Mixotrophy of Algae: More Algal Biomass and More Biofertilization for Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blue-Green Isolates and Mixotrophic Growth Experiment
2.2. Preparation of the Aqueous Extracts
2.3. GC–MS of Phormidium sp. Biomass
2.4. Preparation of the Methanolic Extracts of Phormidium sp.
2.5. Plant and Growth Conditions
- Seed germination
- Seedling pot experiment
2.5.1. Growth Metrics
2.5.2. Physiological and Biochemical Studies
Chlorophyll a
Photosynthetic Pigments Content
Total Soluble Sugars and Proteins Contents
Total Soluble Sugars
Total Soluble Proteins
2.6. Statistical Analysis
3. Results
3.1. GC–MSs of Biomass Phormidium sp. Using Multisolvent System
3.2. Effect of Different Extracts on Growth Metrics of Algal Strains
3.3. Seed Germination
3.4. Vegetative Growth
3.5. Metabolic Activity
- a.
- Photosynthetic Pigments
- b.
- Carbohydrates and Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Semary, N. Nitrogen-fixing Cyanothece sp. as a mixotroph and silver nanoparticle synthesizer: A multitasking exceptional cyanobacterium. Braz. J. Biol. 2022, 82, e265135. [Google Scholar] [CrossRef]
- Vazhappilly, R.; Chen, F. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J. Am. Oil Chem. Soc. 1998, 75, 393–397. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.; de-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Chen, G.Q.; Chen, F. Growing phototrophic cells without light. Biotechnol. Lett. 2006, 28, 607–616. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Chen, F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 2003, 21, 273–294. [Google Scholar] [CrossRef]
- Lacroux, J.; Trably, E.; Bernet, N.; Steyer, J.P.; van Lis, R. Mixotrophic growth of microalgae on volatile fatty acids is determined by their undissociated form. Algal Res. 2020, 47, 101870. [Google Scholar] [CrossRef]
- Babuskin, S.; Radhakrishnan, K.; Babu, P.; Sivarajan, M.; Sukumar, M. Effect of photoperiod, light intensity and carbon sources on biomass and lipid productivities of Isochrysisgalbana. Biotechnol. Lett. 2014, 36, 1653–1660. [Google Scholar] [CrossRef]
- Liu, X.; Duan, S.; Li, A.; Xu, N.; Cai, Z.; Hu, Z. Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J. Appl. Phycol. 2009, 21, 239–246. [Google Scholar] [CrossRef]
- Andrade, M.; Costa, J. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 2007, 264, 130–134. [Google Scholar] [CrossRef]
- Wood, B.J.B.; Grimson, P.H.K.; German, J.B.; Turner, M. Photoheterotrophy in the production of phytoplankton organisms. J. Biotechnol. 1999, 70, 175–183. [Google Scholar] [CrossRef]
- Conforti, F.; Ioele, G.; Statti, G.A.; Marrelli, M.; Ragno, G.; Menichini, F. Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food Chem. Toxicol. 2008, 46, 3325–3332. [Google Scholar] [CrossRef]
- Diwakara, B.T.; Duttaa, P.K.; Lokeshb, B.R.; Naidu, K.A. Bio-availability and metabolism of n-3 fatty acid rich garden cress (Lepidium sativum) seed oil in albino rats. Prostaglandins Leukot. Essent. Fat. Acids 2008, 78, 123–130. [Google Scholar] [CrossRef]
- Kassie, F.; Laky, B.; Gminski, R.; MerschSundermann, V.; Scharf, G.; Lhoste, E.; Kansmüller, S. Effects of garden and water cress juices and their constituents, benzyl and phenethyl isothiocyanates, towards benzo (a) pyrene-induced DNA damage: A model study with the single cell gel electrophoresis/Hep G2 assay. Chem. Biol. Interact. 2002, 142, 285–296. [Google Scholar] [CrossRef]
- Khosla, P.; Gupta, D.D.; Nagpal, R.K. Effect of Trigonella foenum graecum (Fenugreek) on serum lipids in normal and diabetic rats. Int. J. Pharmacol. 1995, 27, 89–93. [Google Scholar]
- Kaviarasan, S.; Ramamurty, N.; Gunasekaran, P.; Varalakshmi, E.; Anuradha, C.V. Fenugreek (Trigonella foenum graecum) seed extract prevents ethanol-induced toxicity and apoptosis in chang liver cells. Alcohol Alcohol. 2006, 41, 267–273. [Google Scholar] [CrossRef][Green Version]
- Ramachandraiah, O.S.; Reddy, P.N.; Azeemoddin, G.; Ramayya, D.A.; Rao, S.D.T. Essential and fatty oil content in umbelliferous and fenugreek seeds of Andhra Pradesh habitat. Indian Cocoa Arecanut Spices J. 1986, 10, 12. [Google Scholar]
- Parthasarathy, V.A.; Chempakam, B.; Zachariah, T.J. Chemistry of Spices; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F.A. Review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef][Green Version]
- El-Hadiyah, T.M.; Raza, M.; Mohammed, O.Y.; Abdallah, A.A. Evaluation of Nigella sativa seed constituents for their in vivo toxicity in mice. Nat. Prod. Sci. 2003, 9, 22–27. [Google Scholar]
- Anuradha, C.V.; Ravikumar, P. Restoration on tissue antioxidants by fenugreek seeds (Trigonella Foenum Graecum) in alloxan-diabetic rats. Indian J. Physiol. Pharmacol. 2001, 45, 408–420. [Google Scholar]
- Öztürk, M.; Altay, V.; Hakem, K.R.; Akçiçek, E. Liquorice—From Botany to Phytochemistry, Springer Briefs in Plant Sciences; Springer Nature: Basel, Switzerland, 2017; p. 139. [Google Scholar]
- Brown, K. Medicinal plants, indigenous medicine and conservation of biodiversity in Ghana. In Intellectual Property Rights and Biodiversity Conservation; Swanson, T., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 201–231. [Google Scholar]
- Patil, S.M.; Patil, M.B.; Sapkale, G.N. Antimicrobial activity of Glycyrrhiza glabra Linn. Roots. Int. J. Chem. Sci. 2009, 7, 585–591. [Google Scholar]
- Cinati, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003, 61, 2045–2046. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Toshio, F.; Kazue, S.; Taro, N. Preliminary evaluation of anti nephritis and radical scavenging activities of glabridin from Glycyrrhizaglabra linn. Fitotherapia 2003, 74, 624–629. [Google Scholar]
- Vaya, J.; Belinky, P.A.; Aviram, M. Structural aspects of the inhibitory effect of glabridin onLDL oxidation. Free Radic. Biol. Med. 1998, 24, 1419–1429. [Google Scholar]
- Fujisawa, Y.; Sakamoto, M.; Matsushita, M.; Fujita, T.; Nishioka, K. Glycyrrhizin inhibits thelytic pathway of complement—Possible mechanism of its anti-inflammatory effect on liver cells in viral hepatitis. Microbiol. Immunol. 2000, 44, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Tamer, C.E.; Ncedayi, B.; Parseker, A.S.; Çopur, Y.S. Evaluation of several quality criteria of low calorie pumpkin dessert. Nat. Bot. Hort. Agrobot. 2010, 38, 76–80. [Google Scholar]
- Schopf, J.W. Fossil evidence of Archaean life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 869–885. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sharma, S.H.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A Review on the Processing of Macroalgae and Use of Extracts for Crop Management to Reduce Abiotic and Biotic Stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Amirkhani, M.; Netravali, A.N.; Huang, W.; Taylor, A.G. Investigation of Soy Protein Based Biostimulant Seed Coating for Broccoli Seedling and Plant Growth Enhancement. Hort Sci. 2016, 51, 1121–1126. [Google Scholar] [CrossRef][Green Version]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fagioli, P.; Fusaro, I.; Biagi, G.; Formigoni, A.; Mammi, L. Characterization of molasses chemical composition. J. Dairy Sci. 2020, 103, 6244–6249. [Google Scholar] [CrossRef]
- Ríos, J.; Recio, M.; Villar, A. Antimicrobial activity of selected plants employed in the Spanish mediterranean area. J. Ethnopharmacol. 1987, 21, 139–152. [Google Scholar] [CrossRef]
- El Sherif, F.; Albotnoor, N.; Yap, Y.K.; Meligy, A.; Khattab, S. Enhanced bioactive compounds composition in Lavandula officinalis in-vitro plantlets using NaCl and Moringa oleifera, Aloe vera and Spirulina platensis extracts. Ind. Crop Prod. 2020, 157, 112890. [Google Scholar] [CrossRef]
- Castle, S.C.; Morrison, C.D.; Barger, N.N. Extraction of chlorophyll a from biological soil crusts: A comparison of solvents for spectrophotometric determination. Soil Biol. Biochem. 2011, 43, 853–856. [Google Scholar] [CrossRef]
- Ritchie, R. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Metzener, H.; Rauand, H.; Senger, H. Untersuchungen zur Synchronisierbarkeit einzelner pigment angel mutanten von Chlorella. Planta 1965, 65, 186. [Google Scholar] [CrossRef]
- Umbriet, W.W.; Burris, R.H.; Stauffer, J.F. Monometric Technique, A Manual Describing Methods Applicable to the Study of Tissue Metabolism, 4th ed.; Burgess Publ. Co.: Minneapolis, MN, USA, 1959; p. 239. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods; Iowa State University Press: Ames, IA, USA, 1980. [Google Scholar]
- Kaviarasan, S.; Naik, G.H.; Gangabhagirathi, R.; Anuradha, C.V.; Priyadarsini, K.I. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem. 2007, 103, 31–37. [Google Scholar] [CrossRef]
- Belguith-Hadriche, O.; Bouaziz, M.; Jamoussi, K.; Simmonds, M.S.J.; El Feki, A.; Makni-Ayedi, F. Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chem. 2013, 138, 1448–1453. [Google Scholar] [CrossRef]
- Duke, J.A. Handbook of Phytochemical Constituent Grass, Herbs and Other Economic Plants; CRC press: Boca Raton, FL, USA, 1992; ISBN 0849336724. [Google Scholar]
- Shariatmadari, Z.; Riahi, H.; Abdi, M.; SeyedHashtroudi, M.; Ghassempour, A.R. Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. J. Appl. Phycol. 2015, 27, 2279–2287. [Google Scholar] [CrossRef]
- El-Nahas, A.I.; Abd El-Azeem, E.A. Anabaena variabilis as biocontrol agent for salt stressed Vicia faba seedlings. J. Union Arab. Biol. Cairo Physiol. Algae 1999, 7B, 169–178. [Google Scholar]
- Faheed, F.A.; Fattah, Z.A. Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of Lettuce plant. J. Agric. Soc. Sci. 2008, 4, 165–169. [Google Scholar]
- Kumar, A.P.; Anand, N. Studies on phycobilin pigments of the cyanobacterium Wetiello psissiyengarii. Int. J. Biotechnol. Biochem. 2010, 6, 315–323. [Google Scholar]
- Kumar, G.; Sahoo, D. Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. J. Appl. Phycol. 2011, 23, 251–255. [Google Scholar] [CrossRef]
- Christopher, P.A.; Viswajith, V.; Prabha, S.; Sundhar, K.; Malhga, P. Effect of coir pith based cyanobacterial basal and foliar biofertilizer on Basella rubra L. Acta Agric. Slov. 2007, 89, 59–63. [Google Scholar] [CrossRef]
- Palaniappan, P.; Malliga, P.; Manian, S.; Madhaiyan, S.S.M.; Sa, T. Plant growth promontory effect on Cow pea (Vigna unguiculata L.) using coir pith aqueous extract formulation of cyanobacterium Phormidium. Am. -Eurasian J. Agric. Environ. Sci. 2010, 89, 178–184. [Google Scholar]
- Yadav, S.G. Effect of Phormidium mucosum Extracts on Growth and Development of Certain Legume Crop Plants. Think India J. 2019, 22, 421–427. [Google Scholar]
- Moorthy, K.S.; Malliga, P. Plant characteristics, growth and leaf gel yield of Aloe barbadensis miller as affected by cyanopith biofertilizer in pot culture. Int. J. Civ. Struct. Eng. 2012, 2, 884–892. [Google Scholar]
- Gupta, A.B.; Shukla, A.C. Effect of algal extracts of Phormidium species on growth and development of rice seedlings. Hydrobiologia 1969, 34, 77–84. [Google Scholar] [CrossRef]
- Gauter, M.; Kerby, N.W.; Rowell, P.; Obrent, C.; Scrimgeour, C. Colonization of wheat (Triticum vulgare L.) by nitrogen fixing cyanobacteria; IV dark nitrogenase activity and effect of Cyanobacteria on natural super 15N abundance in plants. New Phytol. 1995, 129, 337–343. [Google Scholar]
- Ghosh, D.C.; Mohiuddin, M. Response of summer sesame (Sesamum indicum) to bio-fertilizer and growth regulator. Agric. Sci. Dig. 2000, 20, 90–92. [Google Scholar]
- Maqubela, M.P.; Mnkeni, P.N.S.; Issa, M.O.; Pardo, M.T.; D’Acqui, L.P. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility and maize growth. Plant Soil 2009, 315, 79–92. [Google Scholar] [CrossRef]
- Hameeda, B.; Harinib, G.; Rupela, O.P.; Wani, S.P.; Reddy, G. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 2008, 163, 234–242. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Prasanna, R.; Sood, A.; Jaiswal, P.; Nayak, S.; Gupta, V.; Chaudhary, V.; Joshi, M.; Natarajan, C. Rediscovering Cyanobacteria as valuable sources of bioactive compounds. Appl. Biochem. Microbiol. 2010, 46, 119–134. [Google Scholar] [CrossRef]
- Kollmen, J.; Strieth, D. The Beneficial effects of cyanobacterial co-culture on plant growth. Life 2022, 12, 223. [Google Scholar] [CrossRef]
- Anandharaj, B. Studies on Coirpith Based Cyanobacterial Biofertilizer for Field Cultivation. Ph.D. Thesis, Bharathidasan University, Tiruchirappalli, India, 2008. [Google Scholar]
- Abesh, R.; Ravindranath, A.D. Efficacy of biodegraded coir pith for cultivation of medicinal plants. J. Sci. Ind. Res. 2010, 69, 554–559. [Google Scholar]
- Bhuvaneshwari, B.; Subramaniyam, V.; Malliga, P. Comparative studies on cyanopith and cyano spray biofertilizers with chemical fertilizer on Sunflower (Helianthus annus). J. Appl. Phycol. 2011, 5, 235–241. [Google Scholar]
- Rajula, R.G.; Padmadevi, S.N. Effect of industrial effluents without and with BGA on the growth and biochemical contents of the seedlings of Helianthus annuus L. Asian. J. Microbiol. Biotechn. Environ. Sci. 2000, 2, 151–154. [Google Scholar]
- Osman, M.E.H.; El-Sheekh, M.M.; El-Naggar, A.H.; Gheda, S.F. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol. Fertil. Soils 2010, 46, 861–875. [Google Scholar] [CrossRef]
- Adam, M.S. The promotive effect of the cyanobacterium Nostoc muscorum on growth of some crop plants. Acta Microbiol. Polonica. 1999, 48, 163–171. [Google Scholar]
- Osman, M.E.A.H.; Abo-Shady, A.M.; Gaafar, R.M.; Ismail, G.A.; El-Nagar, M.M.F. Assessment of cyanobacteria and tryptophan role in the alleviation of the toxic action of brominal herbicide on Wheat Plants. Gesunde Pflanz. 2022. [Google Scholar] [CrossRef]
- Hussain, A.; Hasnain, S. Phytostimulation and biofertilization in wheat by cyanobacteria. J. Ind. Microbiol. Biotechnol. 2011, 38, 85–92. [Google Scholar] [CrossRef]
- Mazhar, S.; Cohen, J.D.; Hasnain, S. AuxinProducing non-heterocystoue cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. J. Basic Microbiol. 2013, 53, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Shariatmadari, Z.; Riahi, H.; Hastroudi, M.S.; Ghassempour, A.; Aghashariatmadary, Z. Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci. Plant Nutr. 2013, 59, 535–547. [Google Scholar] [CrossRef]
- Rai, A.N.; Singh, A.K.; Syiem, M.B. Plant growth promoting abilities in cyanobacteria. In Cyanobacteria; Mishra, A.K., Tiwari, D.N., Rai, A.N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 459–476. [Google Scholar]
- Hashtroudi, M.S.; Ghassempour, A.; Riahi, H.; Shariatmadari, Z.; Khanjir, M. Endogenous auxins in plant growth-promoting Cyanobacteria-Anabaena vaginicola and Nostoc calcicola. J. Appl. Phycol. 2013, 25, 379–386. [Google Scholar] [CrossRef]
- Haroun, S.A.; Hussein, M.H. The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil. Asian J. Plant Sci. 2003, 2, 944–951. [Google Scholar] [CrossRef][Green Version]
Treatments | f.wt (mg) | d.wt (mg) | Total Soluble Protein | Total Soluble Sugars | Chl. a | |
---|---|---|---|---|---|---|
Phormidium sp. | 0 | 420 ± 11.11 c | 29 ± 0.76 b | 92.20 ± 2.4 c | 12.06 ± 0.32 c | 1.19 ± 0.03 b |
sugarcane molasses | 640 ± 16.9 a | 43 ± 1.13 a | 100.52 ± 2.7 b | 16.02 ± 0.42 b | 1.24 ± 0.04 ab | |
cress seed extract | 520 ± 13.75 b | 30 ± 0.79 b | 130.09 ± 3.4 a | 17.5 ± 0.46 a | 1.72 ± 0.05 a | |
potassium acetate | 180 ± 4.76 d | 17 ± 0.44 c | 44.67 ± 1.18 e | 10.32 ± 0.27 d | 0.419 ± 0.01 c | |
liquorice root extract | 430 ± 11.36 c | 15 ± 0.39 c | 91.40 ± 2.41 c | 5.2 ± 0.13 e | 0.677 ± 0.02 c | |
fenugreek seed extract | 500 ± 13.22 b | 30 ± 0.79 b | 82.2 ± 2.17 d | 9.43 ± 0.25 d | 0.629 ± 0.02 c | |
L.S.D at 5% | 70 | 12 | 8.3 | 1.48 | 0.51 |
Treatments | f.wt (mg) | d.wt (mg) | Total Soluble Protein | Total Soluble Sugars | Chl a | |
---|---|---|---|---|---|---|
Synechocystis sp. | 0 | 90 ± 3.45 a | 5 ± 0.13 a | 100.9 ± 2.6 a | 15.06 ± 0.4 a | 3.22 ± 0.08 a |
sugarcane molasses | 31 ± 0.82 c | 2.5 ± 0.06 d | 77.25 ± 2 d | 9.11 ± 0.24 d | 0.91 ± 0.02 c | |
cress seed extract | 70 ± 1.85 b | 4.4 ± 0.11 b | 92.24 ± 2.4 b | 11.20 ± 0.29 c | 2.29 ± 0.06 b | |
potassium acetate | 23 ± 0.60 d | 1.1 ± 0.02 e | 88.12 ± 2.4 b | 9.93 ± 0.26 d | 0.79 ± 0.02 c | |
liquorice root extract | 72 ± 1.90 b | 3.5 ± 0.09 c | 90.51 ± 2.1 b | 12.36 ± 0.32 b | 2.36 ± 0.06 b | |
fenugreek seed extract | 15 ± 0.39 e | 0.6 ± 0.02 f | 60.85 ± 1.6 e | 5.1 ± 0.13 e | 0.25 ± 0.007 d | |
L.S.D at 5% | 8 | 0.6 | 8.6 | 1.1 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Semary, N.; Abd El-Sattar, A.M.; Ahmed, E.Z.; Aldayel, M. Mixotrophy of Algae: More Algal Biomass and More Biofertilization for Plants. Sustainability 2023, 15, 5815. https://doi.org/10.3390/su15075815
El Semary N, Abd El-Sattar AM, Ahmed EZ, Aldayel M. Mixotrophy of Algae: More Algal Biomass and More Biofertilization for Plants. Sustainability. 2023; 15(7):5815. https://doi.org/10.3390/su15075815
Chicago/Turabian StyleEl Semary, Nermin, Amira Mohamed Abd El-Sattar, Eman Zakaria Ahmed, and Munirah Aldayel. 2023. "Mixotrophy of Algae: More Algal Biomass and More Biofertilization for Plants" Sustainability 15, no. 7: 5815. https://doi.org/10.3390/su15075815