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Abstract: Urban flooding disasters have become increasingly frequent in rural-urban fringes due
to rapid urbanization, posing a serious threat to the aquatic environment, life security, and social
economy. To address this issue, this study proposes a flood disaster risk assessment framework that
integrates a Weighted Naive Bayesian (WNB) classifier and a Complex Network Model (CNM). The
WNB is employed to predict risk distribution according to the risk factors and flooding events data,
while the CNM is used to analyze the composition and correlation of the risk attributes according to
its network topology. The rural-urban fringe in the Guangdong–Hong Kong–Macao Greater Bay Area
(GBA) is used as a case study. The results indicate that approximately half of the rural-urban fringe is
at medium flooding risk, while 25.7% of the investigated areas are at high flooding risk. Through
driving-factor analysis, the rural-urban fringe of GBA is divided into 12 clusters driven by multiple
factors and 3 clusters driven by a single factor. Two types of cluster influenced by multiple factors
were identified: one caused by artificial factors such as road density, fractional vegetation cover, and
impervious surface percentage, and the other driven by topographic factors, such as elevation, slope,
and distance to waterways. Single factor clusters were mainly based on slope and road density. The
proposed flood disaster risk assessment framework integrating WNB and CNM provides a valuable
tool to identify high-risk areas and driving factors, facilitating better decision-making and planning
for disaster prevention and mitigation in rural-urban fringes.

Keywords: rural-urban fringe; urban flooding; Bayesian; complex network; adaptive planning

1. Introduction

Urban flooding, a multifaceted phenomenon encompassing various forms of inun-
dation resulting from intense precipitation or insufficient drainage, poses a significant
threat to urban ecological systems, human well-being, and property security [1–3]. The
magnitude and frequency of urban flooding will be expected to continuously increase
due to the global climate change [4–8]. As a complex transition zone in the periphery of
growing urban areas, the rural-urban fringe has typical characteristics of strong dynamism,
high complexity, and weak protection compared with the urban center and rural areas.
The rapid urbanization has resulted in a large number of natural green spaces being oc-
cupied by impervious surfaces, posing severe flooding disaster risks compared to rural
areas. Additionally, since insufficient fundamental infrastructure exists in the rural-urban
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fringe compared to urban areas, there would be great opportunity to construct or improve
stormwater drainage systems for preventing urban flooding risks. It is therefore relatively
easy to reduce the adverse impact of flood disasters on urban development through plan-
ning and implementation compared to urban centers. Nevertheless, to date, few studies
have been conducted to investigate urban flooding in the rural-urban fringe. As such, it
is critical to consider planning and implementing methods for preventing and reducing
urban flooding in the rural-urban fringe.

In terms of urban flooding risk assessment, hydrological and hydrodynamic models
have been commonly used in the early stages [9,10]. Models such as the Storm Water
Management Model (SWMM) and Mike software, which were integrated into the rainfall
production confluence computation, have been extensively used to simulate the physical
process of urban flooding by computing surface runoff and calculating the confluence
and generation of surface runoff [11,12]. Nevertheless, it can be challenging to use these
models to simulate spatially distributed hydrological processes at high spatial and temporal
resolutions, particularly in highly heterogeneous urbanized regions [13]. Furthermore, the
application of these models to large urban areas seems to be limited, mainly due to the
disadvantages of being time-consuming, data demanding, and vulnerable to errors [14,15].
Alternately, machine learning (ML) methods can overcome the shortcomings of hydrologic
and hydraulic models [16], as they can automatically obtain flood risk characteristics on
the basis of intelligent models [17–19] and usually require relatively simple spatial data
with high performance and reliable generalizations [20,21].

Bayesian Network (BN), a widely used ML tool for evaluating uncertainties during
risk evaluations by considering the probability distribution of stochastic variables and their
joint probability, could be used for assessing the potential occurrence of disasters [22]. BN
has been widely applied to estimate the likelihood of various hazards, owing to its ability
to correlate risk attributes with historical disaster data. Jager et al. [23] developed a BN
model for evaluating the percentage of affected receptors in different zones of the site by
predicting their hazards and damages. Naive Bayesian (NB) is a particular application of
BN, which is used to transform a BN’s multidimensional condition into a multiplicative
relationship between multiple conditional probability distributions [24,25]. Due to its
simplified algorithm structure [26], stable classification efficiency, and less sensitivity
to noise, NB can acquire satisfied classification performance in experiments with fewer
samples [27]. Yang et al. [28] compared the performance of NB, Support Vector Machine,
and Random Forest algorithms for urban waterlogging assessment and found that the NB
algorithm outperformed the others with the highest macro-average accuracy. Liu et al. [29]
developed a likelihood-based flooding hazard map at a regional scale using NB to simplify
the multi-dimensional condition of a BN. However, since the assumption of independent
attributes may not be valid in reality, it may be less persuasive to assess flooding risk
when using a single NB [30]. Weight Naive Bayesian (WNB) can overcome the defect of
NB by assigning weights based on risk factors to attributes [27]. Liu et al. [31] developed
a framework for assessing the urban flooding at the Fitzroy River Basin in Queensland,
Australia, by integrating WNB, GIS, and remote sensing and revealed that the weights
calculated appropriately describe the relationships among factors and confirm that the
performance of urban flooding by WNB is better than NB. Thus, WNB can be used to
produce a more realistic representation, enhance modeling performance, and mitigate
the hypothesis of conditional independence. Tang et al. [32] explored a comprehensive
framework for evaluating the spatial likelihood of flood hazards in urban catchments by
integrating WNB and Geographic Information Systems (GIS). Therefore, WNBs may be a
promising modeling method for assessing flood susceptibility on the rural-urban fringe.
Table S1 presents a comparison of the proposed urban flooding risk assessment in the
rural-urban fringe based on a Bayesian Classifier with other state-of-the-art studies recently
published in the domain.

Identifying flood-driving factors is a key step for exploring feasible and reliable
adaptation measures, since the driving factors of urban flooding vary by region due to
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the specific characteristics of location, especially in regions with complicated geographical
environments [33,34]. A flood index can be calculated to reflect a high flooding risk in
a specific area, while its values can be neglected in another area [35]. Complex network
model (CNM), which is used to identify the driving factors, allows for rapid analysis of
complex systems by simplifying the nodes and edges of components and interactions
between components (using nonlinear interaction) [36,37]. Furthermore, it is especially
suitable for evaluating systemic risks to support decision-makers for formulating adaption
strategies [38]. Ellinas et al. [39] developed a CNM to examine the vulnerability of urban
flooding and predict wide-scale catastrophe triggered by one-fold mission failure, and the
results were presented via a cascading process. Yu et al. [40] proposed a CNM to investigate
social risks related to housing redevelopment and urban renovation. In addition, graph-
based CNMs have been developed and applied to the resilience assessment of water
distribution systems [41], hydraulic behavior evaluation [42], sensor placement [43], and
water quality assessment [44]. It is worth noting that CNM has high application potential
for assessing the risk of urban flooding, particularly in highly heterogeneous megacities and
urban agglomerations. However, to date, few studies have been carried out for systemic
flooding risk assessment and identifying driving factors using CNM.

Within this context, this study aimed to (1) propose a comprehensive framework that
integrates a Weighted Naive Bayesian (WNB) classifier and a Complex Network Model
(CNM) to assess the risk probability of urban flooding and its attributes; (2) identify the
drivers of urban flooding in risk-prone rural-urban fringe using the proposed framework;
and (3) provide corresponding adaptive strategies based on the identified driving factors.
This paper was organized as follows. Section 2 introduced the materials and methods
used to propose a comprehensive framework for assessing the risk probability of urban
flooding and its attributes. In Section 3, the mapping of urban flooding risk and the
analysis of dominant risk attributes were presented and discussed. Section 4 summarized
the conclusions.

2. Materials and Methods
2.1. Case Study

With a total area of 56,000 km2, the Guangdong–Hong Kong–Macao Greater Bay Area
(GBA), including 11 cities (i.e., Guangzhou, Zhaoqing, Hong Kong, Macao, Foshan, Zhuhai,
Huizhou, Shenzhen, Zhongshan, Dongguan, and Jiangmen), is one of China’s three urban
agglomerations. The GBA plays a key strategic role in the country’s development with the
highest economic output in China. With an average precipitation of 1600–2300 mm per year,
the weather in GBA is characterized by uneven rainfall distribution due to its subtropical
marine monsoon climate [45]. Consequently, the increased extreme precipitation events
have posed high potential flooding risks in GBA [46].

The rural-urban fringe is an important component of the GBA with significant influ-
ence on the sustainable development of GBA. Therefore, it is urgent to explore effective
strategies for flood disaster adaptation by analyzing the spatial distribution and driving
factors of flood disaster risk in the rural-urban fringe of GBA. In this study, geographic
information on the rural-urban fringe of GBA was derived from the Department of Natu-
ral Resources of Guangdong Province, China (http://nr.gd.gov.cn/ (accessed on 18 May
2022)) [47] (Figure 1).

2.2. Materials
2.2.1. Data

A total of 2593 urban flooding events during the period of 2015–2020 and the rele-
vant driving factors associated with flooding hazards were collected as source data (see
Table 1). The data on historical flooding events were obtained from the Water Resources
Department of Guangdong Province (http://slt.gd.gov.cn (accessed on 15 March 2021)),
Drainage Services Department, Hong Kong (https://www.dsd.gov.hk (accessed on 19
March 2021)), and the Municipal Affairs Bureau, Macau (http://www.iam.gov.mo (ac-

http://nr.gd.gov.cn/
http://slt.gd.gov.cn
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cessed on 20 March 2021)), as well as local media reports (https://www.toutiao.com
(accessed on 25 March 2021)).

Figure 1. Rural zone, urban-rural fringe, and urban zone in GBA.

The magnitude of urban flooding is largely dependent on urban sub-catchment char-
acteristics, such as topography, vegetation, and soil characteristics, which may also affect
urban flooding. Therefore, seven flood-driving factors, i.e., elevation (DEM), slope (SLOP),
the distance from the waterway (DW), road density (RD), fractional vegetation cover (FVC),
soil water retention (SWR), and impervious surface percentage (ISP), were selected as
flooding risk indexes to determine urban flooding in the present study [29,48].

Table 1. Data sources.

Data Format Data Sources

Flooding points Shapefile

Water Resources Department of Guangdong Province, China
(http://swj.gz.gov.cn (accessed on 15 March 2021))
Drainage Services Department, Hong Kong (https://www.dsd.gov.hk
(accessed on 19 March 2021))
Municipal Affairs Bureau, Macau (http://www.iam.gov.mo (accessed on 20
March 2021))
TouTiao (https://www.toutiao.com (accessed on 25 March 2021))

Digital elevation model Raster Advanced Spaceborne Thermal Emission and Reflection Radiometer Global
Digital Elevation Model (ASTER GDEM) 30 m

Waterway network Shapefile OpenStreetMap (https://www.openhistoricalmap.org (accessed on 24
February 2021))

Road network Shapefile OpenStreetMap (https://www.openhistoricalmap.org (accessed on 26
February 2021))

Fractional vegetation cover Tif Landsat 8 Operational Land Imager_Thermal Infrared Sensor

Soil type Raster Resource and Environment Science and Data Center, China
(https://www.resdc.cn (accessed on 27 February 2021))

Impervious surface percentage Raster [49]

https://www.toutiao.com
http://swj.gz.gov.cn
https://www.dsd.gov.hk
http://www.iam.gov.mo
https://www.toutiao.com
https://www.openhistoricalmap.org
https://www.openhistoricalmap.org
https://www.resdc.cn
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2.2.2. Spatial Distribution of the Driving Factors

Figure 2 illustrates the spatial distributions of the driving factors, which were used
to produce the flow and confluence patterns of surface runoff and distribution of urban
flooding hazards. As shown in Figure 2a,b, the spatial distribution of DEM and SLOP in
GBA were derived from the Digital Elevation Model. The DW refers to the distance from
each grid to the nearest river, obtained by the Euclidean distance tool in GIS, as presented
in Figure 2c. The RD, defined as the ratio of the total road length of a region to its surface
area, was computed from the road vector files using the mapping analysis tools on the
ArcGIS platform, as illustrated in Figure 2d.

Figure 2. The spatial distribution of elevation; slope; distance from the waterway; road density;
fractional vegetation cover; soil water retention; and impervious surface percentage on GBA.
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(1) Fractional Vegetation Cover

FVC is the percentage of vertical projections of vegetation (i.e., branches, stems, and
leaves) on a land surface, which reflects the growth status of vegetation (Figure 2e). The
FVC was calculated by the Normalized Difference Vegetation Index (NDVI), described as
the following formula.

FVC =
NDVI − NDVImin

NDVImax − NDVImin
(1)

NDVI is multi-spectral data obtained by remote sensing, which consist of linear and
nonlinear combinations. The calculation formula is described as follows:

NDVI =
NIR− RED
NIR + RED

, (2)

where NIR is the reflection in the near-infrared spectrum and RED is the reflection in the
red range of the spectrum.

(2) Soil Water Retention

Soil Water Retention (SWR) is an important property of the urban underlying surface,
which can directly affect the extent of urban flooding risks. Land with a high rate of SWR
can absorb more rainwater, indicating that such urban area is at a lower risk of flooding.
The spatial distribution of SWR in the investigated area is illustrated in Figure 2f. The
potential maximum SWR was calculated cell by cell using a spatial hydrological modelling
approach, which is driven by the Soil Conservation Service Curve Number, as described in
the following formula.

SWR =
25400
CN

− 254 (3)

where CN is a function related to land use, soil type, and the antecedent moisture condition.
CN value can be obtained by combining soil type, FVC, and ISP.

(3) Impervious surface percentage

Impervious surfaces are mainly man-made structures that are covered by nearly
impenetrable materials, such as asphalt, concrete, brick, stone, and roof tops. Owing to
the fast progress of urbanization, impervious surfaces can cause potential urban flooding
due to the accumulation of stormwater runoff. The ISP was defined as the percentage of
impervious surface area per unit area. Urban flooding would be more likely to occur in an
area with a large ISP, owing to the efficient infiltration of rainwater. The range of ISP was
[0, 1]. The spatial distribution of DEM in the study area was shown in Figure 2g.

2.3. Methodology
2.3.1. Risk Assessment Based on Weighted Naive Bayes

There were three modules for assessment of urban flooding: the determination of weight,
the generation of conditional probability tables, and the calculation of risk likelihood.

(1) The determination of weight

A linear weighting method was employed for combining the Analytic Hierarchy
Process (AHP, a subjective weighting process) and the Entropy Weighting (EW, an objec-
tive weighting process) method [50]. The integrated weighting can be calculated using
Equation (4):

Wi = aHi + (1− a)Zi (4)

where Wi, Hi, and Zi are the integrated weighting, the subjective weighting, and the
objective weighting of the i-th risk index, respectively, with 1 ≤ i ≤ 10. The range (from 0
to 1) was set as 0.5 in this study, since the subjective and objective weights are considered
equally important, as per Tang et al. [32].

(2) The generation of conditional probability tables
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The critical step in the WNB modeling process was to obtain a reasonable prior
probability initially. There were approximately 0.59 million grids generated in GBA, while
only 2593 of these were associated with urban flooding events. If all the grids were directly
imported into the sample table, the prior probability for the occurrence of urban flooding
was very small indeed. Therefore, the model used for predicting urban flooding risks
would not be valid. Hence, the use of an iterative and small-scale sampling method was
employed to avoid underestimation of prior probability and to obtain a set of reliable
conditional probability tables. During each iterative sampling process, 3000 samples were
randomly selected from the inundated and non-inundated grids. The total number of
iterations was 10,000 to produce appropriate sampling and cap the computational load.
The Overall Accuracy coefficient of 0.85 and Kappa coefficient of 0.75 were adopted as
threshold evaluative indicators for verifying the sampling tables. The tables of all samples
above the threshold were used to calculate the conditional probability table for the attribute.

(3) The calculation of risk likelihood

The likelihood of urban flooding (or non-flooding) assigned to each influence factor
was computed using Equation (5).

Likelihoodi(x, y) =
P(D = d1|Ei(x, y))

P(D = d1|Ei(x, y)) + P(D = d2|Ei(x, y))
(5)

where Ei represents the probability condition for such events and is attributable to one of
the index.

The conditional probability P(D = dj|Ei (x, y)) for cell (x, y) of the region can be
determined using Equation (6).

P(D = dj|Ei (x, y)) = P(D = dj)∏n
i−1 p

((
Ei(x, y)

∣∣dj
)wi
)

∀D = dj = {d1 = waterlogging, d2 = non− waterlogging}
(6)

where wi is the weight of the i-th risk index.

2.3.2. Spatial Urban Flooding Assessment within the Framework of a Complex System

(1) Proximity matrix analysis

To analyze the driving factors of urban flooding at a specific site, it is critical to identify
proximity, i.e., the similarity of attributes between two nodes (or townships). The proximity
index, a relatedness index developed by Hidalgo, Klinger, Barabasi, and Hausmann [36]
reflecting the minimum conditional probability of the co-occurrence of flooding for two
adjacent nodes, was adopted to evaluate the similarity of the flooding occurrence. The
proximity ϕi,j can be calculated using Equation (7):

ϕi,j = min
{

P
(

RCAi = 1
∣∣RCAj = 1

)
, P
(

RCAj = 1|RCAi = 1
)}

(7)

where RCAi represents the assigned comparative advantage of the i-th node, the value of
factor n in the i-th node is on the top 20% of the severity band, and x(I,n) was assigned a
value of 1; otherwise, the value of x(i,n) was assigned the value of 0.

For the topology generation process, a matrix of RCAi,x was initially proposed. Eight
variables were selected, with seven independent factors and one dependent factor, “flood-
ing”. A matrix of proximity was established by calculating the minimum conditional
probability between nodes. Finally, the network topology of the complex network was
developed using the maximum tree.

(2) Modularization analysis

A modularization algorithm was employed to evaluate the cluster relationship formed
by similar “demand” in the network. In a modularization analysis, the Fast Newman, a
widely used algorithm for community detection in complex networks, was used to divide
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the communities by exploring the maximum modularity [51] to cluster nodes in the network
and summarize the characteristics of different clusters. Modularity Q can be calculated
using Equation (8):

Q =
∑i,j

[
Ai,j −

kikj
2m

]
δ
(
ci, cj

)
2m

(8)

where Q denotes the modularity of a cluster; Aij represents the weighting of the edge
between township i and township j; ki is the sum of the weightings of edges attached to
township i; ci denotes the cluster to which township i is assigned; and the value of δ(u, v) is
1 if u = v and 0, otherwise, m = (Σij Aij)/2.

(3) Contribution analysis

The contribution of a single impact factor to cluster is the ratio of the comparative
advantages of a single impact factor to the comparative advantages of the cluster. The
contribution Fk,x can be calculated using Equation (9):

Fk,x =
∑x RCA(k,x) = 1

∑k RCAk = 1
(9)

where Fk,x represents the contribution of the x-th factor in the k-th cluster; ∑k RCAk denotes
the sum of the comparative advantages of the k-th cluster; ∑x RCA(k,x) presents the sum of
the comparative advantages of the x-th factor in the k-th cluster.

3. Results and Discussion
3.1. Weightings and the Best-Estimated Conditional Probability Tables

The weighting of each spatial variable calculated using the linear weighting method is
shown in Table 2, illustrating the contributions of the variables to urban flooding events.
A higher weighting value indicates a more substantial contribution of a spatial variable
to the incident of urban flooding [32]. The results obtained indicate that vegetation and
impervious coverage (FVC and ISP) were the most significant spatial variables, while DEM
had the least significance associated with urban flooding. Hence, urban inundation hazards
were mainly caused by the hydrological effects of urban surface features.

Table 2. Weights for each factor from the AHP, EW, and linear weighting methods.

Method DEM SLOP DW RD FVC SWR ISP

AHP 5.0% 5.3% 8.6% 8.8% 28.7% 12.7% 30.8%
EW 0.3% 0.3% 0.2% 6.4% 46.9% 0.4% 45.5%

Linear
weighting 2.6% 2.8% 4.4% 7.6% 37.9% 6.6% 38.1%

Note: The abbreviations are as follows: AHP, Analytic Hierarchy Process; EW, Entropy Weighting; DEM, Digital
Elevation Model; SLOP, Slope; DW, Distance from the Waterway; RD, Road Density; FVC, Fractional Vegetation
Cover; SWR, Soil Water Retention; ISP, Impervious Surface Percentage.

Figure 3 illustrates the changes in the conditional probability of inundation or non-
inundation under the conditions of the seven spatial variables identified. Various variables
exerted inconsistent effects on the probability of the urban areas with or without flooding
risks. Specifically, the conditional probability of inundation decreases with DEM increase,
since stormwater runoff flows downhill as expected [52]. As presented in Figure 3b, the
conditional probability of inundation decreased with SLOP increase, since relatively flat
topography usually drains surface runoff ineffectively and tends to exhibit a higher prob-
ability of urban flooding [53,54]. As for DW, the conditional probability was determined
to be the greatest when DW was greater than 1200 in non-inundation (Figure 3c). As
illustrated in Figure 3d, the probability of non-inundation in a low RD (0–0.005 m/m2)
region was 84.2%. As RD increased, this probability decreased, suggesting that urban
flooding was unlikely to occur in regions with low RD values. Furthermore, a higher
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conditional probability of inundation (78.6%) was mainly observed in areas with low FVC
(0–10%) (Figure 3e). Thus, it can be speculated that urban flooding risks increased with
decreased vegetation coverage. The lower the FVC value, the less favorable the vegetation
growth conditions and the higher the flooding risks [55]. On the contrary, with the larger
ISP values, the higher conditional probability of urban flooding was observed (Figure 3g).
This finding was consistent with previous studies conducted by Zhang et al. [56] and Guo
et al. [57].

Figure 3. Conditional probability for each risk factor.
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In urban areas, natural green spaces, such as forests, grasslands, and wetlands, which
reduce surface runoff, are often replaced by artificial impervious surfaces, resulting in an
increase in stormwater runoff convergence and high urban flooding potential [8,58]. As a
whole, these findings indicated that the conditional probability of spatial variables exhibited
a clear pattern, highlighting the effectiveness of the variables selected for predicting urban
flooding. Among which, the conditional probability of ISP and FVC exhibited the most
significant alteration. This finding was consistent with the result of linear weighting,
indicating the objectivity of the weight calculation method selected for this study.

3.2. Mapping of Urban Flooding Risk

The natural fracture method was used for the classification of flood disaster risk, i.e.,
low risk (0–23.0%), medium risk (23.0–43.7%), and high risk (43.7–83.2%). As presented in
Table 3, there were 3106.4 hm2 of rural-urban fringe with high risk, accounting for 25.7% of
the total area of the investigated rural-urban fringe. Nearly half of the rural-urban fringes
were under exposure of medium risk. Figure 4 illustrates the spatial distribution of the risk
of urban flooding. The areas with high risk were mainly distributed in Foshan, Zhongshan,
and Guangzhou. Furthermore, there was a great number of natural green spaces encroach-
ing upon these cities due to the fast urbanization process and the continuous increase
in impervious surfaces. In particular, such areas had not yet formed a comprehensive
infrastructure system, which cannot effectively manage surface runoff during extreme
stormwater event, leading to the occurrence of urban flooding.

Table 3. Risk classification.

Class Low Risk Medium Risk High Risk

Risk range 0–23.0% 23.0–43.7% >43.7%
Area (hm2) 3212.9 5776.3 3106.4

Proportion (%) 26.6% 47.5% 25.7%

Figure 4. Spatial distribution of urban flooding risks.
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3.3. Dominant Risk Attributes Analysis

Figure 5 shows the spatial distribution of flood risk and the contribution of driving
factors in the rural-urban fringe. Through modular analysis, the villages in the rural-
urban fringe with flooding risks were divided into four clusters, and the villages in each
cluster had similar urban flooding risk attributes. Cluster A was distributed around the
built-up area. Cluster B was mainly centered on the lower reaches of the Pearl River
and Xijiang River. Cluster C was mainly distributed in the central area of Foshan, with
great construction land represented by village collective industrial parks. Cluster D was
mainly located in the area around the industrial zone bordering Huizhou and Dongguan.
However, the classification result indicated that the contribution extent of seven driving
factors in the four groups was relatively balanced. Therefore, it is necessary to further
construct the analysis for network topology of each group to identify the contribution of
each driving factor.

Figure 5. Spatial distribution of urban flooding risk and contribution of driving factors in rural-
urban fringe in the GBA. Note: DEM, Digital Elevation Model; SLOP, Slope; DW, Distance from the
Waterway; RD, Road Density; FVC, Fractional Vegetation Cover; SWR, Soil Water Retention; ISP,
Impervious Surface Percentage.
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Through further analysis of the network topology structure, the 4 clusters were divided
into 15 sub-clusters (Figures S1–S4). Among which, 12 were multi-factor-driven and 3 were
single-factor-driven (Table 4).

Table 4. Driving factor analysis.

Multi-Factor-Driven Single-Factor-Driven

Artificial Factor Topographic Factor Artificial
Factor

Topographic
Factor

Driving
factor

RD,
FVC,
ISP

RD,
ISP SWR

DW,
FVC,
SWR

FVC,
ISP

DEM,
SLOP,
DW

DEM,
SLOP RD SLOP

Cluster A-2,
C-1

B-1,
D-1 B-4 C-4,

D-4 D-2 A-3,
B-2

B-3,
C-3

A-1,
C-2 D-3

Quantity 214 255 91 90 16 441 163 158 20

Note: DEM, Digital Elevation Model; SLOP, Slope; DW, Distance from the Waterway; RD, Road Density; FVC,
Fractional Vegetation Cover; SWR, Soil Water Retention; ISP, Impervious Surface Percentage.

3.3.1. Multi-Factor-Driven Cluster

Clusters A-2 and C-1, driven by RD, FVC, and ISP, were located in Foshan where the
rural industrial parks constituted a large amount of ecological spaces and the infrastructure
was relatively backward, which made the areas vulnerable to urban flooding during
extreme storm events. As a result, the rural regions with sufficient space were able to
plan and construct green infrastructure for alleviating the risk of urban flooding. Green
infrastructure (i.e., LID) can effectively reduce surface runoff [59].

DEM, SLOP, and DW were the dominant driving factors in Clusters A-3 and B-2.
The main areas of clusters A-3 and B-2 were located in the Pearl River estuary, which
had a mild topography and a complex network of waterways. Rainstorms can cause
flood disasters and large-scale economic losses in this area due to its mild topography
and downstream location of the Pearl River system. Thus, adaptive measures, such as
constructing drainage and flooding engineering systems, repairing damaged facilities, and
updating the infrastructure with inadequate drainage capacity, should be suggested.

Clusters B-1 and D-1 were dominated by RD and ISP. RD contributed 33% of con-
tribution rates for urban flooding risks in both clusters, while ISP contributed 61% of
contribution rates in Cluster D-1, far outweighing Cluster B-1 (36%). The reason for this
discrepancy was that Cluster D-1 was mainly located in the industrial district, with a larger
proportion of impermeable surfaces compared to Cluster B-1, which may increase surface
runoff and cause urban flooding [56]. Therefore, the adaptive measures for alleviating flood-
ing risks should be mainly focused on the transformation of industrial areas to reduce the
impervious surface and increase green space through ecological design and implementation.

Clusters B-3 and C-3 were driven by DEM and SLOP. The contribution rates of DEM
to the two clusters were similar, 25% and 27%, respectively. However, the contribution
of SLOP to Cluster B-3 (52%) was much greater than Cluster C-3 (27%). Cluster B-3 was
mainly located in the Tonghu Wetland in Huizhou, Nansha Wetland, and Xinhui Yinhu
Bay wetland, which are surrounded by mountains with complex topography. Runoff is
more likely to be retained in wetland areas with mild topography. By contrast, Cluster C-3
was characterized as a riverbank area. Furthermore, the slope would have a greater impact
on Cluster B-3. The main reason for urban flooding in Cluster B-3 was that stormwater
runoff from the surrounding mountains was likely to accumulate on the site. In order
to reduce the impact of urban flooding, drainage facilities and early warning systems
should be constructed and monitored. Low altitude combined with mild topography
results in flooding in Cluster C-3, especially due to river backfilling. As such, increasing
the construction of flood levees at riverbank can prevent river backfilling, thereby reducing
the occurrence of urban flooding.
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Cluster B-4, which was located primarily in sandy areas along rivers or coasts, such as
tidal flats, was driven by DEM and SWR. Cluster D-2 was mainly situated in rural areas,
mixed with industrial and residential areas. Encroached by industrial areas, vegetation
coverage was reduced, while the percentage of impervious surfaces was increased. There-
fore, future planning should be implemented to reduce surface runoff by controlling the
size of industry areas and increasing low-impact development practices [60]. In addition,
located near fish ponds, Clusters C-4 and D-4 were primarily driven by DW, FVC, and
SWR. Overflowing rivers caused flood disasters; thus, strengthened strategies, such as
water-body conservation, flood risk monitoring, and early warning, should be formulated.

3.3.2. Single-Factor-Driven Cluster

Clusters A-1, C-2, and D-3 were single-factor-driven clusters. Cluster A-1 was pri-
marily located around a major transportation hub (i.e., Guangzhou Baiyun International
Airport) with numerous complicated connecting roads. Therefore, the occurrence of ur-
ban flooding can be reduced by increasing the construction of drainage infrastructure.
By contrast, Cluster C-2 was a well-developed rural settlement. Cluster D-3 was mainly
distributed at the foot of Luofu Mountain with mild terrain. The flood risk was mainly
driven by SLOP in Cluster D-3. However, it is nearly impossible to change the terrain on a
large scale. Therefore, it is necessary to increase the construction of drainage facilities and
flooding monitoring as well as early warning of flood risk.

4. Conclusions

In order to predict flood risk scientifically and effectively, adaptive measures should
be taken according to different risk conditions to effectively reduce the occurrence of
flood disasters. In the present study, a comprehensive framework was explored for the
comprehensive analysis of urban flooding risk distribution and risk-driving factors, using
the integrated WNB model and CNM. This framework can be used to estimate flood
risk probability in data-poor regions, generate flood hazard risk maps, and analyze the
relationship between flood risk and its driving factors. In the case study areas of the rural-
urban fringe in the GBA, the findings indicated that (1) the rural-urban fringe in the GBA is
at serious risk of urban flooding: there were 3106.4 hm2 with high risk, accounting for 25.7%
of the total area of the investigated rural-urban fringe; (2) the higher conditional probability
of inundation was primarily observed in locations with low values for DEM, SLOP, and
FVC and high values for ISP; (3) most flooding risks were mainly associated with multi-
factor-driven clusters on the rural-urban fringe. In terms of multi-factor-driven clusters,
there were essentially two classifications, i.e., artificial-factor-driven (such as RD, FVC, and
ISP) and topographic-factor-driven (such as DEM, SLOP, and DW). The areas with single-
factor-driven were predominated by SLOP and RD, respectively. According to the findings
of the assessment, which clearly show the likelihood of flooding disasters in various regions
and their drivers, territorial planning can adopt targeted and differentiated measures to
implement flood disaster risk adaptation planning. However, certain limitations existed,
such as the reliance on accurate and reliable input data. The accuracy of the model was
directly proportional to the accuracy of the input data. Acceptable deviations in the output
accuracy of WNB indicated that the framework was feasible and could produce reliable
assessments of urban flooding.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15075740/s1. Table S1: A comparison of the proposed urban
flooding risk assessment in the rural-urban fringe based on a Bayesian Classifier with other state-
of-the-art studies recently published in the domain. Figure S1: The spatial distribution of flood
risk and contribution of driven factors in Cluster A. Figure S2: The spatial distribution of flood
risk and contribution of driven factors in Cluster B. Figure S3: The spatial distribution of flood
risk and contribution of driven factors in Cluster C. Figure S4: The spatial distribution of flood
risk and contribution of driven factors in Cluster D. References [22–25,27,28,31,32] are mentioned in
Supplementary file.
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