also challenging because of their non-bioavailability to microbes
owing to their hydrophobicity and insolubility in water. Bioremediation is one of the
useful, cost-effective, and sustainable techniques to degrade these contaminants. Various
research outputs have validated this perspective. The significant micro-organisms respon-
sible for efficient degradation include Pseudomonas sp. Micrococcus, Nocardiopsis, Bacillus
sp., Acinetobacter radioresistens, Enterobacter hor-maechei strain KA6, Aspergillus ochraceus,
Scedosporium apiospermum, etc. [56,72–75]. As the type of contaminants may determine the
biodegradation period, the bioremediation can be performed either as in situ, ex situ, or in
vessel method. Many researchers reported experiments using small-scale bioreactors. These
results should be corroborated with the large-scale or industrial-scale experiment. The most
widely used medium to isolate petroleum-degrading microbes is Bushnell-Haas (BH) with
1% crude oil or kerosene, and the most widely used inoculation process is 0.5 McFarland
isolate solution. The experimental design is very significant as the best combination of
substrates and micro-organisms can remove TPHs up to 90% [7–9,22].

Further, the efficiency of the bioremediation highly depends upon the selected sub-
strates, mix-ratio, prevailing biogeochemical transformation in the field, microbial type,
population, and other physical parameters. It is reported that the bioremediation approach
needs improvements for all emerging pollutants [21]. Therefore, along with pre-treatment,
chemical or engineering treatment is also required. However, this must be negotiated with
the cost of the implementation plan. In addition, bioremediation experiments performed in
small lab-scale volumes with limited capacity need to be scaled up to larger volumes and
should be validated in the field. The researchers must use numerical and other simulations
to identify the potential efficiency of the process [74].

The cost of remediation can vary based on factors such as the site location, the extent
of contamination, and the type of treatment method used. In general, bioaugmentation
tends to be more expensive than biostimulation, but it may be necessary in cases where
indigenous microbes are unable to degrade the hydrocarbons on their own. It is important
to note that there are many commercial microbial products available for hydrocarbon
bioremediation, and their efficacy and cost can vary depending on the specific product
and site (Table 4). Additionally, the use of microbial products should be accompanied by a
thorough understanding of the site conditions, the potential risks, and benefits of using
the products.

In the context of bioremediation, immobilized enzymes on iron oxide surfaces can
be used to catalyze the degradation of hydrocarbons and other pollutants. The iron oxide
surface can act as a support material for the enzyme, providing a stable environment and
improving the efficiency of the reaction [76]. Additionally, the immobilized enzyme can
be easily separated from the reaction mixture, allowing for easy removal of the pollutant
as well as for recycling of the enzyme [77]. Overall, the immobilization of enzymes on
inorganic materials, such as iron oxides, is a promising approach for improving enzyme
stability, activity, selectivity, and reducing costs in biotechnology and bioremediation
applications [78,79]. The advanced approach includes modified enzymes and microbial
adsorption methods to enhance the oxidation potential of the bioremediation approach.

The prospective integrated approach is useful to specifically increase the rate of biore-
mediation by various modifications, including site-specific mutations [66,80–82]. The func-
tionality of the enzymes is dependent on their binding and accessibility to the molecules.
The rate of hydrolysis is also influenced by molecular interactions between catalytic amino
acid residues and the ligand molecules in the active sites [15,39,83]. The process and the oxi-
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dation conditions can be modified, as discussed in previous sections. The monooxygenases
and hydrolases can improve the oxidation potential of the process in the bioremediation
of hydrocarbons, such as phenols, pyrenes, benzopyrene, phenanthrene, and naphthalene
and its derivatives by site-specific mutations at active site residues [35,84–87]. For example,
the targeted mutation in the 258th residue of the dioxygenase, associated with nitrotoluene
degradation, has increased the rate of biodegradation [1]. The modification of Benzyl
Succinate Synthase (bssA) gene has been reported to enhance the degradation of toluene
and xylene [57,88]. The change in the binding process and introduction of the immobi-
lized enzymes have been reported to enhance the rate of biodegradation [5,74,89,90]. Each
modification can alter the course of the enzymatic reaction and, hence, can influence the
rate of bioremediation and the effectiveness of the approach adopted [72,73]. This low-cost
bioremediation approach would be the better solution to conserve the natural resources
and ecosystem for sustainable development.

6. Conclusions

The eco-sustainable bioremediation approach is important for the treatment of petroleum
pollutants, hydrocarbon wastes, and spills. The next-generation approaches, including
the modification of enzymes and microbes, and microbial adsorption methods to enhance
the bioremediation potential need to be scaled up for field implementation. The proposed
integrated approach is intended to specifically increase the rate of bioremediation, including
site-specific modifications in the active site of the enzyme(s) or recombinant microbial
strain(s). An understanding of the mechanistic details paves the way for modification of the
metabolic pathway for enhancing the reaction rates. The changes in the binding process and
introduction of the immobilized enzymes are expected to enhance biodegradation in many
folds. The rate of bioremediation can, thus, be enhanced by using advanced recombinant
tools and strategies. Further, a deep understanding of the modes of action by microbial
activities provides novel insights about the target sites and mechanistic enzymatic steps,
which can be explored for enhancement of the rate of biodegradation. The amalgamation
of the biological and non-biological approaches for the treatment of hydrocarbon pollutants
should also be translated with cost-effective considerations. Therefore, there is a constant
need for investigation and improvements of bioremediation methods for the cleanup of sites
contaminated by hydrocarbon pollutants towards an efficient eco-sustainable development.
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