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Abstract: Groundwater depletion caused by agricultural irrigation is a worldwide problem. Digital
technology has the potential to mitigate the groundwater over-exploitation problem by precisely
restricting agriculture groundwater withdrawal and borewell construction. This study estimates how
farmers respond to a pilot on digital groundwater supervision, which was implemented by the county
government to limit the number and clarify property rights of irrigation borewells. By utilizing
this recent pilot in rural China, we assess the causal impact of the digital groundwater supervision
pilot on farmers’ water-saving irrigation (WSI) behaviors and investigate the heterogeneity effects
and mechanisms related to the policy contents. A difference-in-differences (DID) strategy is applied
to address the treatment effect of the digital groundwater supervision pilot. The results, which
were based on a unique plot-crop-level panel dataset, indicate that farmers reduced water use after
the pilot implementation, with most of the responses created through introducing water-saving
technology and reducing water use intensity rather than through reducing irrigated acreage. In
addition, village supervision, information, and cooperative incentives positively encourage farmers
to adopt WSI technologies.

Keywords: WSI; digital groundwater supervision; technology adoption; sustainable agriculture;
DID approach

1. Introduction

Irrigation is crucial to farmers’ adaptations to climate change. However, depleted
aquifers, due to irrigation extraction, are major concerns globally [1–4], leading to serious
environmental concerns and impacts [5]. For example, long-term groundwater overexploita-
tion for agricultural irrigation has led to a rapid groundwater-table decline in the North
China Plain (NCP), which has the largest groundwater drawdown area in the world [6].
Groundwater is a scarce commodity, and it must be used in agriculture judiciously and
efficiently to obtain better economic returns without jeopardizing future sustainability [7].

The institutional approach to managing groundwater by arresting the over-exploitation
of groundwater and by mitigating environmental consequences is through the implemen-
tation of a systematic groundwater monitoring program [8]. However, due to the high
cost of supervision, groundwater exploitation has not been effectively monitored. Recently,
the supervision of groundwater overdraft was improved, through the development of
digital agriculture and the implementation of digital technologies [9]. Digital technology
can calculate the water intake by exploring the groundwater level change, and it clearly
defines the property rights of the borewells.

Digital innovation has brought stronger government regulatory capacity and reduced
regulatory costs of water resource management [10], bringing more possibilities for the
improvement of government regulatory efficiency and governance level. In the process of
monitoring the total amount of groundwater, digital technology can accurately identify the
main body and cause of damage, and it can help the regulatory authority determine the
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responsible body [11], so that farmers who overexploit groundwater can be expelled from
the group, which would also create peer pressure, thus effectively improving environmen-
tal management [12].

However, it should be noted that the administrative regulation of the irrigation system
may lead to resource mismatch. Even under the most optimal solution, the allocation
system may also lead to improper allocation of rights and water resources [13]. Moreover,
the relevant research is mainly based on digital groundwater management applications [14]
and on the agricultural water rights environment of developed countries [15] such as
Europe and the United States [16]. The research on the digital groundwater monitor in
developing countries remains insufficient.

The existing literature shows that the effect of policy intervention is usually lower
than the expectation because of information friction [17,18]. To this end, some effective
behavioral nudges to encourage farmers to save water include education [19], creating
a social norm of water-saving in the village [20], and improving farmers’ water-saving
awareness [21]. Some scholars have also detected the effect of other external objective
conditions [22], social networks [23], social learning [24,25], and farmers’ perceptions [26]
on groundwater management. However, few people have studied the relationship between
social network and digitalization in the agriculture sector.

In this paper, we present the empirical evidence on the role of digital technology in
inducing farmers to save water in the agricultural sector in China by estimating the causal
effects of the digital groundwater supervision pilot on farmers’ water-saving behavior
in irrigation. Our empirical results show that digital groundwater supervision can effec-
tively improve both the water-saving irrigation (WSI) technology adoption of farmers and
their irrigation efficiency. Additionally, social-norm enforcement [27], cooperation, and
information [28] are potential factors to affect the implementation of digital technology.

Our analysis makes two contributions to the literature. First, this paper builds and
extends the literature on the WSI effects of digital technology in the agricultural sector. We
present the first empirical evidence on the impact of digital technology on WSI technology
adoption and irrigation arrangements in China. Second, our paper also contributes to the
recent literature on the effect of non-financial incentive factors [29] on environmental tech-
nology adoption by including a series of variables related to information [30], cooperative
incentives, and peer effects within the village.

The present study proceeds in this way: the second section introduces the institutional
background of the digital groundwater supervision pilot in rural China. In Section 3, we
present the identification strategy and the empirical methodology. Section 4 spells out the
data and the variables that we used to testify assumptions underlying causal identification.
Estimate results of benchmark, sources of variation, placebo tests, robustness checks,
and mechanisms are reported in Section 5. The last two sections include our discussion
and conclusions.

2. Institutional Background

Groundwater overexploitation exists in 21 out of 32 provinces in China, covering
a total area of nearly 300 thousand square kilometers. In June 2013, the Government of
China launched the borewells ban pilot. It requires each province to clarify the property
rights of borewells by issuing ownership certificates to borewell owners. However, the
rural practice has proved that the groundwater gross control of the borewells ban pilot
is not ideal due to the high cost of groundwater supervision. To improve the efficiency
of government supervision in groundwater overdraft, since 2015, many provinces of
China have introduced digital technology for groundwater supervision. The technologies
include digital monitoring devices for borewells, property right confirmation QR codes for
borewells, and information systems for borewells management.

At the end of 2014, the Inner Mongolia Autonomous Region put forward the Provincial
Implementation Plan of digital groundwater supervision, noting that 14 out of 102 counties
were selected as the first batch of pilot counties. In 2015, 33 new counties were added as
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pilot counties in Inner Mongolia. In 2016, the number of pilot counties in Inner Mongolia
reached 62, more than half of its total number of counties. In Hebei Province, 13 out of 172
counties were selected as the digital groundwater supervision pilot counties in 2014. In
2015, another 77 counties started digital supervision. By the end of 2015, there were 90
out of the 172 pilot counties in Hebei Province. In 2016, the number of pilot counties was
over 100. The changing process of the digital groundwater supervision pilot of these two
provinces is shown in Table 1.

Table 1. Digital groundwater supervision pilot process in the two sample provinces.

Year Inner Mongolia Hebei Province

2014
A total of 14 out of 102 counties were
selected as the pilot counties of digital

supervision (13.7%).

A total of 13 out of 172 counties were first
selected as the pilot counties of digital

supervision (7.6%).

2015

A total of 33 new counties became digital
groundwater supervision pilot counties.

The number of digital groundwater
supervision pilot counties increased to 47

(46.1%).

A total of 77 new counties became digital
groundwater supervision pilot counties.

The number of digital groundwater
supervision pilot counties increased to 90

(52.3%).

2016
The number of digital groundwater

supervision pilot counties reached 62
(65.7%).

The pilot areas expanded to 115 counties
(66.9%).

Although the digital groundwater supervision pilot is determined at the county level,
the process of pilot promotion varies from one village to another, even in the same county.
Specifically, of the five sample counties that we surveyed, three of them are in Inner
Mongolia and the remaining two are in Hebei Province. According to our last survey in
2017, all the sample counties were digital groundwater supervision pilot counties, except
for Siziwangqi (See Table 2). For those digital groundwater supervision pilot villages, the
start year of the pilot is 2015 or 2016. No villages with the pilot year of 2017 are observed in
our sample.

Table 2. Digital groundwater supervision pilot process in the five sample counties.

Province County 2015 2016

Inner
Mongolia

Wuchuan
Digital groundwater supervision
pilot started and was carried out

in most villages.
-

Chahar
Youy-

izhongqi
-

Digital groundwater supervision
pilot started and was carried out

in some villages.

Siziwangqi - -

Hebei
Province

Kangbao -
Digital groundwater supervision
pilot started and was carried out

in most villages.

Zhuolu
Digital groundwater supervision

pilot started. Two towns are
selected as the pilot areas.

-

3. Methodology

The difference-in-differences (DID) model is a commonly used approach for evalu-
ating policy effect. We use a DID strategy to address the causal relationship between the
digital groundwater supervision pilot and farmers’ water-saving behavior. By comparing
the evolution of farmers’ WSI technology adoption outcomes of digital groundwater su-
pervision in pilot villages to those in non-pilot villages, we can obtain the treatment effect
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of the digital groundwater supervision pilot on agricultural water saving. We define the
villages that introduce both the borewell ban policy and digital technology as pilot villages
of digital supervision. Villages that have implemented the borewell ban policy without
introducing digital technology or villages that have not yet implemented the borewell ban
policy are considered as non-pilot villages. The baseline equation characterizing the effect
of the pilot is as follows:

yivt = β0 + β1Digitalv + β2Postt + β3DigitalvPostt + β4Xivt + β5Xhvt + β6Xvt + γt + γh + εivt (1)

where yivt stands for WSI outcomes of plot i in village v during year t, such as the WSI
technology adopted by the household or the irrigation efficiency in this plot. The digital
groundwater supervision pilot indicator Digitalv denotes whether village v is the pilot
of digital supervision. Digitalv takes the value of 1 for villages that have implemented
borewell ban policy assisted by digital technology and 0 otherwise; Postt denotes whether
year t is before or after digital supervision. Because the pilot starting time is between
2013 and 2016, Postt takes the value of 0 in 2007 or 2012 and 1 in 2017; DigitalvPostt is the
interaction term of Digitalv and Postt. This term measures the average treatment effect
of the digital groundwater supervision pilot. The estimated coefficient of the average
treatment effect, β3, is expected to be positive.

Other control variables include: plot attributes Xivt, such as plot topography, soil
type, fertility, acreage, average production cost, and average irrigation cost for plot i in
village v during the calendar year t [31]; household-level factors Xhvt, such as household
demographics; village-level factors Xvt, such as the village infrastructure and the training
of WSI for farmers; the year fixed effect γt, the household fixed effects γh, and the error
term εivt. We assume that the selection of digital groundwater supervision pilot was
quasi-random when controlling household fixed effects and year fixed effects.

Motivated by theoretical models of technology adoption [32], we particularly investi-
gate two mechanisms that might underlie the impact of digital groundwater supervision
on farmers’ water-saving behavior. We include these factors in Mivt—the number of newly
built borewells, and the property structure of borewells. We use the following equation
for mechanisms:

yivt = θ + θ1Digital + θ2Postt + θ3DigitalvPostt + θ4 Mivt + θ5 MivtDigitalvPostt + θ6Xivt + θ7Xhvt + θ8Xvt + γt + γh + εivt (2)

We will examine the two mechanisms separately in the empirical analysis. The inter-
action terms between PolicyvPosttDigitalv and Mivt capture the mechanisms of the impact
of digital groundwater supervision pilot on WSI, while θ5 remains inconclusive in the
existing literature. The definition of other terms is the same as that in Equation (1). Since
the time of implementing the digital groundwater supervision pilot was determined at the
village level, we cluster the standard errors at the village level in all regressions. Given
the potential for within-group correlation of residuals, we adjust all standard errors for
potential clustering.

4. Data
4.1. Data Source and Descriptive Statistics

Using the three-round micro survey data collected in 2007, 2012, and 2017, we analyze
the way in which the digital groundwater supervision pilot improved farmers’ adoption of
WSI technology decisions in China. The sample areas in this study are located in the potato
production areas, and they are good representatives of the major potato-growing areas
in northern China. Unlike the dryland crops that are commonly planted in north China,
the potato needs a large amount of irrigation water during its growing period. It is one of
the most water-consuming crops suitable for growing in north China; thus, the large-scale
planting of potatoes significantly aggravates the problem of groundwater overdraft of
the NCP. The samples in this paper not only represent the production and the irrigation
behavior of farmers in groundwater overdraft areas, but the samples are also of great
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significance in studying the effect of digital supervision on farmers’ WSI. We selected three
cities with large potato economies in the sample provinces, and then we randomly selected
five counties with a large potato planting scale. Next, we randomly choose 10 villages
from each county. Finally, we randomly selected 10 to 15 households from each village.
The questionnaire includes basic information about the farmers, cultivated land resources,
potato production, irrigation behavior, village social norms, and government supports
(such as agricultural training).

A total of 311 potato growers from 50 different villages were studied. For each house-
hold, we investigated the production information of its two largest plots in the last planting
season of the data collection year. To do this, we built a balanced plot-level panel data with
the three phases of 311 households to measure the irrigating behavior of farmers before
and after digital supervision was implemented. We obtained a panel in 2007, 2012, and
2017, including 622 plots. Second, we studied the water-saving effect of digital supervision.
If farmers had always been cultivated on drought plots or had transferred irrigation to
drought plot cultivation after digital supervision, we assumed that their water input became
zero and that they no longer needed to uptake WSI technology. Therefore, compared with
them, we paid more attention to the WSI of irrigated plots or of transferred-to-irrigated
plots. The summary statistics of the irrigated plots sample are in Table 3.

Table 3. Descriptive statistics.

Variable Definition
2007 2012 2017

Mean S.D. Mean S.D. Mean S.D.

WSI

0 = plots without irrigation, 1 = flood irrigation,
2 = large sprinkler irrigation,

3 = micro spray irrigation,
4 = drip irrigation

0.52 0.64 1.00 0.97 1.93 1.51

WSI0 Within all WSI: 0 = plots without irrigation, 1 = any other WSI 0.46 0.50 0.69 0.46 0.74 0.44

WSI1 Within all WSI: 0 = plots without irrigation or flood irrigation, 1
= any other WSI 0.04 0.20 0.19 0.39 0.57 0.49

WSI2 Within all WSI: 0 = plots without irrigation, flood irrigation or
large sprinkler irrigation, 1 = micro spray or drip irrigation 0.02 0.13 0.08 0.28 0.38 0.49

WSI3 Within all WSI: 1 = drip irrigation, 0 = any other WIS 0.002 0.04 0.04 0.18 0.23 0.42
Quantity Potato yield of plot i/water consumption of plot i (kg/m3) 79.80 2.50 94.89 4.99 53.73 32.77
Efficiency Water consumption of plot i/acreage of plot i (m3/mu) 11.67 1.34 20.71 1.58 42.66 5.82

Newwell Whether the number of newly constructed borewells has been
limited, 1 = yes, 0 = no 0.41 0.81 0.39 0.77 0.40 0.89

Property Property of the borewell of plot i 0.68 0.87 1.00 0.90 1.55 1.23

Digital Whether village i has introduced the digital groundwater
supervision 0.38 0.49 0.38 0.49 0.38 0.49

Treated Borewells ban treatment
0 = untreated, 1 = treated 0.65 0.48 0.65 0.48 0.65 0.48

Cost Average production cost of potatoes (yuan/mu) 276.80 234.71 295.79 230.90 334.98 305.60
Watercost Average water price (yuan/mu) 0.22 0.41 0.56 0.68 0.91 0.86

Topography 1 = “Plain”, 2 = “Hilly land”, 3 = “Mountain” 1.34 0.60 1.40 0.64 1.53 0.76
Fertility 1 = “Barren land”, 2 = “General land”, 3 = “Fertile land” 1.99 0.63 1.97 0.64 1.92 0.65
Acreage Acreage of plot i (mu) 5.43 4.31 5.96 4.81 5.87 5.69
Tenure The contracted year of plot i 9.5 4.45 13.34 4.78 18.15 4.93

Age Age of the householder of household h 49.88 8.92 54.88 8.92 57.37 9.02
Education Years of education of the householder of household h 6.34 3.25 6.34 3.25 6.41 3.32

Training 1 = County Government has held WSI training in village v, 0 =
others 0.29 0.46 0.31 0.46 0.41 0.49

Wellnum Number of borewells owned by the village collective 15.87 21.98 15.74 22.13 16 23.06

Descriptive statistics are based on 622 plots of 311 households in the sample.

4.2. Trends in the Adoption of WSI Technologies

Due to the digital groundwater supervision pilot implementation, as well as the
green agricultural technology development, the proportion of the WSI area has gradually
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increased. The two trend lines in Figure 1 show the increase in WSI land proportion from
2005 to 2020. The orange line shows the national level average, and the blue one is the
average of the two sample provinces. The average proportion of WSI technology adoption
of our sample plots is shown in the histograms. In the sample of our micro survey data,
from 2007 to 2017, the percentage of plots with WSI among all the plots increased from
20.3% to 76.5%. The rising trend of the WSI adoption rate in our sample data is similar to
the macro data. Both the macro data and the micro survey data show that the proportion of
WSI is increasing steadily.

Figure 1. Trends of the expansion of WSI area proportion in China and in the two sample provinces;
WSI technology adoption rate of farmers in the sample. Data Sources: 1. The proportions of WSI area
to effective irrigation area (blue line) are from the China Rural Statistical Yearbook (2005–2020); 2.
The percentages of WSI technology adoption rate of the plots with irrigation are from the author’s
calculations based on our three-round sample data (2007, 2012, and 2017).

The DID empirical strategy requires that unobserved shocks be uniform across the
treated and untreated groups, and the two groups diverge from a common trend only
because of the intervention. Figure 2a,b report the parallel trends of WSI in untreated and
treated villages, respectively. The dotted vertical lines in the figures mark the year 2013
when digital supervision was first proposed. The sample years are divided into the pre-pilot
period (2007 and 2012) and the pilot period (2017). We observe a common trend in Figure 2a
between the subgroups of borewell owners (farmers with private or shared borewells)
and non-borewell owners (farmers who use village collective borewells) in the untreated
villages; that is, their WSI changes before and after the pilot are similar. Figure 2b shows
the result of the treated villages. Both borewell owners and non-borewell owners had an
increasing tendency of adopting WSI technology after the digital supervision pilot started.
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Figure 2. (a) Average adoption rate of WSI of farmers in the untreated group; (b) Average adoption
rate of WSI of farmers in the treated group.

5. Results
5.1. Benchmark

In this section, we study the effects of digital technology on the WSI behavior of
farmers by presenting an identification strategy of difference-in-differences. We introduce
the quasi-randomly assigned digital groundwater supervision treatment to identify how
digital technology would affect different groups of farmers who face the heterogeneity
intensity of borewells’ ban from the government.

Table 4 demonstrates that digital technology significantly improves the WSI behavior
of farmers from the pilot areas of the borewells’ ban. Specifically, digital technology does
not encourage farmers to transfer drought plots to irrigated plots (Column 1). It has a
significant positive effect on farmers’ adoption of advanced WSI technology, such as micro
spray irrigation or drip irrigation (Columns 3 and 4). Benchmark results indicate that
digital technology plays an important role in sustainable agriculture as it improves farmers’
WSI behavior.

5.2. Placebo Tests

To illustrate that the results of this paper are not accidental, we performed two kinds
of placebo tests. First, we tested the authenticity of the common trend assumption that
there are no significant difference in the growth trend of the WSI technology adoption
rate between the treated group and the untreated groups before the treatment starts. To
exclude the possible effects of confounders, we assumed that digital technology was
introduced between 2007 and 2012. We constructed a fake pilot starting dummy, FakePostt,
that equaled 1 if the sample year was 2017, and 0 if otherwise. Then, we repeated the
DID estimation. Table 5 reports the DID estimation results under the fictitious digital
groundwater supervision pilot starting time. Columns (1)–(5) show no significant coefficient
of the average treatment effect. The results prove that before the digital groundwater
supervision pilot started, there were no significant differences in the WSI technology
adoption rate between the treated group and the untreated group.

Second, to test whether the benchmark results are driven by accidental factors, we
introduce a Monte Carlo simulation to conduct a placebo test by randomly generating
20 treatment villages, and we re-estimated Columns 1–4 in Table 5 by using the randomly
generated treated and untreated villages. We repeated the above steps 1000 times, and we
calculated the t value each time [33]. Figure 3 shows the kernel density distribution of the
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t values of the average treatment effects interaction outcomes. It shows that the probability
of t = 0 is high when the treated villages of digital supervision are randomly selected.

Table 4. The impact of the digital groundwater supervision pilot on farmers’ WSI behavior.

Variables
WSI0 WSI WSI1 WSI2 WSI3

(1) (2) (3) (4) (5)

Digital*Post −0.0081 0.5156 0.1380 0.2200 ** 0.1658
(0.1585) (0.3138) (0.1074) (0.1015) (0.1107)

Digital −0.5537 *** −1.0898 *** −0.2814 *** −0.2677 *** 0.0129
(0.0912) (0.2013) (0.0776) (0.0630) (0.0455)

Post
0.0674 0.8889 *** 0.3644 *** 0.2568 *** 0.2003 **

(0.0800) (0.2068) (0.0660) (0.0741) (0.0807)

Age 0.0019 0.0103 * 0.0045 * 0.0017 0.0023
(0.0021) (0.0060) (0.0025) (0.0024) (0.0016)

Education
0.0009 −0.0107 0.0008 −0.0068 −0.0055

(0.0058) (0.0176) (0.0068) (0.0073) (0.0051)

Training 0.0333 0.4883 *** 0.1686 *** 0.1753 *** 0.1111 **
(0.0362) (0.1107) (0.0399) (0.0461) (0.0475)

Cost
0.0002 *** 0.0006 *** 0.0002 *** 0.0001 ** 0.0001 ***
(0.0001) (0.0001) (0.0001) (0.0000) (0.0000)

Watercost
0.2651 *** 0.7139 *** 0.2181 *** 0.1384 *** 0.0923 ***
(0.0374) (0.0717) (0.0218) (0.0223) (0.0217)

Wellnum
−0.0008 0.0005 0.0004 0.0004 0.0005
(0.0010) (0.0028) (0.0005) (0.0007) (0.0009)

Topography 0.0553 ** 0.2230 *** 0.1021 *** 0.0548 ** 0.0109
(0.0212) (0.0595) (0.0225) (0.0215) (0.0178)

Fertility −0.0968 *** −0.0181 0.0340 * 0.0187 0.0261
(0.0233) (0.0483) (0.0176) (0.0220) (0.0173)

Acreage 0.0103 *** 0.0036 −0.0029 −0.0014 −0.0024
(0.0035) (0.0082) (0.0024) (0.0032) (0.0016)

Tenure
−0.0001 0.0127* 0.0035 0.0059 * 0.0035
(0.0026) (0.0069) (0.0028) (0.0030) (0.0026)

Constant
0.2979 ** −1.7097 *** −0.8099 *** −0.8312 *** −0.3664 ***
(0.1294) (0.4695) (0.1753) (0.1646) (0.1263)

Year fixed effects Yes Yes Yes Yes Yes
Household fixed effects Yes Yes Yes Yes Yes

Obs. 1866 1866 1866 1866 1866
R2 0.7009 0.7165 0.6841 0.5540 0.4803

Robust standard errors in parentheses are adjusted for 50 clusters in villages. *, **, and *** denote significance at
the 10%, 5%, and 1% levels.

Table 5. Placebo test under the fictitious digital technology starting time.

Variables
WSI0 WSI WSI1 WSI2 WSI3

(1) (2) (3) (4) (5)

Digital*FakePost 0.0140 0.3318 0.1343 0.0826 0.0976
(0.1919) (0.2771) (0.0807) (0.0693) (0.0579)

Digital −0.5688 *** −1.1352 *** −0.3258 *** −0.2462 *** 0.0092
(0.1500) (0.2630) (0.1007) (0.0761) (0.0480)

FakePost
0.0862 0.8226 *** 0.3766 *** 0.2021 *** 0.1578 **

(0.0972) (0.2058) (0.0652) (0.0622) (0.0587)
Other control

variables Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes
Household fixed

effects Yes Yes Yes Yes Yes

Constant
0.2616 * −1.7346 *** −0.8352 *** −0.8097 *** −0.3537 ***
(0.1347) (0.4759) (0.1719) (0.1618) (0.1262)

Obs. 1866 1866 1866 1866 1866
R2 0.6984 0.7138 0.6849 0.5449 0.4705

Robust standard errors in parentheses are adjusted for 50 clusters in villages. *, **, and *** denote significance at
the 10%, 5% and 1% levels. The control variables are the same as in Table 4.
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Figure 3. The kernel density distribution of t value of the DID interaction term.

5.3. Robustness Checks

To further increase our confidence in the estimation, we conducted robustness checks
based on the benchmark DID model. We introduced two alternative measurements of WSI,
water consumption and irrigation efficiency to check whether digital supervision finally
leads to water consumption reduction or to water efficiency improvement.

‘Quantity’ denotes the average water consumption in plot i in the year t. It is the
quotient of irrigation water consumption (m3) in the last production season and the acreage
(mu) of plot i. Less irrigation water consumption indicates a better effect of WSI. ‘Efficiency’
is a variable that denotes water intensity (per acre) with the same potato yield. Specifically, it
is the quotient of potato yields (kg) in the last production season and of water consumption
(m3) of plot i. A higher value of this variable indicates that irrigation efficiency is also
higher because less water is used to produce the same number of potatoes.

Table 6 reports the estimates based on these two alternative measurements. As can be
seen in Column 1, farmers are affected by digital supervision and make great contributions
to the reduction in irrigation water consumption. Then, we discuss the effect of digital
supervision on irrigation efficiency improvement in Column 2. The result shows that
farmers in digital groundwater supervision pilot areas have a strong tendency to increase
their irrigation efficiency.

Table 6. The impact of the digital groundwater supervision pilot on water consumption and irrigation
efficiency.

Variables
Quantity Efficiency

(1) (2)

Digital*Post −19.2956 ** 3.9552 **
(7.6696) (1.5936)

Digital −21.9230 *** 2.7538 ***
(3.2542) (0.6849)

Post
0.5151 25.2854 ***

(5.6980) (1.1808)
Other control variables Yes Yes

Year fixed effects Yes Yes
Household fixed effects Yes Yes

Constant
81.6283 *** 12.6298 ***

(8.5239) (1.7127)
Observations 1866 1866

R2 0.8994 0.9772
Robust standard errors in parentheses are adjusted for 50 clusters in villages. **, and *** denote significance at the
5%, and 1% levels. The control variables are the same as in Table 4.
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5.4. Heterogeneous Analysis

Under the same digital supervision pilot implementation background, the WSI effects
of different individual groups may be heterogeneous. We conduct sub-sample regressions
to test the heterogeneous effects of the treatment. First, we divided the individuals into
two groups according to the level of village enforcement. We introduced ‘Punishment’, a
self-reported variable to reflect whether the village would impose punishment on farmers
if they did not participate in collective activities related to irrigation. The range of the
punishment level in the sample is 1 to 5. Here, 5 represents ‘surely will’, 4 ‘probably
will’, 3 ‘neutral’, 4 ‘probably not’, and 1 ‘definitely not.’ Panel A of Table 7 reports the
estimation results within different punishment level groups. According to the results, the
pilot has a significant negative effect on the water consumption of both the high punishment
group (‘Punishment’ = 4 or 5) and the low punishment group (‘Punishment’ = 1, 2 or 3).
Referring to the WSI technology adoption effect, the high punishment group is more
affected by digital technology, as compared to the low punishment group. The results in
Panel A indicate that public supervision or punishment is a source of variation of digital
supervision on improving WSI.

Second, we divided the individuals into two groups according to the level of village
cooperation. We introduced ‘Cooperation’, a self-reported variable to reflect whether the
villagers would help each other in irrigation and water conservancy construction. The range
of the cooperation level in the sample is 1 to 5. Here, 5 represents ‘surely will’, 4 ‘probably
will’, 3 ‘neutral’, 4 ‘probably not’, and 1 ‘definitely not’. The heterogeneous analysis results
of the cooperation are reported in Panel B of Table 7. For the high cooperation group
(‘Cooperation’ = 4 or 5), the digital groundwater supervision pilot significantly improves
farmers’ WSI behavior. However, the digital groundwater supervision pilot has little impact
on the WSI technology adoption behavior of the low cooperation group (‘Cooperation’ = 1,
2 or 3).

Third, we divided the individuals into two groups according to farmers’ access to
information. We introduced ‘Information’, a self-reported variable to reflect whether the
farmers would obtain information related to irrigation in a timely manner. The range of the
information unblocked level in the sample is 1 to 5. Here, 5 represents ‘surely will’, 4 ‘prob-
ably will’, 3 ‘neutral’, 4 ‘probably not’, and 1 ‘definitely not’. The heterogeneous analysis
results of information acquisition are reported in Panel C of Table 7. For the group with
sufficient irrigation information (‘Information’ = 4 or 5), the digital groundwater supervi-
sion pilot significantly improves farmers’ WSI behavior. However, the digital groundwater
supervision pilot has little impact on the WSI technology adoption behavior of the insuffi-
cient information group (‘Information’ = 1, 2 or 3). The results of the heterogeneity analysis
show that the WSI effect of the digital groundwater supervision pilot is more significant in
areas with strong collective punishment, high cooperation, and sufficient information.

5.5. Mechanisms

So far, our analysis is still unable to establish the exact causal mechanisms underlying
farmers’ WSI behavior changes. In this section, we examine several mechanisms through
which digital supervision may affect farmers’ adoption of WSI. We examine whether digital
supervision has a significant impact on the two core contents of the borewell ban policy,
namely, prohibiting the construction of borewells and clarifying the property right of
borewells. We separately test the mechanisms with potential variables related to borewells
regulation, such as the number of new irrigation borewells at the village level and the
clarification of borewells property right at the village level.

The results of the mechanisms are reported in Table 8. First, Columns 1 and 2 reveal
the borewells’ restriction effect of the digital groundwater supervision pilot of the village.
‘Newwell’ is a variable to reflect whether the number of borewells at the village level has
been restricted. ‘Newwell’ equals 1 if there were no newly constructed borewells in the
village after the pilot, and 0 if otherwise. As can be seen in Columns 1 and 2, it acts as a
significant mechanism of the benchmark, and the restriction of borewell construction would



Sustainability 2023, 15, 5310 11 of 15

improve farmers’ WSI behavior. In other words, the digital groundwater supervision pilot
encouraged farmers to adopt WSI technology and to reduce water consumption by limiting
the growth of the number of irrigation borewells.

Table 7. Heterogeneous analysis of the WSI impact of the digital groundwater supervision pilot.

Variables WSI3 Quantity WSI3 Quantity

Panel A
High Punishment Group Low Punishment Group

(1) (2) (3) (4)

Digital*Post 0.2228 ** −21.2325 *** 0.1081 −18.8319 **
(0.1044) (7.6674) (0.1281) (7.9114)

Digital −0.1353 −34.9382 *** 0.0825 −22.3886 ***
(0.1210) (7.5675) (0.0983) (3.8565)

Post
0.1616 ** 2.5915 0.2043 * −3.2520
(0.0642) (4.6788) (0.1025) (7.1493)

Other control variables Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Household fixed effects Yes Yes Yes Yes

Constant
−0.4817 ** 79.7056 *** −0.2493 82.4708 ***

(0.1766) (11.3954) (0.1559) (10.0658)
Obs. 1066 1066 800 800
R2 0.4572 0.9161 0.5320 0.8872

Panel B
High Cooperation Group Low Cooperation Group

(5) (6) (7) (8)

Digital*Post 0.2078 * −20.9208 * 0.1150 −17.6754 **
(0.1061) (10.6556) (0.1460) (8.1555)

Digital −0.0210 −22.1850 *** 0.1548 −25.4157 ***
(0.0721) (5.7670) (0.0930) (3.6708)

Post
0.1724 ** −0.6611 0.2292 * 2.3854
(0.0768) (9.9322) (0.1244) (6.4508)

Other control variables Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Household fixed effects Yes Yes Yes Yes

Constant
−0.3096 *** 90.3341 *** −0.2817 71.6653 ***

(0.1078) (9.8376) (0.2126) (11.5495)
Obs. 958 958 908 908
R2 0.4666 0.8866 0.5132 0.9197

Panel C
Sufficient Information Group Insufficient Information Group
(9) (10) (11) (12)

Digital*Post 0.3663 ** −22.1561 * 0.0663 −18.2599 **
(0.1519) (12.5197) (0.1047) (6.7795)

Digital −0.3071** −19.0856 *** 0.0069 −24.1735 ***
(0.1276) (6.4251) (0.0546) (3.1940)

Post
0.2968 *** −6.5418 0.1924 ** 3.1614
(0.0915) (12.2476) (0.0768) (4.6324)

Other control variables Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Household fixed effects Yes Yes Yes Yes

Constant
−0.6693 ** 70.1884 *** −0.2684 ** 82.2472 ***

(0.2555) (15.4699) (0.1314) (8.2730)
Obs. 513 513 1353 1353
R2 0.5894 0.9038 0.4950 0.9055

Robust standard errors in parentheses are adjusted for 50 clusters in villages. *, **, and *** denote significance at
the 10%, 5%, and 1% levels. The control variables are the same as in Table 4.
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Table 8. Mechanism tests of the WSI impact of the digital groundwater supervision pilot.

Variables
WSI3 Quantity WSI3 Quantity

(1) (2) (3) (4)

Newwell*Digital*Post 0.1984 *** −1.4943 **
(0.0212) (0.6021)

Newwell
−0.0035 1.1657 **
(0.0103) (0.4823)

Property*Digital*Post 0.0717 * −0.8502 *
(0.0353) (0.5006)

Property −0.0061 0.6649
(0.0163) (0.7093)

Digital*Post 0.1016 −19.1596 ** 0.0981 −18.8687 **
(0.1076) (7.5492) (0.1066) (7.5401)

Digital 0.0201 −21.6044 *** −0.0021 −21.6325 ***
(0.0457) (3.2807) (0.0450) (3.3684)

Post
0.2121 ** 0.4439 0.2233 ** 0.3440
(0.0804) (5.6466) (0.0828) (5.7310)

Other control variables Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Household fixed effects Yes Yes Yes Yes

Constant
−0.3536 ** 81.7931 *** −0.3142 ** 80.5133 ***

(0.1321) (8.5056) (0.1305) (8.7654)
Obs. 1866 1866 1866 1866
R2 0.5121 0.9002 0.4876 0.8995

Robust standard errors in parentheses are clustered at the village level. *, **, and *** denote significance at the
10%, 5%, and 1% levels. The control variables are the same as in Table 4.

Second, Columns 3 and 4 present the mechanisms of borewell property right clarifica-
tion in the water-saving effects of digital supervision. ‘Property’ is a variable to reflect the
property right of borewells. Here, 3 represents ‘private borewell’, 2 ‘shared borewell’, and 1
‘collective borewell.’ The estimation results in Column 3 show that the clarification of the
borewell property right acts as a mechanism for the positive effect of digital supervision
on farmers’ adoption of WSI technology. In Column 4, the coefficient of the interaction
of property right and ATE is negatively significant, indicating that the clarification of
borewell property rights is the mechanism of digital supervision affecting farmers’ water
consumption reduction.

6. Discussion

There is a major impetus for digital agriculture development around the world. Much
is expected from the development of sophisticated digital technology to improve the eco-
nomic efficiency of water usage or allocation. While there are ongoing academic debates on
the role of strengthening regulation in promoting agricultural water conservation, seldom
has previous research systematically studied the impact of introducing a groundwater
regulation policy with digital supervision technology.

It has been the purpose of this paper to introduce the difference-in-differences ap-
proach for the policy evaluation of digital supervision technology in groundwater regula-
tion, as well as the water-saving behavior of farmers. We focus on the outcomes of digital
supervision in North China by analyzing the farmers’ adoption of WSI technology. We find
that the digital groundwater supervision pilot can lead to farmers’ water-saving behavior,
and that the outcomes are heterogeneous in different groups with different social norms
or social cultures. Sources of variation tests show that the benchmark results in this paper
are mainly driven by farmers in villages with strong collective punishment, high collective
cooperation, and sufficient information. Thus, digital supervision policies designed to
encourage WSI technology adoption should also pay attention to those norm-based inter-
ventions. The government can play an important role in providing message incentives for
farmers in areas where information friction exists.
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Moreover, the implementation of the digital groundwater supervision pilot leads to
the reduction in water consumption and to the improvement of irrigation efficiency. While
many important aspects of the problem (such as alternative variables, uncertainty, and
political factors) have been ignored, the analysis results seem to be quite robust. We also
show that the impact of digital groundwater supervision is mostly caused through factors
that come from the contents of the borewell ban policy, such as restrictions on the growth
of the number of borewells and clarification of the borewells property right. This result is
consistent with the discussion on the effect of water rights [34] or property rights [35] on
irrigation resource conservation in the existing literature.

There have been many studies on the factors that determine farmers’ water-saving
behaviors in irrigation, such as external climatic conditions [36], perceptions of potential
benefits or risks of adoption [37], and farmers’ attributes, such as education, gender,
economic incentives shaped by pricing [38–40], and governance [41]. The effect of digital
technology on farmers’ water-saving behavior has not been fully discussed, partly because
digital technology is still very new in agriculture for resource management [42]. This study
provides empirical evidence for the water conservation effect of digital technology used
in the groundwater supervision system. While the application in this paper is specific to
groundwater depletion, similar theoretical and empirical solutions may also exist to stream
depletion [36], water pollution [43], and carbon market [44].

We hope that the heterogeneous analysis of social norms will contribute to the conver-
sation between rational choice theorists and the literature on pro-social behavior theory
in behavioral economics, according to which social actors make decisions through auto-
matic processes informed by values and beliefs as much as through rational process [31].
Additionally, in the context of social networks, future studies could examine the effect of
reputation incentives rather than collective punishment on farmers’ pro-social behavior.

Although this study has analyzed the causal effect of digital groundwater supervision
on farmers’ WSI behavior and detected mechanisms in detail, there are still certain limi-
tations in this study. Due to the constraints of the micro survey data, we are not able to
observe the effect of the digital groundwater supervision pilot in the last five years. The
three-round survey data also limits us in the investigation of the long-term effect of the
pilot by using dynamic models. Future studies are expected to provide more evidence
about the impact of digital agriculture in other forms or from other regions.

7. Conclusions

To conclude, we found that digital supervision leads to farmers’ behavior in adopting
WSI technology, reducing water consumption, and improving irrigation efficiency, thus
achieving its goal to save irrigation water in agriculture. Our estimates are relevant to
ongoing water policy discussions. However, many experiences in developing countries
have proved that WSI technology promotion does not necessarily lead to irrigation effi-
ciency. Farmers’ education level and whether they can use the advanced facilities correctly
also affect irrigation efficiency. The adoption of techniques to improve water productivity
will, therefore, require an enabling policy and an institutional environment that aligns the
incentives of producers, resource managers, and society, and that provides a mechanism
for dealing with trade-offs. Further evaluations of water quantity and water efficiency
will lead to a deeper understanding of the problems of water-related policies and digital
technology applications in groundwater regulation.
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