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Abstract: The most negative effects caused by earthquakes are the damage and collapse of build‑
ings. Seismic building retrofitting and repair can effectively reduce the negative impact on post‑
earthquake buildings. The priority to repair the construction after being damaged by an earthquake
is to perform an assessment of seismic buildings. The traditional damage assessment method is
mainly based on visual inspection, which is highly subjective and has low efficiency. To improve
the intelligence of damage assessments for post‑earthquake buildings, this paper proposed an as‑
sessment method using CV (Computer Vision) and AR (Augmented Reality). Firstly, this paper
proposed a fusion mechanism for the CV and AR of the assessment method. Secondly, the CNN
(Convolutional Neural Network) algorithm and gray value theory are used to determine the dam‑
age information of post‑earthquake buildings. Then, the damage assessment can be visually dis‑
played according to the damage information. Finally, this paper used a damage assessment case of
seismic‑reinforced concrete frame beams to verify the feasibility and effectiveness of the proposed
assessment method.

Keywords: damage assessment; computer vision; augmented reality; post‑earthquake buildings

1. Introduction
As one of the most destructive disasters, earthquakes occur more than one million

times a year. A large number of people are exposed to the risks or hazards caused by
earthquakes every year [1,2]. Taking the year 2021 only as an example, therewere 115 earth‑
quakes of magnitude 6 or higher around the world, of which 19 are earthquakes of magni‑
tude 7 or higher. The most direct hazard caused by earthquakes is the damage or collapse
of buildings, which results in substantial personnel casualties andproperty losses [3]. After
an earthquake, both structural and non‑structural elements of buildings will be subject to
varying degrees and forms of damage. Therefore, a damage assessment based on informa‑
tion about the destruction that occurred is an important prerequisite for post‑earthquake
reinforcement and repair. Reliable assessment results can not only provide references and
guidance for the sustainable reinforcement and repair of post‑earthquake buildings but
also assist in the timely development of a sound rescue plan [4].

There is much research on seismic risk evaluation using established mechanical mod‑
els [5,6]. There are fewer studies on damage assessments of seismic buildings. Due to
the limited development of damage assessment, visual inspection by expert surveyors is
still an important traditional damage assessment method. However, the inspection results
involve too much data and calculation, which is not suitable for mass assessment. Further‑
more, the inspection results are heavily subjective, because some expert surveyors have
different cognition and understanding of damage assessment criteria. Computer vision
(CV) is a technology that integrates the management of acquired data from digital vision
devices with computer hardware and software resources. Therefore, CV can realize image
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recognition efficiently using algorithm analysis, and alternatively usemathematical theory
to indirectly calculate damage information. The functions of CV mentioned above can im‑
prove scientific (the objectivity of observations about damage detection and quantification)
and real‑time damage assessments simultaneously.

However, for post‑earthquake buildings, damage assessment requires a combination
of information involving many factors (such as building structure and soil characteristics
around the building) [7,8]. Although there is much research on non‑destructive testing
methods using ultrasonic and sonic wave propagation to obtain material properties [9,10],
many scholars use experiments and simulations to evaluate the damage and risk or relia‑
bility of structures considering the performance of buildings under the action of ground
motions [11–15]. It is difficult to guarantee the reliability of damage assessment results
based on the information obtained with images and non‑destructive testing results. Being
a technology that can add virtual information to the real world, AR can supply more infor‑
mation to improve the scientific, universal, and visualization of the damage assessment.

A damage assessment often involves the type and quantity of the damaged informa‑
tion on the seismic component, which is difficult to obtain directly from the post‑earthquake
site. Therefore, this paper tried to combine AR and CV to obtain comprehensive informa‑
tion on post‑earthquake buildings. However, AR cannot provide damage information di‑
rectly. Thus, this paper introduced the grey value theory, which can obtain quantitative
damage information using AR. To be specific, a shooting distance can be obtained using
ARmeasures, and some quantitative damage information (such as thewidth of a crack) can
be calculated using a combination of the shooting distance and the grey value of shooting
images. It is expected that a corresponding relationship between the gray value and the
image pixel can be established using an AR environment. In addition, this paper used AR
to visually display the damage components’ information, and AR was also used to trans‑
fer and store information, including the damage information and damage components’
models [16].

This paper proposed amethod for the intelligent damage assessment of post‑earthquake
buildings. This method integrates CV and AR, which can improve visual inspection effi‑
ciently. Meanwhile, this intelligent damage assessment method can develop the objectiv‑
ity, scientific, and visualization of the assessment results and make it easy to query and
manage the damage information.

The contributions of this paper can be mainly concluded with three points: (1) Pro‑
pose an intelligent damage assessment method that integrates CV and AR to realize an
intelligent damage assessment. (2) Establish the transformation relationship from 3D co‑
ordinates to 2D image coordinates and 2D pixel coordinates, which supplies quantity in‑
formation for a damage assessment. (3) As an innovative means of information collection,
apply AR in the damage assessment of a post‑earthquake building.

2. Literature Review
2.1. Damage Assessment of Post‑Earthquake Buildings

Currently, two methods are mostly used for the damage assessment of post‑earthquake
buildings, which are site investigation and visual inspection by experts [17]. Although
these twomethods are easy to use, they have significant shortcomings, such as being highly
influenced by subjectivity, inefficiency in assessment, and difficulty to ensure the safety of
assessment experts. Due to the differences in knowledge and experience held by differ‑
ent specialists, cognitive biases of these specialists may increase the uncertainty of dam‑
age assessment results. Undertaking multiple assessments to reduce the uncertainty of
assessment results is time‑consuming and labor‑intensive [18]. The FEMA (Federal Man‑
agement Emergency Administration) of the United States [19] first published “Rapid Vi‑
sual Screening of Buildings for Potential Seismic Hazards: A Handbook” (FEMA154) in
1988. FEMA154 is proposed to satisfy the assessment needs of a fast, reliable, and sim‑
ple calculation of damaged structures. FEMA154 performs a quick judgment of damaged
structures in the form of scoring and classifies the damaged structures at different levels
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using the “score line” set by experts. Although FEMA154 has great guiding significance
for damage assessment, it can only perform inspections from the exterior of the building,
while the inspection accuracy mainly relies on the knowledge of experts.

With the development of information technology, especially the widely used UAV
(Unmanned Aerial Vehicle) and 3D scanning of earthquake sites [20,21], damage assess‑
ments have also tended to become more intelligent. Wang et al. [22] studied pavement
crack detection techniques, and they found many problems in visual inspection and semi‑
automatic inspection. For example, the traditional inspection methods require far more
manpower, material, and time resources than are practical. Furthermore, the speed and
accuracy of detection are also difficult to estimate. In this research, Wang et al. conducted
a study of the literature on crack image acquisition and crack image segmentation. The
study compared the detection speed and accuracy of 12 algorithms for different crack im‑
ages, which aimed to provide a reference for realizing the efficient and automatic detection
of pavement cracks. Shakya et al. [23] conducted a visual inspection of damaged buildings
in Bhaktapur after the Gorkha (Nepal) earthquake. However, considering the impact on
specialist safety due to aftershocks and road damage, they had to interrupt inspections
several times.

2.2. Computer Vision for Damage Assessment
With the development of remote sensing technology and computer technology, dam‑

age assessment combinedwithCV can substantially break through the limitations of visual
inspection. CV is characterized by high intelligence and precision, which makes it widely
used for the inspection and detection of buildings and infrastructure [24]. In general, CV
is a science that uses camera recognition and algorithm analysis to reduce the subjective
fallacies of observers [25].

The essence of damage assessment is damage classification. In the background of the
rapid development of CV, more and more algorithms are introduced into CV to improve
the speed and accuracy of damage assessment. As one of the most popular machine learn‑
ing algorithms, SVM (Support Vector Machine) is widely used in classification. Fayed and
Atiya et al. [26] used SVM to classify various handwriting datasets. However, SVM can
only achieve binary classification. So, it was necessary for their experiment to transform
the classification of handwriting into a problem of binary classification. Although the ac‑
curacy of the classification of handwriting was found to be as high as around 99% in their
experiment, SVM may be not suitable for multi‑classification problems. In addition, ran‑
dom forest is also used extensively for damage classification as it has the advantages of sim‑
ple implementation, high accuracy, and resilience to over‑fitting. Shanmugam et al. [27]
proposed a method for the automatic classification of glaucoma using deep learning and
random forest. The accuracy of the proposed method was as high as 99%. However, ran‑
dom forest requires separate feature extractors to extract manually defined features (such
as size and shape, etc.). Therefore, random forest may be not suitable for the damage as‑
sessment of post‑earthquake buildings.

CNNs are one of the most representative deep learning algorithms, which has signifi‑
cant advantages for damage recognition [28]. CNNs can not only extract features automat‑
ically but also have a strong self‑learning capability. In addition, CNNs can be used for
both binary classification and multi‑classification [29,30]. Cha et al. [31] conducted crack
classification experiments onmultiple photographs usingCNNwith an accuracy of 97.42%.
Botta et al. [32] took 468 eggshell photos and then developed a dataset of image patches.
Theyused aCNNandSVM to classify the image patches into “Crack” and “Intact” datasets.
The experimental data collected by Botta et al. showed that the CNN model had an accu‑
racy rate of 95.38% in eggshell image classification, which performed better than the SVM
model. Bai et al. [33] proposed a method for optimizing the inspection of railway fasten‑
ers. This method used a modified Faster R‑CNN (Region‑Convolutional Neural Network)
to recognize four different types of fasteners. The results showed that Faster R‑CNN per‑
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formed well in multi‑classification. These studies mentioned above illustrate that CNNs
can not only solve multi‑classification problems but also have high classification accuracy.

2.3. Augmented Reality in Construction
Due to the specificity and complexity of earthquakes, the results of damage assess‑

ments of buildings after an earthquake are often influenced by many factors. To improve
the reliability of the assessment results, multiple types of information are usually required
before a damage assessment [34]. However, traditional data collection methods make it
difficult to ensure both the accuracy and comprehensiveness of post‑earthquake building
information. Therefore, this paper uses AR to assist CV when collecting earthquake site
information. Moreover, AR also allows for immersive reading and visual display of the
collected information [35,36]. Garbett et al. [37] developed a BIM (Building Information
Model)‑AR damage assessment system for the design and construction process of build‑
ings. This system enabled real‑time transmission of information and simultaneous com‑
munication among different users. The ultimate purpose of this system was to realize
multi‑user collaborativework in architectural design and construction using real‑time com‑
munication. Liu et al. [16] proposed a method for post‑earthquake retrofitting visualiza‑
tion of buildings using both AR and BIM. This method used the advantages of AR and
BIM to realize the multi‑level expression of seismic damage components. By integrating
multi‑dimensional information of seismic damage components, the multi‑level informa‑
tion can provide guidance for subsequent retrofits. This method also promoted collabora‑
tion among builders.

3. The Fusion Mechanism of CV and AR in an Intelligent Damage Assessment
This section focuses on the methodology and mechanism of intelligent damage as‑

sessments of post‑earthquake buildings using CV and AR. The deep learning algorithms
built into CV can perceive the pixels of images, which is called image recognition. Image
recognition is used to classify different image patterns into different image sets. The aim
of image recognition is to classify different damage types into different sets. However, a
damage assessment of post‑earthquake buildings cannot be realized simply by identifying
image patterns. Therefore, this paper expects to complement and refine the science and
visualization of damage assessment by introducing AR.

In the intelligent damage assessment method proposed in this paper, the assessment
process seems like a ‘black box’ (as shown in Figure 1). To obtain the quantitative rela‑
tionship of damaged information using a gray value, as a supplementary technology, AR
can collect more earthquake site information to input into the ‘black box’ for an intelligent
damage assessment. The images collected from the earthquake site with sensors can also
synchronously transmit into the ‘black box’. The deep learning algorithm and gray value
principle included in the ‘black box’ can analyze and calculate these images and data in‑
formation, which aims to achieve the assessment of damaged buildings. After a damage
assessment, the damage information (including damage data and damage models) will be
displayed in the terminal.

The information obtained from earthquake site sensors (such as UAV) will input im‑
ages into the ‘black box’ for image recognition. AR can supplement virtual data, which
is called AR data. In addition, AR data does not exist in the physical world. The main
purpose of AR data is to supply the original data for coordinate transformation between
2D and 3D, which aims to obtain the quantity information for a damage assessment. After
receiving the sensor information, the AR data are analyzed and processed in the ‘black
box’. At this time, the quantity information and type information are all in the ‘black box’,
waiting to be used in a damage assessment. Finally, AR can visually display the results of
a damage assessment. The intelligent assessment method proposed in this paper is to ana‑
lyze the information simply twice. First, the image and shooting distance information are
analyzed for image recognition and grey value calculation. Second, the fused information,
including the results of the image recognition and grey value calculation, is analyzed for
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the damage assessment. At the same time, the real‑time dynamic damage assessment of
seismic damaged components in post‑earthquake buildings is completed, and the results
of the assessment are ready for visual display.

Figure 1. The assessment process combines CV and AR.

The proposedmethod in this paper uses AR to dynamically enhance virtual data with
3D information, including shooting distance, into the real world. Then, the AR data and
images are input into a ‘black box’ to obtain the fusion data (the detailed type of damage
information and quantitative damage information). Moreover, the results of the damage
assessment are expressed as damage classes by comparing the fusion data with damage
assessment regulations. The damage information can also be visually displayed in the AR
terminal. The fusion mechanism of CV and AR in the damage assessment is shown in
Figure 2.

Figure 2. The fusion mechanism of CV and AR in the damage assessment system. The Chinese
characters in the picture on the bottom right means Concrete‑Rectangular Beam.
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As is shown in Figure 2, intelligent damage assessment starts with the use of sen‑
sors (such as UAV) and AR technology to obtain original data. The 3D information (in‑
cluding shooting distance) is measured by the conversion between the coordinates. Image
segmentation and data augmentation are required for the original images, and then, the
pre‑processed images should be recognized by a CNN. Meantime, the AR data should be
calculated using a gray value. After obtaining the type and quantity information (such as
the information about the type andwidth of the crack) of the seismic components, the dam‑
age class can be assessed using the damage assessment principle. The damage information
and assessment results can be displayed using the AR terminal as well.

4. A Combined CV and ARMethod for Damage Assessment
4.1. Process of Intelligent Damage Assessment

The intelligent damage assessment of post‑earthquake buildings is the classification
of seismic components according to their damaged state. The results of a damage assess‑
ment are influenced by many factors, and the criteria for damage assessment are not iden‑
tical for different structures. In order to harmonize damage assessment criteria, ‘Technical
Specification for Post‑earthquake Urgent Assessment and Repair of Buildings’ is chosen as
the regulation of intelligent damage assessment [38]. Taking the RC (Reinforced Concrete
Frame) beam as an example, the damage class can be used to indicate the state of damage.
The specific content is shown in Table 1.

(1) Class A: Class Ameans that there is no damage to the frame beam, or the damage is
so minimal that it does not affect the safety, applicability, and durability of the structure at
all. Specifically, the components do not require repair or modification. For example, when
the RC beam is unbroken concrete and non‑cracked, the result of the damage assessment
will be defined as Class A.

(2) Class B: Class Bmeans that there has been some damage to the structure, but these
damages have a limited impact on the performance of the structure. For example, when
the RC beam is unbroken concrete with only a diagonal crack or cross crack, and the crack
width is less than 0.5 mm, the result of the damage assessment is Class B.

(3) Class C: Class Cmeans that the damage to the structure will affect its performance,
and this damagemay bemodified. After themodification, the performance of the structure
can be restored even better than before reinforcing. For example, when the RC beam is
unbroken concrete with only a diagonal crack or cross crack, and the crack width is over
or equal to 0.5 mm, the result of the damage assessment is Class C.

As shown in Table 1, the damage class is determined by the crack state and concrete
state. The damage types of cracks and concretes can be classified using image recognition.
The crack width is calculated using the gray value theory. Taking the damage assessment
of RC beams as an example, the specific assessment process of damaged components is
shown in Figure 3.

As shown in Figure 3, a complete damage assessment process requires information
on the type information and the quantity information, which is called fused information.
Taking the RC beams as an example, the damage assessment process can be divided into
two parts: the first part aims to calculate the crack width using the gray value theory [39];
the second part aims to complete the classification of damage types of the concrete con‑
dition and crack shape (for example, whether the concrete is broken, whether there are
cracks in the components). The damage class is determined by synthesizing the quantita‑
tive damage information and damage type information. When the concrete of an RC beam
is not broken and there is only a diagonal crack or cross crack with a width of 0.5~2 mm,
the class of the damage assessment is Class C, which means the damaged components
need to be reinforced. According to the definition of the damage class, many appropriate
reinforcement methods can be selected for subsequent reinforcement and retrofitting.
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Table 1. The Description of Damage Classes for Reinforced Concrete Frame Beams.

Concrete State Crack State Crack Width Damaged Class Retrofitting Method

Unbroken

none / Class A /

only diagonal crack or cross crack <0.5 mm
Class B

1. ω < 0.3: When the crack is shallow, epoxy resin slurry or cement
slurry should be used for surface sealing; when the crack is deep,
acrylic slurry or low viscosity epoxy resin slurry should be used for
pressure grouting repair.

2. 0.3 ≤ ω < 2.0: The crack should be repaired with epoxy resin grout
pressure grouting.

3. 2.0 ≤ ω < 5.0: The crack can be repaired using pressure grouting
with materials such as micro‑expansion cement grouting.

4. When the components are seriously cracked and the concrete is
slightly dropped, the replacement method should be used to re‑pour
the components, and then steel structure sleeves or reinforced
concrete sleeves should be used for reinforcement.

only non‑penetrating crack at the end
of a beam <2 mm

only diagonal crack or cross crack ≥0.5 mm
Class C

1. When there are vertical cracks through the ends, the steel structure
sleeve or reinforced concrete sleeve method should be used through
the joint.

2. When there are cross cracks at the ends, the steel structure sleeve or
reinforced concrete sleeve method with annular sealing hoop should
be used.

only non‑penetrating crack at the end
of beam ≥2 mm

Broken / / Class C /
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Figure 3. The damage assessment process for RC beams.

4.2. Information Collection and Display of Post‑Earthquake Buildings Using Augmented Reality
AR is used in the information collection and display based on the coordinate trans‑

formation between the virtual world and the real world. Therefore, virtual–real fusion is
the key to AR. Virtual–real fusion is achieved by the transformation of coordinates, which
is called registration. One of the most mature registration technologies is Fiducial Marker,
which is used in this paper. Fiducial Marker involves three coordinate transformations:
real‑world coordinate, virtual world coordinate, and camera space coordinate [40,41]. The
transformation relationship of these three coordinates is shown in Figure 4.

Figure 4. The transformation relationship of coordinates.

The coordinates of the virtual world are determined by the position of the virtual
object in the real world so that both the coordinates of the real world and the coordinates
of the virtual world are known. Themain transformation relations of the three coordinates
are as follows: 

x
y
z
1

 = U4×4


xV
yV
zV
1

 (1)
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where [x, y, z, 1]T is the real‑world coordinate, [xV , yV , zV , 1]T is the virtual world coordi‑
nate, and U4×4 is the transformation relationship between the real‑world coordinate sys‑
tem and the virtual world coordinate.

x′

y′

z′

1

 =

[
R t
0T 1

]
x
y
z
1

 = V4×4


x
y
z
1

 = V4×4U4×4


xV
yV
zV
1

 (2)

where [x′, y′, z′, 1]T is the camera space coordinate; R is the orthogonal identity matrix,
which indicates the direction of the camera in the real‑world coordinate; t is a 3D vector,
which indicates the position of the camera in the real‑world coordinate; and V4×4 is the
transformation relationship between the camera space coordinate and the real‑world coordi‑
nate.

The transformation relationship between the real‑world coordinate and the virtual
world coordinate is known, which means U4×4 is known. Thus, obtaining V4×4 is the key
to realizing coordinated transformation. V4×4 is a transformation matrix, which means
V4×4 can be converted into a combination of a rotationmatrix R3×3 and a translationmatrix
T3×1. The specific matrix conversion combination is shown in Equation (3).

V4×4 =

[
R3×3 T3×1

0 1

]
(3)

Rotation matrix R3×3 and translation matrix T3×1 can be obtained with attitude sen‑
sors, gyroscope sensors, and positioning sensors embedded in the camera [42].

4.3. Calculating the Quantitative Information Using Gray Value Theory
The gray value is a kind of mathematical morphology, which is widely used in im‑

age processing. Mathematical morphology is based on geometry, which uses structural
elements to find the shape features of objects in an image. Because many damages (such
as cracks) are not binary images, this paper selected the grayscale morphology combined
with corrosion, expansion, and opening and closing operations for image preprocessing.

The corrosion calculation of the non‑flat structural element bN on the image f at the
position (x, y) is:

[ f ⊖ bN ](x, y) = min{ f (x + s, y + t) + bN(s, t)} (s, t ∈ bN) (4)

The specific operation of corrosion in grayscale morphology involves superimposing
the structural elements on an area of the same shape in the image, and then, respectively,
calculating the gray value of each image point and taking the minimum value as the final
gray value. The processing is completed after traversing each region of the image.

The expansion calculation of the structural element bN on the image f at the position
(x, y) is:

[ f ⊕ bN ](x, y) = max{ f (x − s, y − t) + bN(s, t)} (s, t ∈ bN) (5)

The specific operation of expansion in grayscalemorphology is the same as that for the
expansion calculation except expansion takes the maximum value as the final gray value.

If all the elements of bN are constant, the above formula can be simplified as:

[ f ⊖ b](x, y) = min{ f (x + s, y + t)} (s, t ∈ b) (6)

[ f ⊕ b](x, y) = max{ f (x − s, y − t)} (s, t ∈ b) (7)

The opening and closing calculations are:

f ◦ b = ( f ⊖ b)⊕ b (8)
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f •b = ( f ⊕ b) ⊖ b (9)

The purpose of coordinate transformation in Section 4.2 is to place the virtual object
in the physical world. It is impossible to measure all the quantitative information (such as
crackwidth) directly. Therefore, on the basis of Section 4.2, it is also necessary to transform
information among the camera space coordinate, image coordinate, and pixel coordinate.

The transformation of the camera coordinates to the image coordinates is the transfor‑
mation from 3D to 2D, as shown in Figure 5:

Figure 5. The transformation of camera coordinates to image coordinates.

According to the triangle similarity principle:

AB
OC

=
AOc

OOc
=

PB
PC

=
Xc

x
=

Zc

f
=

Yc

y
(10)

where O is the camera optical center, Zc is the camera optical axis, and OcO is the camera
focal length f :

x = f
Xc

Zc
, y =

Yc

Zc
(11)

The expression in matrix form is:

Zc

u
v
1

 =

 1
dx 0 u0
0 1

dy v0

0 0 1


 f 0 0 0

0 f 0 0
0 0 1 0

[R T
0 1

]
XV
YV
ZV
1


 fx 0 u0 0

0 fy v0 0
0 0 1 0

[R T
0 1

]
XV
YV
ZV
1

 (12)

where fx = αx f , fy = αy f , αx is the magnification factor from an image coordinate to a
pixel coordinate on the X axis, and αy is the magnification factor from an image coordinate
to a pixel coordinate on the Y axis.

As shown in Figure 6, to establish the transformation relationship between an im‑
age coordinate and pixel coordinate, the variational sizes in the pixel are expressed as dx
and dy: {

x = dx(u − u0)
y = dy(v − v0)

(13)
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Figure 6. The transformation relationship between an image coordinate and a pixel coordinate.

The expression in matrix form is:u
v
1

 =

 1
dx 0 u0
0 1

dy v0

0 0 1


x

y
1

 (14)

4.4. CNN in the Damage Assessment of Post‑Earthquake Buildings
The core of intelligent damage assessment based on CV and AR is to perceive infor‑

mation in real time and respond according to the target task [43]. According to research
and practical experience in the literature [44–46], this paper selected the CNN as the deep
learning algorithm to complete intelligent damage assessment.

A complete CNNmodel consists of three layers: an input layer, a hidden layer, and an
output layer (as shown in Figure 7). The hidden layer is the core part of the CNN,which in‑
cludes three common layers: convolutional layer, pooling layer, and fully connected layer.
The function of the convolutional layer is to apply convolutional filters to extract features
from the images. The pooling layer is divided into maximum pooling and average pool‑
ing. The purpose of the pooling layer is to compress the feature map, remove redundant
information, and prevent overfitting. The fully connected layer has amapping relationship
with all the elements of the previous layer, which is represented as the probability of the
final category of the input image.

Figure 7. The complete architecture of a CNN.

The Sigmoid function, a commonly used activation function in CNNs, is often used
for classification. This paper also uses the Sigmoid function as the activation function. To
judge the robustness and generalization ability of the CNN model in this study, two pa‑
rameters, i.e., the accuracy rate and the loss function, are introduced as evaluation indica‑
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tors [32]. The definition matrix of each evaluation indicator is shown in Table 2, and the
definition formula is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
∗ 100 (15)

Loss =
1
N ∑

i
Li =

1
N ∑

i
−[yi· log(pi) + (1 − yi)· log(1 − pi)] (16)

where yi is the label of sample i, 1 for TP and 0 for FN and pi is the probability that sample
i is TP.

Table 2. The definition matrix of each evaluation index.

Validation

Damage Background Noise

Training Damage Type (i) True Positive (TP) False Negative (FN)
Background Noise False Positive (FP) True Negative (TN)

Even if the same buildings experienced the same earthquake, it would hardly pro‑
duce the same damage [47]. Data augmentation is the expansion of the amount of original
data using image rotation, image horizontal flip, image horizontal displacement, image
vertical displacement, image random cropping, and image random methods [48]. Thus,
data augmentation is necessary to ensure the learning ability and robustness of CNNs [49].
Figure 8 shows an example after data augmentation of RC beams in the ratio of 1:20 includ‑
ing image rotation, image horizontal flip, image horizontal displacement, image vertical
displacement, image random cropping, and image random methods. Figure 8 shows that
there were more different images after data augmentation. Data augmentation can effec‑
tively expand datasets, which improves the learning ability and robustness of the CNN.

Figure 8. An example of data augmentation for an image of RC beams in the ratio of 1:20.

5. A Case Study on the Damage Assessment of Post‑Earthquake RC Beams
To verify the feasibility of the proposed method for intelligent damage assessment

of seismic buildings, this paper used the RC beams (Simply supported beams) in an earth‑
quake simulation laboratory as an example for a damage assessment. The decided damage
assessment content is listed in Table 1. For the seismic RC beams, the damage assessment
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needs information on the concrete state and crack state. The state of the crack includes
information on the crack type and crack width. The seismic RC beams in the earthquake
simulation laboratory are shown in Figure 9. One of the RC beams is broken, and the other
has cracks. Both beams have concrete peeling.

Figure 9. The seismic RC beams in the earthquake simulation laboratory.

5.1. Crack Width Information of Post‑Earthquake RC Beam Based on AR
When evaluating the damage to RC beams, the crack width must be measured first.

Obtaining the crack width using a gray value can reduce the deviation caused by pho‑
tographing operations and algorithm processing. Especially for small cracks, a gray value
provides better accuracy of the crack width. To obtain the gray value of the crack, this
paper first conducted the corrosion, expansion, and opening and closing operations. The
grayscale morphology of the cracks is shown in Figure 10.

Figure 10. The gray scale morphology of the cracks. (a) Image, (b) binarization, (c) corrosion,
(d) expansion, (e) opening, and (f) closing.

The relationship between pixel coordinates and camera space coordinates is the key
to accurately calculating the crack width. According to the test data, the corresponding
relationship between the average gray value and the crack width is established [50]. When
the shooting distance is 1m, the gray values corresponding to different crack widths are
shown in Figure 11.
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Figure 11. The different gray values of different crack widths [50]. (a) Width: 0.09 mm, (b) width:
0.15 mm, (c) width: 0.20 mm, (d) width: 0.50 mm, and (e) width: 1.00 mm.

When the corresponding relationship between the gray value and the crack width is
established, the shooting distance between the image perception sensor and seismic RC
beams is determined as 1m. Before information collection, the shooting distance is calcu‑
lated using the measure sensors of the information collection terminal.

In order to verify the feasibility of the AR collection method proposed in this paper,
the authors developed a simple information collection system. This information collection
system can measure the shooting distance and take pictures of post‑earthquake and then
transform the information between the shooting distance and pictures pixels using image
cognition and grey value calculation. In addition, the damage components and damage
information can be visually displayed with the AR platform. The use process of the infor‑
mation collection system is shown in Figure 12. Due to the still immature development of
the system, the visualization of the information collection system is not of very good qual‑
ity. Furthermore, as this is Chinese software and technology, only the Chinese language
is supported at present.

Figure 12. The steps in the use process of the information collection terminal. (a) System login,
(b) function selection, (c) measure shooting distance, and (d) take the image.

5.2. Concrete and Crack Type Information of a Post‑Earthquake RC Beam Based on a CNN
A complete CNN image recognition process includes image segmentation and data

augmentation. The segmented image is called a patch. After filtering and data enhance‑
ment, a total of 4980 patches are available. 227 × 27 is the pixel size of the patches. After
image segmentation, when the pixel size of the patches is 227 × 227, the damage state can
be recognized well, and after reviewing the literature, our team found that a patch of this
size is often used as the size for CNN recognition. If the pixel size is smaller than 227 × 227,
the damage state can still be recognized well, but it will waste more manpower and time.

The authors collected 253 images with pixels 4032 × 3024 in the earthquake simula‑
tion laboratory to perform image recognition. After image augmentation, 4980 patches
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(227 × 227) were finally available for damage assessment [48]. According to the differ‑
ent crack widths, these 4980 images were divided into three databases: 01 (ω ≤ 0.5 mm),
02 (0.5 <ω > 2 mm), and 03 (ω ≥ 2 mm). The images were used to recognize the state of
concrete and cracks. The training set and test set were classified according to the ratio of
2:1. The statistical information about the dataset is shown in Table 3.

Table 3. Classification of images collected in the laboratory experiment.

Concrete State Classes Initial
Images

Processed
Patches

Training
Patches Test Patches

concrete unbroken, non‑crack 38 1020 680 340
concrete unbroken, cross crack 82 1500 1000 500
concrete unbroken, horizontal,

vertical crack 93 1710 1140 570

concrete broken 40 750 500 250
total 253 4980 3320 1660

The CNNmodel in this paper was set to three convolutional blocks and one fully con‑
nected block, as shown in Figure 13. Each convolutional block contained two convolutional
layers and a pooling layer, and the image after one feature extraction was used as input
to the next convolution block. After three feature extractions were completed, the task of
damage classification was completed in the fully connected layer. Softmax is a classifier.
Using probability assignment, Softmax can classify different images into different sets.

Figure 13. The illustration of the CNN model.

In convolution block 1, 32@3 × 3 filters were used to extract features from the input
image. In convolution block 2, each convolution layer used 64@3× 3 filters. In convolution
block 3, each convolution layer used 128@3× 3 filters. The pooling layer was max pooling,
the size of the pooling layer was 2 × 2, and the step size was 2. After the input passed
through the fully connected layer, the images were changed from a three‑dimensional ma‑
trix to a one‑dimensional vector. One‑dimensional vectors were classified with activation
functions. The specific parameters of the CNN model are shown in Table 4, and the illus‑
tration of the CNN model is shown in Figure 13.

The process of image recognition mainly includes “model definition”, “data prepro‑
cessing (data augmentation)”, and “result visualization”. All the steps are implemented
using python. The processed images were input into the CNNmodel, and the batch size of
both the training set and validation set was 16. The number of iterations of the training set
(echo) was 50. The visual results of the recognition accuracy and loss function generated
in these 50 cycles are shown in Figures 14 and 15.



Sustainability 2023, 15, 5591 16 of 21

Table 4. The specific parameters of the CNN model.

Layer Size of Filters Number of
Filters Output Number of

Features

convolutional layer 1.1 3 × 3 32 225 × 225 × 32 320
convolutional layer 1.2 3 × 3 32 223 × 223 × 32 320

pooling layer 1 2 × 2 ‑ 112 × 112 × 32 ‑
convolutional layer 2.1 3 × 3 64 110 × 110 × 64 19,072
convolutional layer 2.2 3 × 3 64 108 × 108 × 64 19,072

pooling layer 2 2 × 2 ‑ 54 × 54 × 64 ‑
convolutional layer 3.1 3 × 3 128 52 × 52 × 128 73,856
convolutional layer 3.2 3 × 3 128 50 × 50 × 128 73,856

pooling layer 3 2 × 2 ‑ 25 × 25 × 128 ‑
fully connected layer ‑ ‑ 80,000 ‑

Figure 14. Experimental results of the CNN model on the damage type of crack.

Figure 15. Experimental results of the CNN model on the damage type of concrete.

It can be seen from the above figures that in the first 20 cycles, the accuracy and loss
function values of theCNNmodelwere not stable enough. In addition, therewas still space
for improvement in the accuracy and loss. However, with the number of cycles increasing,
the accuracy and loss function tended to be stable and reach an ideal state. After 50 cycles,
the accuracy of the CNN model training set increased from about 50% to 99.75%, and the
validation set accuracy reached 98.25%. The loss function of the training set was 0.0258,
and the loss function of the validation set was 0.0252.

5.3. Visual Display of the Damage Assessment Using AR
The information on shooting distance and images of the damaged RC beams collected

using the above systemwould be transferred to a computer terminal. For the visual display
method of damage components and damage information, our team has already carried out
many studies, and this paper applied the method of BIM‑AR to display the damage model
and damage information. The visual damage components and damage information are
displayed with a computer, as shown in Figure 16. All the damage information includ‑
ing assessment results, damage models, and retrofitting methods were visually displayed
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using the AR platform (Augin®), as shown in Figure 17. The expression of the damage as‑
sessment comes from the specification ’Building Structural Drawing Standards’ [51]. The
expression of the damage information comes from a set of coding rules [16].

Figure 16. The damage information displayed in the terminal.

Figure 17. Steps to viewing the damage model and information: (A) place the model, (B) view the
model, (C) view detailed information on the damage, (D) identify the thumbnail, and (E) display the
repair video [24].

WhenC‑KL01‑03‑01: there is an inclined crackwith cracks≥ 2mm in the no. 01 frame
beam.

Where “C” represents crack; “KL01” represents the no. 01 frame beam; “03” repre‑
sents the width of ≥2 mm; and “01” represents the type of the crack as an inclined crack.

When CR‑KL01‑1: there is broken concrete in the no. 01 frame beam.
Where “CR” represents concrete broken; “KL01” represents the no. 01 frame beam;

and “1” represents a true positive.
After assessment of the crack width, crack type, and concrete fracture condition of RC

beams, the results showed that the damage class of the component was C.

6. Conclusions
The rapid development of CV and AR has provided more scientific, effective, and

visual ideas for the damage assessment of post‑earthquake buildings. The IDEFO (Icam
Definition Method) of the intelligent assessment method is shown in Figure 18.
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Figure 18. The IDEFO of the damage assessment method.

CV is the key technology to realize the traditional upgrade in the damage assessment
for seismic buildings. AR is an indispensable technology for further improving the sci‑
entific, visualization, and information management of damage assessments. This paper
proposed a damage assessment method for post‑earthquake buildings combining CV and
AR. The proposedmethod can improve the problems in visual inspection, such as high sub‑
jectivity, redundant data in the damage assessment process, and difficulty in information
management and retrieval. The conclusions of this paper are drawn below:
1. This paper provided information on the fusion mechanism of CV and AR. The fusion

of CV and AR not only enriches the diversity of post‑earthquake building informa‑
tion but also realizes a closed loop of information generated during the assessment
process.

2. This paper applied the registration technology to obtain AR data and established
the transformation relationship between virtual world coordinates, real‑world coor‑
dinates, and camera world coordinates. It is worth noting that the virtual–real fusion
information provides a better data basis for damage assessment.

3. The aim of the damage assessment method for earthquake‑damaged buildings is to
classify different damage states into different classes. CNNs and grey values are used
to analyze and process the original data. The CNN is used for image recognition, and
the grey value is used to calculate the quantitative information. CNNs and grey val‑
ues can not only ensure the accuracy of classification but can also prevent the problem
of overfitting.
The proposed damage assessment method combining CV and AR can evaluate the

damage class of seismic components more intelligently. This method not only improves
the scientific accuracy and visualization of a damage assessment but also effectively solves
the problems of data redundancy, information management, and retrieval difficulties. Ho
wever, there are still some deficiencies. In this paper, information collection with AR and
information display with AR used different AR terminals, which is not conducive to real‑
time analysis and information integration. Although the information on image recognition
and gray value calculation can be updated in real‑time, the information on the visual dis‑
play terminal still needs the help of workers.

Finally, the current research on the damage assessment of post‑earthquake buildings
is still insufficient. Further improvement in the science of damage assessment and data
management remains a priority for future research. Next, our team will work to integrate
damage assessment and damage information visualization. In the future, wewill continue
to dynamically link and visualize damage assessment informationwith building design in‑
formation and reinforcement method information. Then, we will try to promote the intelli‑
gence, digitization, and visualization of repair and retrofittingmethods of post‑earthquake
buildings.
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7. Patents
Based on the content of this study, an invention patent has been applied.
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