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Abstract: Machine learning (ML) models, including artificial neural networks (ANN), generalized
neural regression networks (GRNN), and adaptive neuro-fuzzy interface systems (ANFIS), have
received considerable attention for their ability to provide accurate predictions in various problem
domains. However, these models may produce inconsistent results when solving linear problems. To
overcome this limitation, this paper proposes hybridizations of ML and autoregressive integrated
moving average (ARIMA) models to provide a more accurate and general forecasting model for
evapotranspiration (ET0). The proposed models are developed and tested using daily ET0 data
collected over 11 years (2010–2020) in the Samsun province of Türkiye. The results show that
the ARIMA–GRNN model reduces the root mean square error by 48.38%, the ARIMA–ANFIS
model by 8.56%, and the ARIMA–ANN model by 6.74% compared to the traditional ARIMA model.
Consequently, the integration of ML with ARIMA models can offer more accurate and dependable
prediction of daily ET0, which can be beneficial for many branches such as agriculture and water
management that require dependable ET0 estimations.

Keywords: Box–Jenkins; time series modeling; evapotranspiration; artificial intelligence

1. Introduction

Efficient irrigation management is a critical aspect of modern agricultural techniques,
and accurately estimating evapotranspiration (ET) is essential for effective water resource
management, irrigation scheduling, watershed management, and drainage system plan-
ning [1]. ET is a method used to measure the water requirements of a crop, which comprises
the movement of water vapor from the soil into the air through evaporation from the soil
and transpiration from the plants [2]. The first step in determining the ET of an agricultural
system is to calculate the reference evapotranspiration (ET0), which is a widely accepted
method for quantifying the water requirements of a crop. However, estimating ET0 is
a complex task that can be conducted either by direct measurement with lysimeters or
indirectly through mathematical models.

Typically, lysimeters that provide accurate measurements are used to develop and
evaluate other indirect methods [3–5]. However, this method is often deemed impractical
due to its time-consuming and precise measurement requirements. Moreover, the high
cost and complexity associated with lysimeters typically limit their application to research
settings. Therefore, for practical purposes, mathematical models based on weather station
data have become the preferred alternative [6].

In indirect methods, the equations used to calculate ET0 values are usually complex,
nonlinear, contain random factors, and rely on several assumptions. The literature reports
about 20 methods that can be used to estimate ET0 based on meteorological variables.
Of these methods, FAO Penman–Monteith (FAO56PM) [2], Thornthwaite [7], Blaney and
Criddle [8], Priestly and Taylor [9], and Hargreaves and Samani [10] have been widely
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and successfully applied. However, accurate estimates obtained by these methods require
the application of rigorous optimization procedures, accurate spatiotemporal data, and a
thorough understanding of initial conditions [11].

In recent years, the development of artificial intelligence methods based on machine
learning (ML) has gained worldwide attention as an alternative approach to estimate ET0
using a minimal number of weather input parameters [12]. Numerous research papers
have found that ML techniques such as artificial neural networks (ANN), generalized
neural regression networks (GRNN), and adaptive neuro-fuzzy interface systems (ANFIS)
perform better in ET0 estimation than empirical and semi-empirical methods [13–23].For
instance, Kumar et al. [13] compared the performance of ANN and the Penman–Monteith
method in predicting ET0 and concluded that ANN produced better estimates. Similarly,
Ladlani et al. [21] found that the GRNN model outperformed the Priestley–Taylor and
Hargreaves–Samani models in ET0 estimation. Pour et al. [22] used ANFIS and ANN to
estimate daily ET0 with various combinations of independent variables consistent with the
Hargreaves–Samani, Priestley–Taylor, and FAO56-PM equations. The results indicated that
both ANFIS and ANN provided satisfactory performance in estimating ET0 from available
climate data.

One strategy for achieving performance improvements through ML techniques in
estimating ET0 is to use previous days’ meteorological data as input to the models in
addition to the current day’s data. The autoregressive integrated moving average model
(ARIMA), commonly known as the Box–Jenkins methodology, is a stochastic model with
a strong and reliable performance in predicting a wide range of climatic, hydrologic,
and meteorological variables [24–26]. However, a single model for ET0 prediction using
time series data is prone to significant errors. Therefore, hybrid approaches that combine
multiple models to improve accuracy could be an alternative solution. Arca et al. [27]
reported the superiority of the ARIMA model over the ANN model in estimating daily
ET0 in Italy. Kishore et al. [28] employed ANN and ARIMA models to predict ET0 in
Kanchipuram, India, and noticed that the ARIMA model was very effective and reliable for
short-term forecasts. Landeras et al. [29] found that applying ARIMA and ANN models
improved the performance of predicting weekly ET0 one week ahead compared to the
model based on annual averages.

These studies have contributed significantly to the knowledge base on using ML and
ARIMA models in estimating ET0. However, the applications of combined ML techniques
to reduce the errors of the ARIMA model for ET0 estimation problems are currently limited,
and the knowledge on this topic is still incomplete and fragmented. To fill this gap, this
study aims to present a new hybrid model that combines the advantages of ARIMA and
ML techniques to achieve accurate daily ET0 prediction. The main contributions of this
study are summarized as follows:

- A time series ARIMA model and various ML techniques, including ANN, GRNN,
and ANFIS, are built to predict the daily ET0 of Samsun, Türkiye, based on cli-
mate parameters.

The models’ accuracy, applicability, and reliability are compared to the ASCE Penman–
Monteith method.

- A novel approach combining ARIMA and ML models is developed for ET0 predictions.

The remainder of this paper is structured as follows. Section 2 details the ARIMA
and ML models used for ET0 estimates. Section 3 provides details on the methodology
employed, including the study area, dataset, model selection, and performance criteria for
the models. Section 4 compares the predictive performance of the models and presents the
numerical results. Section 5 discusses the study’s findings and provides information on the
limitations of this study. Finally, Section 6 summarizes the conclusions and offers proposals
for future work.
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2. Background
2.1. Linear Process: Box–Jenkins ARIMA Model

The Box–Jenkins method is a statistical forecasting technique used to predict and
control univariate time series. It was developed assuming that time-dependent events are
random and the associated time series are stochastic processes. This method applies to
discrete and stationary time series of uniformly distributed observed values [30].

The ARIMA model with linear stochastic structure is commonly used in many re-
search fields for predicting desired data. An ARIMA (p, d, q) model is a combination of
autoregression AR (p) (an additive linear function of p past observations), an integer I (d)
(d makes a series stationary), and moving average MA (q) (q random error). The partial
autocorrelation function (PACF) and autocorrelation function (ACF) of the data are used to
determine the order of q and p of the ARIMA model. The model for each environmental
factor can be described mathematically in Equation (1).

Xi
t = αi

t + ϕi
1Xi

t−1 + ϕi
2Xi

t−2 + · · ·+ ϕi
pXi

t−p
−εi

t − θi
1εi

t−1 − θi
2εi

t−2 − · · · − θi
qεi

t−q
(1)

where Xi
t is the ith influencing factor resulting from the differentiation of d times; ϕi

1, ϕi
2,

. . . , ϕi
p and θi

1, θi
2, . . . , θi

p are autoregressive; and moving average coefficients have to be
calculated for the ith factor. It is assumed that εi

t, εi
t−1, εi

t−2, . . . , εi
t−p have a mean of zero

and a constant variance.
The fitting of an ARIMA model is conducted in 4 steps as follows:

- Identification of the ARIMA (p, d, q) model structure;
- Estimate parameters for ARIMA (p, d, q) model;
- Check residuals to determine model adequacy;
- Predict future data from existing data.

2.2. Artificial Neural Networks (ANN)

The Multilayer Perceptron (MLP) is a popular type of ANN that is increasingly being
used to handle applications with imprecise data or complex attribute relations. The MLP
comprises an input layer, one or more hidden layers, and an output layer, with each neuron
having continuous inputs and outputs, a sum input function, and a nonlinear activation
function. The number of hidden nodes needs to be determined to optimize the MLP and
obtain the best performance. This has been studied in numerous research papers, and it is
generally accepted that one hidden layer is sufficient for approximating complex nonlinear
functions [31,32].

The MSE function (Equation (2)), a popular measure of error applied to ANN and ML
algorithms, was utilized to evaluate the quantitative error of the network. The equation
calculates the average difference between the actual outputs (x) and the expected outputs (y)
over n inputs.

MSE =
1
n

n

∑
j=1

(
xj − yj

)2 (2)

The stop criteria were set at MSE = 1 × 10−6 and 5000 epochs. Comprehensive
information on ANN can be found in Refs. [33–35].

2.3. Generalized Regression Neural Networks (GRNN)

The GRNN proposed by Specht [36] does not require an iterative training process such
as the backpropagation technique. Instead, it computes the function between the input
and output vectors from the data itself to obtain a more accurate approximation. As the
amount of training data increases, the estimation error decreases with minimal constraints
on the function. Similar to other regression techniques, GRNN can be used to determine
continuous variables and is based on a basic statistical method called kernel regression.
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A GRNN is a powerful tool that consists of four layers: input, pattern, summation,
and output. In the input layer, data are taken in by a number of observed parameters
equal to the number of input units. The pattern layer contains training patterns, while the
summation layer comprises two types of neurons: single-division and summation neurons.
The single-division neurons are connected to the pattern layer, and the summation neurons
are connected to the output layer. The hidden and output layers use Radial basis and linear
activation functions, respectively. Lastly, the output layer normalizes the output set by
dividing the output of each S-summation neuron by the output of each D-summation neuron,
producing the predicted value Yi for the unknown input vector x [37] (Equations (3) and (4)):

Yi =
∑n

i=1 yi. exp[−D(x, xi)]

∑n
i=1 exp[−D(x, xi)]

(3)

D(x, xi) =
m

∑
k=1

(
xi − xik

σ

)2
(4)

where yi represents the weighted connection between the ith pattern layer neuron and the
S-summation neuron; n is the training pattern numbers; D is the Gaussian function; m is the
number of input vector elements; and xk and xik are the jth elements of x and xi, respectively.
The optimal value of the spread parameter, denoted by σ, is determined experimentally.

2.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a powerful tool that combines the learning capabilities of neural networks
with the decision-making process of fuzzy logic [38,39]. It constructs an optimized neural
network based on a training dataset suitable for the task. The accuracy and applicability
of the model to the task can then be evaluated by testing on unseen data. ANFIS has an
advantage over other ANN, as it is more interpretable thanks to the inclusion of fuzzy
logic. The fuzzy logic can justify the weighting values set for the model, which is a major
shortcoming of ANN. The ANFIS architecture consists of five layers: fuzzification, rule,
normalization, defuzzification, and summation. The fuzzification layer assigns membership
functions to the input values to form fuzzy clusters, which are determined by a set of
parameters called premise parameters. The degrees of membership are then calculated
based on these parameters, as shown in Equations (5) and (6).

O1
i = µAi (x) =

1

1 +
∣∣∣ x−ci

ai

∣∣∣2bi
(5)

O1
i = µBi (y) =

1

1 +
∣∣∣ y−ci

ai

∣∣∣2bi
(6)

where x and y are the inputs to node i; A is a linguistic label associated with this node
function; Oi is the membership function of Ai; and ai, bi, and ci are parameters of the
membership function.

The fuzzification layer takes the input data and assigns a membership value to each
fuzzy set. They are converted into firing strengths (wi) for the rules. The membership
values can be calculated using Equation (7):

O2
i = wi = µAi (x).µBi (y) (7)

The normalization layer derives a normalized value of firing strengths for each rule.
The normalized value results from the ratio of the firing strength of the ith rule to the sum
of all firing strengths (Equation (8)):

O3
i = wi,avg =

wi
w1 + w2 + w3 + w4

, i ∈ {1, 2, 3, 4} (8)
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The weights of the rules determined by using a first-order polynomial in each node of
the defuzzification layer are calculated as shown in Equation (9).

O4
i = wi,avg fi = wi,avg(pix + qiy + ri) (9)

where wi,avg is the output of the normalization layer and p, q, and r are the parameter
sets. These parameters are referred to as consequence parameters. Each rule has one more
consequence parameter than the number input.

The summation of the outputs of the defuzzification layer gives the actual output of
the ANFIS (Equation (10)).

O5
i = ∑

i
wi,avg f

i

=
∑i wi fi

∑i wi
(10)

3. Methodology

The hybrid method for predicting daily ET0 values is a four-step process (Figure 1).
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Step 1: The ASCE Penman–Monteith method was used to calculate daily ET0 values
by utilizing meteorological data from the Atakum weather station;

Step 2: The ARIMA, ANN, GRNN, and ANFIS models used ET0(t−1), ET0(t−2), and
ET0(t−3) as inputs to predict daily ET0;

Step 3: The hybrid models, including ARIMA–ANN, ARIMA–GRNN, and ARIMA–
ANFIS, used the error values of the periods t − 1, t − 2, and t − 3 as input parameters to
predict daily ET0;

Step 4: Statistical and graphical methods were employed to evaluate the predictive
accuracy of all models for ET0 values.

3.1. Study Area and Dataset

Daily meteorological measurement data for a 10-year period (from January 2010 to
January 2020) were obtained from the Atakum Weather Station (41◦34′ north latitude, 36◦25′

east longitude, and 4 m altitude), operated by the General Directorate of Meteorology of
Samsun province in Türkiye. The city of Samsun is situated between the deltas of the
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Yeşilırmak and Kızılırmak rivers, covering an area of 9083 km2. The climate in Samsun is
generally temperate, with distinct characteristics on the coast and in the interior regions.
The effects of the Black Sea climate are felt on the coast, leading to hot summers and rainy
winters. Inland, the city is influenced by the Akdağ and Canik Mountains, with cold, rainy,
and snowy winters and cool summers [40]. The average annual temperature in Samsun
is 14.6 ◦C, which is higher than the Turkish average of 13.6 ◦C. The average minimum
temperature is 3.9 ◦C in February, while the average maximum temperature is 27.1 ◦C
in August. The ASCE Penman–Monteith method was used to calculate daily ET0 using
meteorological data from the Atakum weather station.

3.2. Data Pre-Processing

The process of data preprocessing is critical to achieve higher performance and accu-
racy for ML models. It includes noisy, missing, and inconsistent data. In this study, daily
weather data (temperature, relative humidity, wind speed, and sunshine duration) were
merged as inputs with calculated ET0 data. Further preprocessing of the data included
data cleaning, transformation, and splitting. Standardization of the data to a range of 0
and 1 was implemented to overcome the challenges associated with processing data with
different units of measurement and to avoid complications associated with extreme values.
To evaluate the predictive performance of the different models, each dataset was divided
into two subsets: a training set and a testing set. The training set, comprising 70% of the
data, was used exclusively for model development. After model development, the testing
set, comprising 30% of the data, was used to evaluate the proposed models.

3.3. Selection of Component Models

A number of linear statistical models have been proposed in the literature for time
series models, which are generally divided into two categories: linear and nonlinear
models. ARIMA models are one of the most popular linear time series models widely used
in hydrology and meteorology [41–45]. ARIMA is popular for its statistical properties and
the well-known Box–Jenkins method [30]. By using a differencing process, the ARIMA
model can effectively convert non-stationary data into stationary data, so it can be used
to fit non-stationary time series. Therefore, in this paper, the ARIMA model is chosen for
developing the proposed hybrid approach. ANN, GRNN, and ANFIS are employed to
identify the nonlinear component of the time series, based on their successful applications
in modeling time series data [46–49].

3.4. Performance Criteria of Model

To accurately assess the performance of the models in this study, three com-
monly used metrics were employed: the coefficient of determination (R2), root mean
square error (RMSE), and mean absolute error (MAE). These equations, outlined in
Equations (11)–(13) by Waller [50], provide a comprehensive and quantifiable assessment
of the models’ performances.

R2 = 1−

n
∑

i=1

(
Zi,m − Zi,p

)2

n
∑

i=1

(
Zi,m − Zi,avg

)2
(11)

RMSE =

√√√√√ n
∑

i=1

(
Zi,m − Zi,p

)2

n
(12)

MAE =
1
n

n

∑
i=1

∣∣Zi,m − Zi,p
∣∣ (13)
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where Zi,m is the measured value; Zi,p is the predicted value; Zi,avg is the average value
measured; and n is the number of data.

Additionally, a Taylor diagram was used to analyze the standard deviation (SD)
and correlation coefficients (R) between the predicted and observed values. This analysis
provided further insight into how closely the model predictions matched the observed data.

4. Results

In this paper, ET0 estimation was performed in two stages. In the first stage, ET0(t−1),
ET0(t−2), and ET0(t−3) were taken as input parameters for predicting daily ET0 using the
ARIMA, ANN, GRNN, and ANFIS models. In the second stage of the study, the error
values of the periods t − 1, t − 2, and t − 3 were used as input parameters. The difference
between the results of the ARIMA model and the observed ET0 data served as the output
value. Following that, the ARIMA combination value was calculated with re-estimated
errors, considering the discrepancies between the errors estimated by ANN, GRNN, and
ANFIS, the initial ARIMA, and the actual ET0 values.

The implementation of the ARIMA model is based on a time series and should be
stationary. It is influenced by climate, soil, and crop conditions that affect the daily ET0
value. The stationarity of the daily ET0 was studied considering the factors affecting crop
water use. The distributed lag model is a time series model in which the effect of a single
predictor, such as the lag of the predictor itself, on the response variable can vary over
time. The lag length, or the time period that best explains the effects of the predictor and its
lagged values on the response variable, can be determined by examining the model’s fit to
the data and measuring the model’s predictive accuracy. The lag length can be determined
by examining the model’s shape and computing the Akaike Information Criterion (AIC).
In this study, the quadratic polynomial equation as a function of lag length was used.

The Box–Jenkins technique was employed to analyze the autocorrelation function
(ACF) and partial autocorrelation function (PACF) of ET0 values for the ARIMA model.
The ACF and PACF plots indicated that the time series of ET0 was stationary (Figure 2a,b).
Therefore, the ARIMA (1, 0, 1) model was implemented for the ET0 estimation. The
coefficients of AR1 and MA1 parameters were statistically significant (p < 0.01) based on
the results of Maximum Likelihood Estimation (MLE), as shown in Table 1.
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Table 1. AR1 and MA1 coefficients of final ARIMA equation.

Parameters Coefficient Standard Error t-Statistic p-Value

Constant 0.12072 0.00820 14.72 0.000
AR1 0.95476 0.00671 142.37 0.000
MA1 0.46610 0.01990 23.41 0.000

In the ANN technique, a feedforward backpropagation MLP with a single hidden
layer was utilized, and the Levenberg–Marquardt training algorithm was used to train
the network. The hidden and output layers were constructed using the tangent sigmoid
(tansig) and linear transfer (purelin) functions, respectively. The number of hidden nodes
was optimized by incrementally increasing it from three to seven, and the best-performing
model was selected based on the lowest MSE value in the testing phase. The ANN (3, 5, 1)
model provided the best accuracy during the test period compared to the other ANN
models based on the R2, RMSE, and MAE criteria. In this model, three represents the
input variables, namely, ET0(t−1), ET0(t−2), and ET0(t−3)), five is the number of hidden layer
neurons, and one is the output variable (ET0).

In the GRNN technique, various spread factors (from 0.1 to 1) were tested to find the
optimal model using a trial-and-error approach. The GRNN (3, 0.1) model with inputs
of ET0(t−1), ET0(t−2), and ET0(t−3) and a spread value of 0.1 demonstrated higher accuracy
than other GRNN models during the testing phase.

To evaluate the performance of the ANFIS technique, different types of membership
functions (MFs), such as Gaussian, trapezoidal, and triangular, were tested with varying
numbers of MFs. The ANFIS model with three triangular MFs for the inputs ET0(t−1),
ET0(t−2), and ET0(t−3) was found to be the most effective among all the ANFIS models
during the testing phase.

Table 2 summarizes the training and testing performance of the best ARIMA, ANN,
GRNN, and ANFIS models. The results indicate that the GRNN model achieved the highest
accuracy during the test phase (R2 = 0.946, RMSE = 0.697 mm, and MAE = 0.527 mm)
compared to the other models, followed by ANFIS, ANN, and ARIMA. Figure 3 shows
the scatter plots of these models for the observed and predicted daily ET0 values in both
training and testing periods.

Table 2. Comparison of ARIMA, ANN, GRNN, and ANFIS for daily ET0 prediction using training
and testing datasets.

Model Model
Structure

Training Testing

MAE RMSE R2 MAE RMSE R2

ARIMA (1, 0, 1) 0.562 0.778 0.719 0.580 0.771 0.748
ANN (3, 5, 1) 0.548 0.759 0.732 0.563 0.755 0.760

GRNN (3, 0.1) 0.511 0.702 0.938 0.527 0.697 0.946
ANFIS (3, trimf) 0.531 0.736 0.749 0.558 0.762 0.774

The second stage of the study aimed to construct a combined model, which utilizes a
residual from the ARIMA model as input to a new ML network. This is due to the nonlinear
aspect of the ARIMA model, which allows for more complex features to be incorporated
into the model. The training and testing results of the models obtained with the hybrid
approach are shown in Table 3. As seen from the table, the ARIMA–GRNN hybrid model
achieved the lowest RMSE (0.400 mm) and MAE (0.270 mm) values in the testing stage,
demonstrating its efficiency in predicting ET0 values. Moreover, hybrid approaches were
the most accurate overall, as evidenced by the statistical indices. The scatter plots of these
hybrid models for the observed and predicted daily ET0 values in the training and testing
periods are displayed in Figure 4.
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for daily ET0 prediction using training and testing datasets.

Model Model
Structure

Training Testing

MAE RMSE R2 MAE RMSE R2

ARIMA–ANN (3, 5, 1) 0.521 0.715 0.763 0.541 0.719 0.782
ARIMA–GRNN (3, 0.1) 0.254 0.381 0.934 0.269 0.398 0.935
ARIMA–ANFIS (3, trimf) 0.508 0.700 0.773 0.534 0.705 0.791
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The hybrid models (ARIMA–GRNN, ARIMA–ANFIS, and ARIMA–ANN) were able to
outperform both the traditional ML models (GRNN, ANFIS, and ANN) and the traditional
ARIMA model by significantly reducing RMSE values. Specifically, the ARIMA–GRNN
model reduced the RMSE by 48.38%, the ARIMA–ANFIS model by 8.56%, and the ARIMA–
ANN model by 6.74%, compared with the traditional ARIMA model. Similarly, the ARIMA–
GRNN model reduced RMSE by 42.90%, the ARIMA–ANFIS model by 7.48%, and the
ARIMA–ANN model by 4.77% compared with the non-ARIMA models.

The Taylor diagram, presented in Figure 5, provides an evaluation of the different
model’s performance in terms of bias, consistency, and scatter. The black point on the
diagram represents the observed ET0 value, while the other points correspond to the
models’ predictions. The ARIMA (R = 0.87 and SD = 1.32 mm) and ANN (R = 0.87 and
SD = 1.33 mm) models are significantly far apart, indicating their poor performance in
estimating ET0 values. On the other hand, the ANFIS (R = 0.88 and SD = 1.35 mm), ARIMA–
ANFIS (R = 0.89 and SD = 1.40 mm), and ARIMA–ANN (R = 0.88 and SD = 1.39 mm)
models are extremely close, with no noticeable difference between them. Lastly, the GRNN
(R = 0.97 and SD = 1.46 mm) and ARIMA–GRNN (R = 0.97 and SD = 1.97 mm) models are
the closest to the calculated ET0 results.
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5. Discussion

Both time series and ML models have been independently evaluated for their ability
to predict ET0 values. Time series models are useful because they account for trends in
the data and can be used to predict future values. ML models have also been shown to be
effective in predicting ET0 values because they can better identify more complex patterns
in the data [15].

To achieve accurate prediction of ET0 values, a combination of time series and ML
models can be used. This approach needs to be customized to the specific dataset to yield
the best outcomes. Firstly, the time series model should be employed to identify any
existing trends in the data. These trends are then used as the basis for the ML model. The
ML model should then refine the predictions further by taking into consideration any other
factors that could affect the outcome.

This paper proposed hybridizations of ML and ARIMA models to create a more general
and accurate ET0 forecasting model. Among the models used in this study, the GRNN and
ARIMA–GRNN models had lower RMSE and MAE values, making them slightly better
than the others. Previous studies have independently evaluated the performance of time
series [51–53], ML techniques [54,55], and hybrid models [56,57] for predicting ET0 rates.
For example, Ferreira et al. [58] utilized an ANN model to estimate daily ET0, yielding
RMSE of 0.70 mm and R2 of 0.82. This study produced similar results, with RMSE of
0.755 mm and R2 of 0.760. Antonopoulos and Antonopoulos [59] found that ANN models
could estimate daily ET0 with an accuracy ranging from an RMSE of 0.574 to 1.33 mm.
In the study by Pour-Ali Baba et al. [22], the ANFIS models showed good performance,
with RMSE values ranging from 0.474 to 0.851 mm. Dou and Yang [60] suggested that the
ANFIS method is an valuable complement to traditional methods for estimating ET due
to its robustness and flexibility. Landeras et al. [29] found that ARIMA and ANN models
were more accurate than a mean year model based on historical averages, with a significant
improvement in accuracy of 6–8% in reducing the mean squared differences of forecasts.
These findings are consistent with the results of the present study. Arca et al. [27] reported
the superiority of the ARIMA model in predicting daily ET0 rates over the ANN model,
while e Lucas et al. [60] found no significant difference between ARIMA and ML models in
predicting ET0 rates.
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Although this study has yielded significant findings, there are some limitations that
should be taken into consideration. For instance, the study only used data from a single
location (Samsun province of Türkiye) and for a limited period (2010–2020). Additionally,
the study only considered three ML methods (ANN, GRNN, and ANFIS) and ARIMA
models, and other variables may also play an important role. In future studies, Deep
Learning models with hybrid techniques need to be explored to improve the accuracy of
ET0 prediction further.

6. Conclusions

A new combined ARIMA soft computing modeling approach is proposed for estimat-
ing the daily water consumption of plants. Time series data were used to estimate ET0 in
Samsun province, northern Türkiye. Before applying ARIMA and ML models, the data
stationarity was checked, and then the best ARIMA and ML models were developed from
these stationary data. The behavior of ACF and PACF criteria was analyzed to determine
the appropriate ARIMA model.

The hybrid methods, which included ARIMA–ANN, ARIMA–GRNN, and ARIMA–
ANFIS, showed the best accuracy compared to individual ARIMA model, as indicated by
statistical performance criteria (RMSE, MAE, R2). The ARIMA–GRNN model showed the
highest improvement compared to ARIMA with a 48.38% decrease in RMSE values. The
results of the hybrid models were satisfactory, as demonstrated by the comparison between
observed and predicted values using different methods.

The hybrid approach has several advantages by combining the strengths of ARIMA
and ML models, resulting in more accurate predictions. It also simplifies the process and
allows for faster decision making. The findings of this study are noteworthy; however, it has
limitations in terms of the data (2010–2020) and models used (ARIMA, ANN, ANFIS, and
GRNN). Therefore, future studies could further improve the accuracy of ET0 predictions by
incorporating different hybrid techniques and deep learning models.
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