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Abstract: The logistics industry has an irreplaceable role in promoting Chinese economic devel-
opment, and its carbon emissions have become a hot topic of academic research. However, more
research needs to be conducted on this. This study is based on establishing an evaluation index
system for the efficiency of energy carbon emissions in the Chinese logistics industry. The catastrophe
progression method was used to evaluate this statically. A dynamic evaluation model was also
established based on the characteristics of fuzzy rewards and punishments. The results showed that
the static values in the southeastern provinces of China were always between 0.9 and 1, and there
was a significant increase in the dynamic values under the fuzzy reward and punishment scenario.
Provinces in the southwest fluctuated between 0.8 and 0.95, while the dynamic values did not increase
much. In the northern provinces, the static assessment values were consistently between 0.7 and 0.9,
while the dynamic values were decreasing. It is therefore important to reward provinces with high
static assessment values and penalize those with low static assessment values. The perspective of the
characteristics of fuzzy rewards and punishments is also essential for fair and equitable management,
reward and punishment in the different provinces in the study.

Keywords: dynamic evaluation; energy carbon efficiency; logistics industry; catastrophe progression;
fuzzy incentives and punishments

1. Introduction

The advent of the Industrial Revolution brought human society into a phase of rapid
development, but it also brought a series of negative consequences with it. After the
Industrial Revolution, more and more factories were opened, emitting many greenhouse
gases such as carbon dioxide. The Earth is experiencing the greenhouse effect caused by
the increase in carbon dioxide. This is because carbon dioxide will readily absorb long-
wave radiation from the ground while transmitting longer long-wave radiation into the
ground, making the ground more insulated. This will eventually lead to global warming,
melting glaciers and rising sea levels, which will flood many low-lying areas and countries.
Nowadays, the greenhouse effect of the atmosphere is increasing, causing more serious
problems such as global warming [1,2]. This has caused concern in countries around the
world.

Global climate governance is a multidimensional international economic and envi-
ronmental issue. The role of the Paris Agreement in global climate governance must be
considered [3–5]. China is the world’s largest emitter of carbon dioxide. Using 2020 data as
an example, the world’s CO2 emissions in 2020 will be 31.98 billion NDUs, a reduction of
2056 billion NDUs or 6.04% year-on-year compared with 2019. In 2020, China’s CO2 emis-
sions reached 9894 billion NDUs, accounting for 30.93% of the world’s total CO2 emissions
and ranking first globally. Furthermore, in response to the long-term goal of improving
the climate, China has already made many efforts in reducing carbon emissions [6–8].
The Chinese logistics industry is the second-largest carbon emitter after manufacturing.
Reducing the carbon emissions of logistics is not only a prerequisite for promoting the
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development of the industry itself but also an essential part of the task of achieving China’s
energy saving and emission reduction goals.

Moreover, the problem of the efficiency of energy carbon emissions generated by the
Chinese logistics industry has created an enormous conflict with low-carbon environmental
protection [9–12]. Nowadays, how to curb the disorderly growth of energy carbon emission
levels in the logistics industry has become an inevitable trend of current research. Therefore,
the scientific formulation of carbon emission reduction policies for the logistics industry in
various provinces and regions of China is of great practical significance for optimizing the
energy structure and improving energy efficiency.

2. Literature Review

Carbon efficiency was first proposed by Kaya and Yokobori [13], who used the ratio
of GDP to carbon emissions as a carbon efficiency value to reflect the gross domestic
product that could be created per unit of carbon emissions. Subsequently, a carbon index
was proposed to measure the intensity of energy consumption using the ratio of carbon
emissions to energy consumption [14–16]. Both methods can reflect the efficiency of
carbon emissions, but due to the single research perspective and measurement index, the
measurement results were controversial, and many scholars have started to measure the
efficiency of carbon emissions from a multidimensional perspective.

The efficiency of energy carbon emissions from the logistics sector has always been a
hot topic of research in energy-related economics. A large body of literature has examined
the impact of numerous influencing variables on the logistics industry’s carbon efficiency.
Static analyses have been conducted based on panel data and other aspects such as the
industrial environment of the logistics industry [17,18], resource inputs [19,20], energy con-
sumption and measurements [21–23]. Static analysis is a comprehensive and comparative
analysis of the results of the economic activities that have taken place. Tiwari et al. [17]
used a new quantile autoregressive distributed lag method to analyze environmental degra-
dation. They showed that economic growth positively affected the industrial environment
in both countries. Kumar et al. [18] used static analysis to explore the efficiency of logistics
and their regional differences to optimize the input–output ratio of the regional logistics
industry. Scholars such as Wanke [19], Morgan and others [20] included resource inputs and
technological inputs in their static analysis to consider their effects on the carbon emission
efficiency of logistics. Scholars such as Sufyanullah [21] and Modise et al. [22] used static
analysis to study the impact of different regions’ energy consumption on the efficiency of
carbon emissions by the logistics industry and found that the impact of energy on carbon
emissions in the logistics industry changed over time and across different environments.
Many scholars are also aware of this problem, so research on measuring the efficiency of
energy and carbon emissions in the logistics industry has gradually switched from static
data analyses to dynamic analyses [23–25]. Mustafa et al. [23] used a dynamic data analysis
to study the development trend of logistics in a low-carbon economy. Talmon et al. [24]
used dynamic analysis to examine the relationships of total-factor energy efficiency in
the logistics industry. They concluded that total-factor energy efficiency in the logistics
industry showed a benign growth trend. They used dynamic analysis to study the overall
level and spatial characteristics of the efficiency of the logistics industry and proposed
different countermeasures for improving low-carbon logistics for different regions.

The research results above provide a reasonable basis for this study, but there are still
areas for improvement in the existing research. Developing the efficiency of the Chinese
logistics industry’s energy carbon emissions should also be a continuous and uninterrupted
process of evaluation. The development of the logistics industry in China has differed from
province to province. There are specific differences in the logistics industry’s energy and
carbon emission efficiency, so it is imperative to reduce the differences. The perspective
of fuzzy rewards and punishments is a concept that blurs the boundaries of rewards
and punishments, as well as the corresponding demarcation points of incentives and
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punishments, to achieve reasonable and flexible management according to the different
levels of development of the logistics industry in each province.

Among the existing methods of measuring the efficiency of energy carbon emissions,
scholars have used the SBM-DEA model [18,19], the DEA-Malmquist index model [26,27],
the AHP-DEA model [23,28], the PAC-DEA model [25,26], the super-PEBM model [27]
and the DEA-BCC model [29] to study and measure the efficiency of the energy carbon
emissions of the logistics industry. However, we lack a method based on a combination
of static and dynamic analysis to effectively analyze the efficiency of the energy carbon
emissions of the Chinese logistics industry from a continuous perspective: the catastrophe
progression method.

Therefore, the research had the following innovations based on previous scholars’
research. First, this study studies the efficiency of the logistics industry’s carbon emissions
from the energy perspective, focusing on analyzing the impact of energy consumption and
transformation, actively responding to national policies and helping the logistics industry
save energy and reduce emissions. Second, this study used the catastrophe progression
method to analyze the time series of the Chinese logistics industry’s efficiency of energy
carbon emissions from 2014 to 2019. The dynamic evaluation of the efficiency of the energy
carbon emissions of the Chinese logistics industry was obtained through the results of the
time series information aggregation model. From the static and dynamic point of view, a
comprehensive evaluation of the efficiency of the energy carbon emissions of the logistics
industry can be achieved. Third, this study introduced a new concept of fuzzy rewards and
punishments. According to the results of the static evaluation of the logistics industry’s
efficiency of energy carbon emissions in each province, the corresponding non-reward and
punishment points, the membership degree of fuzzy rewards and punishments degree and
the control line of fuzzy rewards and punishments were determined. Finally, the features
of fuzzy rewards and punishments were used to gather information in the time dimension,
which laid the foundation for the subsequent dynamic analysis model.

The criteria for rewards and punishments have been controversial in general research
when rewarding the best and punishing the worst. The theoretical contribution of this
study lies in the adoption of the perspective of the characteristics of fuzzy rewards and
punishments. This allowed for the fuzzification of the criteria’s boundaries and accounted
for the actual state of the energy carbon efficiency of the logistics industry in each province
in a comprehensive manner, thus allowing for flexible management. This study has filled a
gap in the literature in this area and provides high-quality assurance that reductions in the
carbon emissions of logistics in each province are moving in the right direction.

3. Comprehensive Evaluation Model
3.1. Names of the Variables in the Formulas

Here, λ is a static assessment value, t indicates the time, i denotes the number of
evaluation indicators and j is the number of objects evaluated, resulting in an information
aggregation matrix. Moreover, hit(t) is a functional expression for the static assessment
value; εi is the point of no incentives and punishments, also known as the control line
of fuzzy incentives and punishments; η1, η2, and η3 are the corresponding affiliations of
the variable at the time of incentives, punishments and no incentives or punishments,
respectively; δ+it , δ−it , and δ0

it are the rating values of incentives, punishments and no
incentives or punishments, respectively; µ1 is the factor of incentives, and µ2 is the factor
of punishments. Finally, δi is the composite dynamic assessment value.

3.2. Static Evaluation Model Based on Catastrophe Progression

The catastrophe progression method is a comprehensive evaluation method that
decomposes the multilevel contradictions of the evaluation target, then uses catastrophe
theory and fuzzy mathematics to carry out a comprehensive quantitative operation. Unlike
AHP combined with TOPSIS and other methods, the catastrophe progression method is a
method for decomposing the multilevel contradictions of the objects of evaluation, while
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AHP analyzes complex decision-making problems, and the TOPSIS rule is used to sort the
objects of the evaluation through the results of the decisions. Therefore, the introduction
of the mutation level method into the evaluation model in this study enabled a more
comprehensive ranking and analysis of the objects of the evaluation, and the current state
of the model in this study is similar to that of Karman and Salmanidou et al. [30,31]. Among
the different models, catastrophe theory is based on constructing catastrophe progression
models consisting of control and state variables. There are generally no more than four
control variables in a mutation model. There are seven standard primary catastrophe
progression models. Four commonly used catastrophe progression models are the folded
catastrophe progression model, the sharp point catastrophe progression model, the dovetail
catastrophe progression model and the butterfly catastrophe progression model [30,31].
These are shown in Table 1.

Table 1. Catastrophe progression models and related equations.

Catastrophe
Progression Model Control Variable Potential Function Normalized

Equation
Weighting

Order

Folded (FCPM) A f(x) = x3 + ax xa
√

a Wa

Cusp (CCPM) a,b f(x) = 1
4 x4 + 1

2 ax2 + bx
xa =

√
a

xb = 3
√

b Wa > Wb

Swallowtail (SCPM) a,b,c f(x) = 1
5 x5 + 1

3 ax3 + 1
2 bx2 + cx

xa =
√

a
xb = 3

√
b

xc = 4
√

c
Wa > Wb > Wc

Butterfly (BCPM) a,b,c,d f(x) = 1
6 x6 + 1

4 ax4 + 1
3 bx3 + 1

2 cx2 + dx

xa =
√

a
xb = 3

√
b

xc = 4
√

c
xd = 5

√
d

Wa > Wb > Wc > Wd

The specific steps of the evaluation were as follows.
Step 1. The required variable indicators were collated to form an indicator evaluation

system. The indicator evaluation system of this study was an organic whole with an
inherent structure based on three aspects of the characteristics of the efficiency of the
logistics industry’s energy carbon emissions and its interlinked multiple indicators. The
catastrophe progression model decomposed the evaluation indicators into multiple levels
and arranged them into an inverted tree target hierarchy according to the purpose of the
evaluation. Table 2 presents all the indicators used in this study to measure the carbon
efficiency of the logistics industry based on the literature review. The indicators in the
table are divided into three main categories, namely, the industrial environment (E), the
industry’s resources (K) and the industry’s output (C). The industrial environment includes
the infrastructure (E1) and the labor (E2) components. The industry’s resources include
capital stocks (K1), energy consumption (K2) and the development level (K3). Industry
output (C) includes three components: energy conversion (C1), transportation of goods
(C2) and desired output (C3). The tertiary indicators in the table are a detailed explanation
and quantification of the secondary indicators. The data involved in the tertiary headings
are available in the National Bureau of Statistics of China.

Step 2. The catastrophe progression models were classified on the basis of the number
of variables of the evaluation indicators to determine the type of catastrophe progression
model corresponding to the indicators. The results of the level-by-level analysis of the
indicators’ models are shown in Figure 1. In Figure 1, E1 corresponded to a three-level
indicator, so it corresponded to the swallowtail model (SCPM). The number of tertiary
indicators for K3 was 2, which corresponded to the cusp model (CCPM). The number of
tertiary indicators for C1 was 3, which corresponded to the swallowtail model (SCPM),
while the number of tertiary indicators for C2 and C3 was 2, which corresponded to
the cusp model (CCPM). The number of secondary indicators for both K and C was 3,
which corresponded to the swallowtail model (SCPM). The efficiency the energy carbon
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emissions of China’s logistics industry corresponded to E, K and C (three indicators), so
the swallowtail model (SCPM) was used to calculate the total value.

Table 2. Indicator system for energy carbon efficiency in the logistics industry target indicators.

Target Indicator Tier 1
Indicator Secondary Indicator Tertiary Indicator Indicator Number

Energy carbon
emission efficiency of
the logistics industry

Industry
environment

(E)

Infrastructure (E1)
Railway mileage E11

Road mileage E12
Inland waterway mileage E13

Labor force (E2)

Number of persons employed
in railway transport E21

Number of persons employed
in road transport E22

Number of persons employed
in water transport E23

Number of persons employed
in air transport E24

Industry
resources

(K)

Capital stock (K1)

Total wages of employed
persons in urban units of the

transport, storage and
postal industry

K11

Number of legal persons in
the transport, storage and

postal industry
K12

Energy
consumption (K2)

Petroleum K21
Natural gas K22

Coal K23
Level of

development (K3)
Provincial GDP K31

Total provincial population K32

Industry output
(C)

Energy
conversion (C1)

CO2 emissions C11
Carbon emissions C12
Carbon intensity C13

Transport of goods (C2) Provincial freight volume C21
Provincial freight turnover C22

Desired output (C3)
Value added of regional

output of logistics industry C31

Tertiary industry value
added index C32

Step 3. The correlation between the evaluation indicators from each level of the
evaluation matrix, the complementary criteria and the non-complementary criteria were
selected on the basis of the multi-objective decision theory. The complementary criteria
were used to evaluate the static rating value of the target index when the correlation
was strong. If the indicators were less relevant, non-complementary criteria were used.
We could then rank the indicators from smallest to largest to derive the indicators’ static
assessment value.

Step 4. Based on the perspective of information aggregation, this study analyzed the
efficiency of the Chinese logistics industry’s energy carbon emissions. The static evaluation
value within ti(i = 1, 2, 3, . . . , n + 1) was λij = λi(ti)(i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n),
where i denotes the number of evaluation indicators and j is the number of objects evaluated,
resulting in an information aggregation matrix.

[
λij
]

m∗(n+1) =


λ11 λ12 · · · λ1(n+1)
λ21 λ22 · · · λ2(n+1)
· · · · · · · · · · · ·
λm1 λm2 · · · λm(n+1)

 (1)
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3.3. Dynamic Evaluation Model Based on Fuzzy Incentives and Punishments
3.3.1. Degree of Fuzzy Affiliation

The matrix of the set of rating index information (1) can reveal the energy carbon
efficiency in the logistics industry in ti(i = 1, 2, 3, . . . , n + 1) of λ′ij =

[
λmin

ij , λmax
ij

]
, that is,

the maximum value and minimum value. For any λij, its fuzzy set needs to be clarified, and
the corresponding cases of incentives, no incentives and penalties need to be distinguished
to determine the degree of affiliation according to the theory of fuzzy mathematics. Further-
more, a uniformly distributed function of the degree of affiliation was chosen on the basis
of the efficiency of the energy carbon emissions of the logistics industry. Let εi be the point
of no incentives or punishments, and let η1, η2, and η3 be the corresponding affiliations
of the variable at the time of incentives, punishments and no incentives or punishments,
respectively. The subordinate functions of the incentives, disincentives and penalties for
energy carbon efficiency in the logistics industry are described below.

η1 =

 0 λij ≤ εi
λ′ij−εi

λmax
ij −εi

λij > εi

η2 =


1−

λ′ij−εi

λmax
ij −εi

λij > εi

1 λij = εi

1−
λ′ij−εi

εi−λmin
ij

λij < εi

η3 =

 0 λij ≥ εi
εi−λ′ij

εi−λmax
ij

λij < εi

(2)
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3.3.2. The Control Line of Fuzzy Incentives and Punishments

After specifying the affiliation function (2) and the degree of affiliation of the efficiency
of the logistics industry’s energy carbon emissions, we set εi as the control line of fuzzy
incentives and punishments regarding efficiency of the energy carbon emissions in the
logistics industry. The corresponding degree of affiliation of the evaluation indicators and
the control line of fuzzy incentives and punishments will change over time. The status
(incentive, no incentive or punishment, punishment) of the efficiency of the energy carbon
emissions in the logistics industry will also change. At the same time, the fluctuations
in the static assessment value of the indicators will also impact the control line of fuzzy
incentives and punishments.

εi = ρ(λmax + λmin) (3)

The value of ρ is based on the overall development of energy carbon efficiency in the
logistics industry.

3.3.3. Dynamic Evaluation of the Efficiency of the Energy Carbon Emissions of the
Logistics Industry from the Perspective of Fuzzy Incentives and Punishments

Through the catastrophe progression model and its potential function, it can be seen
that, based on the characteristics of the information set, the static assessment value of the
efficiency of the energy carbon emissions of the logistics industry and the analysis of the
corresponding fuzzy affiliation can obtain, for each period of

[
tj, tj+1

]
, the value of the

incentives, penalties, and no incentives and penalties. Borrowing from the mathematical
integral equations δ+it , δ−it , and δ0

it, the equations are as follows.
δ−it =

∫ tp
tk
η3
(
λij
)
hit(t)dt +

∫ tk+1
tp

η3
(
λij
)
hit(t)dt

δ0
it =

∫ tk+1
tk

hit(t)dt− δ+it − δ−it
δ+it =

∫ tp
tk
η1
(
λij
)
hit(t)dt +

∫ tk+1
tp

η1
(
λij
)
hit(t)dt

(4)

where hit(t) is the expression of the static assessment value of the efficiency of the logistics
industry’s energy carbon emissions as a function of

[
tj, tj+1

]
. Meanwhile, the efficiency of

the logistics industry’s energy carbon emissions follows the principle of conservation of the
incentives and punishments. The coefficient of the total incentives and punishments is 1, µ1
is the coefficient of incentives and µ2 is the coefficient of punishment; it can be expressed as
follows. µ1

M
∑

i=1

N−1
∑

t=1
δ+it = µ2

M
∑

i=1

N−1
∑

t=1
δ−it

µ1 + µ2 = 1
(5)

Equation (4) can be derived from the incentives and punishments in
[
tj, tj+1

]
, and

the results of the incentives and punishments can accelerate rapid development in the
efficiency of the logistics industry’s energy carbon emissions. The assessment value of the
efficiency of the logistics industry’s energy carbon emissions with fuzzy incentives and
punishments in a certain period is as follows.

δ±it = (1 + µ1) δ
+
it + (1− µ2) δ

−
it + δ

0
it (6)

From Equations (5) and (6), we can obtain the corresponding assessed values of the
energy carbon efficiency of the logistics industry for fuzzy incentives and penalties. On the
basis of the information of the time dimension, we can derive a dynamic and comprehensive
assessment value.

δi =
N−1

∑
t=1

δ±it (7)
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3.4. Study Plan

Step 1: The variables needed for the study were classified, and then the relevant data were
found and collated.
Step 2: Model the catastrophe progression based on the theory.
Step 3: Calculate the static assessment value of the efficiency of the logistics industry’s
energy carbon emissions in each province.
Step 4: Set the control line of the fuzzy incentives and punishments according to the actual
development of the efficiency of the logistics industry’s energy and carbon emissions in
China’s provinces.
Step 5: Calculate the incentives, no incentives and penalty values for the efficiency of the
logistics industry’s energy carbon emissions in each province.
Step 6: Calculate the dynamic assessment value of efficiency of the Chinese logistics
industry’s energy carbon emissions from the perspective of fuzzy incentives and penalties.

A flow chart of the research plan is shown in Figure 2.
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4. Empirical Analysis
4.1. Establishment of the Evaluation Index System and Data Acquisition

To make a comprehensive evaluation of the efficiency of the logistics industry’s energy
carbon emissions, this study established an indicator evaluation system with three levels:
the industrial environment, the industry’s resources and the industry’s output (Table 2).
The six fossil energy sources with the most significant share of energy consumption in the
Chinese transportation, storage and postal industries were divided into three categories,
namely petroleum (gasoline, diesel and fuel oil), natural gas (liquefied petroleum gas and
natural gas) and coal (raw coal), for this calculation. In terms of energy conversion, this
study estimated the carbon emissions on the basis of the IPCC’s corresponding energy
carbon emission factors, referring to the methodology of the National Greenhouse Gas
Emissions Inventory Guidelines, calculated as follows:

Crj =
m

∑
j

Erjµj (8)

where Crj expresses the energy carbon emissions of the rth province in year j and µj denotes
the carbon emission factor of energy source j (Table 3).

Table 3. Energy carbon emission factors.

Energy Coefficient per Ton of Fuel

Raw coal 0.7599
Gasoline 0.5538
Paraffin 0.5714
Diesel 0.5921

Combustion oil 0.6185
Liquefied petroleum gas 0.5042

Natural gas 0.4483
Electricity 2.2132

Concerning CO2 emissions, this study referred to the study by Oh [32] to calculate the
CO2 emissions based on the energy consumption of the various components involved in
logistics operations, such as transportation and storage, with the following formula.

C = ∑
i=1

Ci = ∑
i=1
δiθiEi (9)

where i is the carbon emission of the ith energy source, C is the carbon emission factor of
the ith energy source consumed in each production process of the logistics industry, Ci
is the standard coal conversion factor of the ith energy source, ∆i is the carbon emission
factor for the energy consumed in each production process in the logistics industry, θi is the
standard coal conversion factor for the energy source and Ei is the consumption of the ith
energy source. The data were obtained from the study of Bao et al. [33] and others (Table 4).

Table 4. Energy discount reference factors for standard coal.

Type of Energy Coefficient (θi)

Raw coal 0.7143
Gasoline 1.4714
Paraffin 1.4714
Diesel 1.4571

Combustion oil 1.4286
Crude oil 1.4286

Natural gas 1.3300
Electricity 0.1229
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This study selected data for measuring the efficiency of the energy carbon emissions
from 29 provinces in China. Due to Tibet and Hainan missing more of the relevant energy
data, these two provinces were removed from the analysis. The research data for this study
were obtained from China’s statistical yearbooks (2014–2019) and China’s energy statistical
yearbooks (2014–2019) to guarantee the actual and scientific data of this study.

4.2. Comprehensive Evaluation

In this study, the efficiency of the logistics industry’s energy carbon emissions was
evaluated based on the static progression of mutation and a dynamic evaluation based
on fuzzy rewards and punishments. Among these, the static evaluation based on the
progression of mutation is an analytical method used to obtain endogenous variables
according to the variation in the established exogenous value, which is mainly used for
comprehensive comparative analyses of the results of economic activities that have taken
place. The dynamic evaluation based on fuzzy rewards and punishments is an analysis
of the actual process of economic change, which is mainly used to analyze the changes in
the related variables in a certain time, and the mutual influence and mutual restrictions of
these economic variables in the process of change. Compared with the static evaluation
based on the progression of mutation, the dynamic evaluation based on fuzzy rewards
and punishments can better evaluate the differences in the efficiency of the energy carbon
emissions of the logistics industry in different provinces. However, the static evaluation
based on progression of mutation can be used to analyze the results that have occurred
more comprehensively. The results are shown in Figure 3. Therefore, this study used the
method of combining the two to analyze the development of the energy carbon emissions
of the logistics industry in each province in detail.
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4.2.1. Static Evaluation Based on Catastrophe Progression

The results show that the efficiency of the logistics industry’s energy carbon emissions
in different regions had a hierarchy with different levels. As shown in Table 5, the static
assessment value of each year only reflected the current development status of the efficiency
of the logistics industry’s energy carbon emissions in the province. It did not objectively
and precisely reflect the comprehensive status. The results for 2014 to 2019 showed that the
status of the efficiency of the logistics industry’s energy carbon emissions in each province
was always in a state of change and varied within a particular regional value.
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Table 5. Static evaluation values.

Province
Time Area

2019 2018 2017 2016 2015 2014

Beijing 0.7195 0.7101 0.7431 0.7899 0.8521 0.8586
Tianjin 0.7978 0.7590 0.7243 0.8262 0.7946 0.8548
Hebei 0.7289 0.8004 0.8049 0.9290 0.9430 0.9388
Shanxi 0.8839 0.8992 0.8941 0.9038 0.9179 0.9186
Inner

mongolia 0.7902 0.8988 0.8878 0.9063 0.9333 0.9337

Liaoning 0.9241 0.7762 0.7673 0.7744 0.9438 0.9420
Jilin 0.7992 0.8326 0.8395 0.8583 0.8949 0.8367

Heilongjiang 0.8984 0.8574 0.8715 0.8729 0.9147 0.9191
Shanghai 0.7871 0.8283 0.8285 0.8280 0.8846 0.8793
Jiangsu 0.9560 0.9552 0.9535 0.9627 0.9761 0.9744

Zhejiang 0.7640 0.8982 0.9339 0.8425 0.9451 0.9394
Anhui 0.9115 0.9177 0.9258 0.9284 0.9480 0.9499
Fujian 0.9255 0.9070 0.9064 0.9135 0.9290 0.9230
Jiangxi 0.9005 0.8974 0.8975 0.8976 0.9183 0.9183

Shandong 0.9588 0.9609 0.9610 0.9644 0.9728 0.9725
Henan 0.9197 0.9388 0.9400 0.9520 0.9607 0.9570
Hubei 0.9555 0.9403 0.9383 0.9468 0.9595 0.9559
Hunan 0.9459 0.9251 0.9258 0.9292 0.9498 0.9516

Guangdong 1.0000 0.9943 0.9969 0.9888 0.9965 0.9950
Guangxi 0.8938 0.8888 0.8861 0.8841 0.9125 0.9140

Chongqing 0.9108 0.8848 0.8916 0.8969 0.9191 0.9159
Sichuan 0.9318 0.9031 0.8940 0.9036 0.9401 0.9422
Guizhou 0.8800 0.8593 0.8624 0.8671 0.8955 0.9029
Yunnan 0.9030 0.8859 0.8795 0.8840 0.9121 0.9117
Shaanxi 0.8867 0.8856 0.8821 0.8973 0.9221 0.9245
Gansu 0.8532 0.8358 0.8151 0.8444 0.8770 0.8847

Qinghai 0.5264 0.4979 0.5536 0.4387 0.4319 0.4424
Ningxia 0.5256 0.5418 0.6056 0.7494 0.7293 0.7377
Xinjiang 0.7085 0.7768 0.7771 0.8744 0.8976 0.9003

The southeastern provinces of China, such as Guangdong, Hubei, Hunan and Shan-
dong, which had static ratings consistently in the range of 0.9 to 1, are relatively objective
in terms of their carbon efficiency in the logistics sector and need to be rewarded for their
leadership role. These provinces are leading the way in terms of the infrastructure of
logistics, labor inputs, industry resource allocation and practical logistics output. The static
assessment values for the southwestern provinces of China, such as Guangxi, Chongqing,
Sichuan and Guizhou, as well as the provinces of Shanxi, Gansu and Heilongjiang, fluc-
tuated between 0.8 and 0.95. These regions need to make up for their environmental
shortcomings and make further improvements to the limited resources and suboptimal
output. The static assessment values of Beijing, Tianjin, Hebei and Xinjiang were always
between 0.7 and 0.9. They are getting lower and lower, with Liaoning Province experienc-
ing a severe decline in the assessment value between 2016 and 2018, gradually recovering
to only 0.9 in 2019. These provinces need to pay more attention to the aspects of saving
energy and reducing emissions in the logistics industry and to adopt effective programs to
improve these. Two provinces, Qinghai and Ningxia, had static assessment values between
0.4 and 0.8 and need to be penalized, which would facilitate their ability to continually
catch up with and surpass other provinces. These provinces are lagging in many aspects
of carbon emissions in the logistics sector and lack the environmental, technological and
economic strength to do so.

4.2.2. Dynamic Evaluation from the Perspective of Fuzzy Incentives and Punishments

Through Equation (3), a control line of fuzzy incentives and penalties of ρ = 0.5 was
derived, based on the actual development of the energy carbon efficiency of the logistics
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industry, with each interval having ε1 = 0.7142, ε2 = 0.7142, ε3 = 0.7178, ε4 = 0.7474 and
ε5 = 0.7489. According to Equations (2) and (4), the intervals can be calculated to be the
values of incentive, no incentives or penalties, and penalties, as shown in Table 6.

Table 6. Incentive, no incentive, penalty values.

Province
Time Area (2014, 2015) (2015, 2016) (2016, 2017) (2017, 2018) (2018, 2019)

δ+ δ0 δ− δ+ δ0 δ− δ+ δ0 δ− δ+ δ0 δ− δ+ δ0 δ−
Beijing 0.38 0.48 0.00 0.33 0.49 0.00 0.16 0.60 0.00 0.00 0.72 0.01 0.00 0.64 0.08
Tianjin 0.34 0.48 0.00 0.19 0.62 0.00 0.25 0.53 0.00 0.00 0.68 0.07 0.03 0.75 0.00
Hebei 0.71 0.23 0.00 0.71 0.23 0.00 0.59 0.28 0.00 0.20 0.60 0.00 0.13 0.64 0.00
Shanxi 0.61 0.31 0.00 0.60 0.31 0.00 0.56 0.34 0.00 0.51 0.39 0.00 0.49 0.40 0.00
Inner

mongolia 0.68 0.25 0.00 0.66 0.26 0.00 0.56 0.33 0.00 0.49 0.41 0.00 0.44 0.41 0.00

Liaoning 0.72 0.22 0.00 0.60 0.26 0.00 0.13 0.64 0.00 0.11 0.67 0.00 0.09 0.77 0.00
Jilin 0.33 0.54 0.00 0.49 0.39 0.00 0.38 0.47 0.00 0.31 0.53 0.00 0.23 0.59 0.00

Heilongjiang 0.61 0.30 0.00 0.57 0.33 0.00 0.44 0.43 0.00 0.41 0.45 0.00 0.34 0.53 0.00
Shanghai 0.46 0.43 0.00 0.44 0.41 0.00 0.28 0.54 0.00 0.27 0.56 0.00 0.21 0.59 0.00
Jiangsu 0.88 0.09 0.00 0.87 0.10 0.00 0.83 0.13 0.00 0.77 0.19 0.00 0.77 0.19 0.00

Zhejiang 0.71 0.23 0.00 0.66 0.24 0.00 0.37 0.52 0.00 0.65 0.27 0.00 0.42 0.41 0.00
Anhui 0.76 0.19 0.00 0.73 0.21 0.00 0.67 0.26 0.00 0.63 0.29 0.00 0.58 0.34 0.00
Fujian 0.64 0.29 0.00 0.65 0.28 0.00 0.60 0.31 0.00 0.56 0.35 0.00 0.54 0.37 0.00
Jiangxi 0.61 0.31 0.00 0.60 0.31 0.00 0.54 0.36 0.00 0.52 0.38 0.00 0.49 0.41 0.00

Shandong 0.87 0.10 0.00 0.86 0.11 0.00 0.84 0.12 0.00 0.81 0.16 0.00 0.80 0.16 0.00
Henan 0.80 0.16 0.00 0.80 0.16 0.00 0.78 0.17 0.00 0.70 0.24 0.00 0.67 0.26 0.00
Hubei 0.79 0.17 0.00 0.79 0.16 0.00 0.75 0.19 0.00 0.70 0.24 0.00 0.70 0.25 0.00
Hunan 0.76 0.19 0.00 0.74 0.20 0.00 0.67 0.25 0.00 0.64 0.29 0.00 0.63 0.31 0.00

Guangdong 0.99 0.00 0.00 0.99 0.01 0.00 0.99 0.01 0.00 0.99 0.00 0.00 0.99 0.00 0.00
Guangxi 0.59 0.32 0.00 0.57 0.33 0.00 0.49 0.40 0.00 0.48 0.41 0.00 0.46 0.44 0.00

Chongqing 0.61 0.31 0.00 0.60 0.31 0.00 0.53 0.36 0.00 0.49 0.40 0.00 0.45 0.45 0.00
Sichuan 0.72 0.22 0.00 0.68 0.24 0.00 0.56 0.34 0.00 0.51 0.39 0.00 0.53 0.39 0.00
Guizhou 0.54 0.36 0.00 0.50 0.38 0.00 0.42 0.45 0.00 0.38 0.48 0.00 0.34 0.53 0.00
Yunnan 0.59 0.33 0.00 0.57 0.33 0.00 0.48 0.40 0.00 0.45 0.43 0.00 0.45 0.45 0.00
Shaanxi 0.64 0.29 0.00 0.61 0.30 0.00 0.53 0.36 0.00 0.46 0.42 0.00 0.44 0.45 0.00
Gansu 0.47 0.41 0.00 0.43 0.43 0.00 0.33 0.50 0.00 0.24 0.59 0.00 0.26 0.59 0.00

Qinghai 0.00 0.25 0.19 0.00 0.25 0.19 0.00 0.25 0.25 0.00 0.25 0.28 0.00 0.25 0.26
Ningxia 0.05 0.69 0.00 0.03 0.71 0.00 0.06 0.62 0.00 0.00 0.33 0.24 0.00 0.30 0.24

According to Table 6, the southeastern provinces of China, such as Guangdong, Hubei,
Hunan and Shandong, have been in the stages of reward, and no incentives or punishments
during 2014–2019, and these provinces and regions with high static assessment values have
been rewarded to a greater extent and given no reward to a lesser extent, corresponding
to the efficiency of the logistics industry’s energy carbon emissions. As can be seen from
the static assessment values, the southeastern regions of Guangdong, Hubei, Hunan and
Shandong are leading the way in terms of the energy carbon efficiency of the logistics
industry, and one can see that these provinces are developing in a more desirable direction
in terms of the industrial environment, the industry’s resources and industrial output. These
three levels form a stable structure that promotes the sustainable development of efficiency
of the logistics industry’s energy carbon emissions. We should therefore incentivize these
provinces in terms of the energy and carbon efficiency of the logistics sector so that they
can develop rapidly under conditions of reward. It is also essential to avoid a decline in
efficiency in these provinces to keep them moving toward the desired stage of development
and maintaining their good development and leadership. The efficiency of the logistics
industry’s energy carbon emissions in Qinghai was always in the penalty stage from 2014 to
2019. Beijing, Tianjin and Ningxia experienced intermittent penalty phases in the logistics
industry’s energy carbon efficiency over the six years. A comparison of the static assessment
values of these provinces revealed that they were also lower. However, Tables 5 and 6 also
show that after these penalties have been imposed, these provinces moved forward in terms
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of the energy carbon efficiency of the logistics sector to varying degrees, striving to avoid
always being behind. This phenomenon also indicates that these provinces have different
shortcomings in the energy carbon efficiency of the logistics industry and should prescribe
the right remedy to further improve the environment, resources and output of the industry.
It can be seen that developing the energy carbon efficiency of the logistics industry can
be ensured by the adoption of different incentives and penalties. The development of the
logistics industry’s energy carbon efficiency is continuous. It can be made more flexible
through continuous incentives and penalties, blurring the boundaries of incentives and
penalties on the premise of fairness.

The corresponding coefficients of incentives and punishments can be obtained from
Equations (5) and (6), and the dynamic, comprehensive assessment value of the efficiency of
the logistics industry’s energy carbon emissions under fuzzy incentives and punishments
was calculated by integrating Equation (7), as shown in Table 7.

Table 7. Dynamic evaluation value from fuzzy incentives and punishments.

Province

Time Area Awards Rate
the Value

Penalty
Evaluation Value

Dynamic Integrated Assessment
of Value with Fuzzy Incentives

and Penalties

Dynamic Integrated Assessment
Value without Vague Incentives

and Penalties
Beijing 0.8679 1.5082 3.8169 3.8843
Tianjin 0.8021 1.5642 3.8860 3.9304
Hebei 2.3345 0.9884 4.3680 4.3113
Shanxi 2.7668 0.8747 4.5835 4.5162
Inner

mongolia 2.8247 0.8317 4.5568 4.4881

Liaoning 1.6450 1.2749 4.2348 4.1948
Jilin 1.7318 1.2557 4.2854 4.2432

Heilongjiang 2.3758 1.0247 4.4831 4.4253
Shanghai 1.6702 1.2662 4.2432 4.2026
Jiangsu 4.1213 0.3457 4.9129 4.8127

Zhejiang 2.8089 0.8313 4.5398 4.4715
Anhui 3.3648 0.6429 4.7323 4.6505
Fujian 2.9827 0.7988 4.6527 4.5802
Jiangxi 2.7566 0.8818 4.5873 4.5202

Shandong 4.1753 0.3247 4.9263 4.8248
Henan 3.7404 0.4947 4.8208 4.7298
Hubei 3.7300 0.5052 4.8312 4.7405
Hunan 3.4425 0.6181 4.7624 4.6787

Guangdong 4.9483 0.0129 5.0944 4.9740
Guangxi 2.5745 0.9504 4.5379 4.4753

Chongqing 2.6749 0.9154 4.5708 4.5057
Sichuan 2.9967 0.7905 4.6506 4.5777
Guizhou 2.1852 1.0953 4.4289 4.3757
Yunnan 2.5315 0.9687 4.5305 4.4689
Shaanxi 2.6749 0.9089 4.5577 4.4926
Gansu 1.7178 1.2617 4.2830 4.2412

Qinghai 0.0000 1.2032 1.2673 2.4064
Ningxia 0.1336 1.5621 2.7964 3.2578
Xinjiang 1.6378 1.2462 4.1701 4.1302

As seen from Table 7, the dynamically integrated assessment of the energy carbon
efficiency of the logistics sector was mostly smaller than the dynamically integrated as-
sessment of the energy carbon efficiency of the logistics sector without this condition in
the presence of vague incentives and penalties. The southeastern provinces of China, such
as Guangdong, Hubei, Hunan and Shandong, were among the top provinces in terms of
development, with different increases in their dynamic rating values, with Guangdong and
Shandong showing the most significant increases. In the southwestern region, the dynamic
values of Guangxi, Chongqing, Sichuan, Guizhou, Shanxi, Gansu and Heilongjiang have



Sustainability 2023, 15, 5574 14 of 17

increased to different degrees, and their rankings have changed slightly. The provinces
and cities in Tianjin, Beijing, Ningxia and Qinghai showed a downward trend in their
dynamic assessment values. All these phenomena reflect the effect of the fuzzy incentives
and punishments on the efficiency of the logistics industry’s energy carbon emissions.

The provinces of Guangdong and Shandong in China ranked highly in terms of
the dynamic composite value of the energy carbon efficiency of the logistics industry.
They are also in the high range of static values. The provinces of Ningxia and Qinghai,
on the other hand, ranked low in terms of the dynamic composite value of the energy
carbon efficiency of the logistics industry, and their static values were also in the low
range. According to the static evaluation value of the provinces of Guangdong, Hubei,
Hunan and Shandong, the southeastern provinces have a good industrial environment, a
well-developed infrastructure, high labor inputs, abundant industry resources and a high
level of expected industry output and cargo transport volumes, corresponding to the high
efficiency of the energy carbon emissions of the logistics industry. According to the control
line set for fuzzy incentives and penalties, the southeastern provinces of Guangdong, Hubei,
Hunan and Shandong had static assessments of the energy carbon efficiency of the logistics
sector above the control line. These provinces have a stronger sense of ownership of the
incentives and, thus, can receive more. The southeastern provinces of Guangdong, Hubei,
Hunan and Shandong received more incentives in terms of their assessed value, which
coincided with their static assessed value.

5. Conclusions

This study aimed to make up for the shortcomings in the flexible management of the
energy carbon emissions of China’s logistics industry by conducting a static evaluation and
a dynamic evaluation of the efficiency of the energy carbon emissions of China’s logistics
industry based on the mutation level method and the fuzzy reward and punishment
method, thus rationalizing the rewards and punishments for China’s logistics industry’s
carbon emissions and implementing the rewards or punishments for each province in a
more just manner.

A comprehensive analysis of the evaluation shows that Guangdong, Hubei, Hunan,
Shandong and other southeastern provinces with a high static assessment value for the
energy efficiency of the logistics industry had no penalty stage and received a large number
of rewards, while poorer regions such as Qinghai, with a low static assessment value for
the energy efficiency of the logistics industry, had no rewards and received a large number
of penalties. Ningxia, Tianjin, Beijing and other provinces had a medium static assessment
value for the energy efficiency of the logistics industry. The comparison between the static
and dynamic assessment values showed that the dynamic evaluation was a more realistic
and detailed representation of the development of the energy and carbon efficiency of
the logistics sector in each province by combining the characteristics of fuzzy rewards
and punishments. This differed somewhat from the findings of Islam [25], who focused
more on the dynamic efficiency of provincial carbon emissions in the logistics sector over
time, rather than considering the static results and the relationship between the two, a
shortcoming that was remedied in this study. This study is more in line with the findings of
Portengen et al. [34], which focused more on the combination of dynamic and static analyses
and compared the two, and this study further researched the basis of fuzzy rewards and
penalties. This study implemented the conditions of fuzzy rewards and punishments on
the basis of the results above to reward the good and punish the bad in a fair and reasonable
way, which makes up for the limitations of clear reward and punishment boundaries in the
actual development of the logistics industry, and also reflects the flexibility in the efficiency
of the energy carbon emissions of the Chinese logistics industry.

This study adopted a dynamic and comprehensive evaluation method using the
perspective of the characteristics of fuzzy rewards and punishments. The study reflected
the varying degrees of internal competition among the provinces in terms of the energy
efficiency of the logistics sector and also highlighted the interactions among Chinese
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provinces and their influence. By rewarding and penalizing different provinces, it may be
possible to further promote the development of energy carbon emissions in the logistics
sector and enable provinces to be aware of their own development status. The findings are
closer to the ideas of Wehner et al. [35], but this study is more comprehensive. Although the
logistics industry has made great progress in terms of both national and local government
policy support and the provinces’ own development, there are still weaknesses in the
development of the logistics industry’s energy carbon efficiency, and further targeted
countermeasures and recommendations are needed to improve the logistics industry’s
energy carbon efficiency.

Based on the comprehensive evaluation results above, the following three recom-
mendations can be made. First, we should improve the industrial environment, increase
the input of the industry’s resources and further promote the efficient transformation of
the expected output of the industry to improve the efficiency of the logistics industry’s
energy and carbon emissions. A high-quality industrial environment can serve as a solid
cornerstone for the development of the efficiency of the logistics industry’s energy and
carbon emissions, and increasing the precise inputs of industrial resources can provide
an effective resource guarantee for improving the efficiency of the logistics industry’s
energy and carbon emissions. Improving the desired output of the industry will add to
the development of the efficiency of the logistics industry’s energy and carbon emissions.
Second, based on the characteristics of fuzzy rewards and punishments, boundaries can be
reasonably set according to the differences in the development of the logistics industry’s
energy and carbon emissions in each province. Provinces with well-developed efficiency in
the logistics industry’s energy and carbon emissions can continue to increase the incentives,
while provinces with poorly developed efficiency should continue to increase the penalties.
This can ensure the beneficial development of the efficiency of the energy carbon emissions
from China’s logistics industry. Finally, a reasonably inclusive and effective management
program should be implemented according to the different development statuses of the
logistics industry in each province. Rewards and penalties are not an end in themselves
but are a means to an end. The provinces must use this tool to make efforts to develop and
move forward. The leading provinces will continue to maintain their status quo, and the
lagging provinces will be punished to promote their reform and continuous improvement.
The relevant departments of the local governments should also give corresponding policy
guidance and precise support to promote the efficiency of energy and carbon emissions in
China’s logistics industry to keep developing in the right direction.
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