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Abstract: This study aimed to investigate the seasonal and spatial variations in water quality parame-
ters and determine the main contamination sources in the Shari-Goyain River, Bangladesh. Therefore,
surface water was sampled monthly from six sampling sites, where six water quality parameters were
evaluated. Data were analyzed by applying the Canadian Council of Ministers of the Environment
(CCME) water quality index (WQI) and multivariate statistical methods. The results reveals that most
of the examined water quality parameters crossed the acceptable range, and significant variations
were observed spatiotemporally (p < 0.05). Based on the CCME WQI value, the water quality of
the river is classified as poor to marginal with a score range between 33.40 and 51.30. This range of
values demonstrates that the river’s water quality is far from desirable for aquatic life and that it is
being impacted and deteriorated by external drivers. Principal component analysis (PCA) retained
two principal components (Factors 1 and 2), explaining about 79.17% of the total variance in the
studied parameters and identified acidic pollution sources. Cluster analysis also reveals relative
differences in water quality throughout sites and seasons, which supported the CCME WQI and
PCA. Finally, Kruskal-Wallis one-way analysis of variance by ranks has identified coal mine drainage
(CMD) as the main pollutant source for the Shari-Goyain River. In order to mitigate the CMD impact
on land and water, different nature-based solutions are proposed, particularly passive mine water
treatment approaches through constructed wetlands that could also mitigate the transboundary
waters problem.

Keywords: riverine water; water quality; coal mine drainage; multivariate statistics

1. Introduction

Freshwater wetlands like rivers, ponds, lakes, etc. are the main inland water resources
that meet the day-to-day demand for water supply for industrial, agricultural, and domes-
tic purposes in many countries [1,2]. However, these limited resources of waters are in
danger due to pollution, mostly caused by several manmade factors. Mining operations,
industrial manufacturing, power generation, agricultural activities, and other manmade
factors contribute to the pollution of water resources which ultimately affects human
civilization [3–5]. Coal mining is the biggest challenge because of its involvement in local,
regional, and global water pollution [6]. Underground and open-cut mining operations are
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the widely used methods for coal mining that cause noticeable environmental problems
that alter the physicochemical and biological variables of the mining areas and the sur-
rounding environment [7]. Discharges of polluted water from mining activities deteriorate
water quality through mixing with not only surface water but also with the groundwater
table [8–10]; thus they have a far-reaching impacts on human society and ecological units.
Acid mine drainage is mostly responsible for the decline in biodiversity and deterioration
of water quality in the rivers at coal mining regions which make the water loaded with
harmful trace metals [11–13]. Moreover, acid mine drainage leads to decreased pH and
redox conditions that mobilize the bound heavy and trace metals from soils and rivers [14].
The noxious coal mine effluents damage the flora and fauna of the ecosystem and thus have
significant negative impacts on the primary productivity, water quality, and diversity of
fish in the river riverine fishes [15]. Notably, coal mine drainage (CMD) from upstream via
several transboundary rivers including the Jadukata, the Someshwari, and the Shari-Goyain
contributes to water pollution in the haor basin of northeastern Bangladesh [16,17].

There are several instances of massive fish kills in the Shari-Goyain River due to
coal mining activities [18]. Its upstream segment in India is known as the Myntdu River,
which originates at Mihmyntdu [19]. It enters Bangladesh through Jaintiapur upazila
(sub-district) in Sylhet district and flows through Jaintiapur, Gowainghat, Sylhet Sadar,
and Chhatak upazilas of Sylhet district. It meets the Surma River near Chhatak upazila of
Sunamganj district [17,20]. Similar to other rivers in Bangladesh, it contributes significantly
to the local population’s economy by providing domestic water, creating employment,
reducing poverty, providing animal protein, etc. [21,22]. Moreover, several families actively
participate in fishing, ensuring a year-round source of income [17,23]. It is a flashy hilly
river, and thus transports a huge amount of sediments, coarse sands, and boulders from
upstream [20,24]. This river sometimes also transports a large amount of abandoned coals
with the drainage coming from the upstream catchment areas of Meghalaya in India [18].
Thousands of people depend on sand mining [20,25] and coal dust collection from this
river bed for their livelihoods [18]. Several significant mining projects are now underway
in Meghalaya, including strip mines for coal extraction and open-pit, hard rock mines.
These coal mining activities are done without environmental consideration thus adversely
affect the water resources of the Jaintia Hills district of Meghalaya [19]. The polluted
acid mine drainage finds its way into the Myntdu River and flows downstream to the
Shari-Goyain River. The toxic pollutants also contaminates the drinking water and fish,
leading to adverse health effects such as mental disorders, weakness, headaches, abdominal
cramps, diarrhea, and anemia in both the cattle and human. As a result, the medical
costs have increased, leading to a decline in the socio-economic status of the riverbank
dwellers who rely on the river’s resources. Thus, upstream polluted water possibly has a
potential impact on the fisheries’ resources of vast area of aquatic habitat in the Shari-Goyain
River [17,26]. In this setting, the issue becomes a transboundary resource problem with
an upstream–downstream dimension. Altogether, 54 transboundary rivers pass through
Bangladesh and India, all of which are components of the Ganga-Brahmaputra-Meghna
(basin’s drainage system. Bangladesh’s capacity to ensure the availability of food and
water relies heavily on the Padma, the Jamuna, and the Meghna Rivers and their associated
streams [27–29]. India as the upstream country has its prospect to use its geographic
position to gain an advantage in exploiting the water resources at its upper riparian
areas. However, the absence of transparent data and such worries over transboundary
rivers may lead to a more serious dispute between two normally cordial neighbours [29].
With a population of around 169 million, Bangladesh is heavily dependent on its fisheries
resources for food and livelihoods. India, with a population of 1.3 billion, is also increasingly
dependent on its fisheries resources. As a result, Bangladesh and India have been in a
race to exploit their shared waters for fisheries, often leading to competition on accessing
the same resources. Bangladesh and India have also competed in water management [27].
Bangladesh has consistently argued for greater water sharing and equitable allocation of
water resources, while India has opposed this, citing the need to protect its own interests.
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Both countries have invested heavily in water management solutions, such as irrigation
and flood control. In both countries pollution brought on by human activities is mentioned
but not thoroughly covered in all aspects. Additionally, pollution or water scarcity are not
portrayed as concerns for other nations [30]. To assess water quality, regular monitoring
and evaluation of the water resources are required. Furthermore, integrated management
of water resources including efficient water use, water conservation, and the protection of
aquatic ecosystems should be established. To avoid the difficulty of comparing different
water resources due to the varying characteristics used in the analysis, a mathematical
method to calculate a water quality index (WQI) has recently been proposed to evaluate
the quality of bodies of water [31]. Horton developed the first index in 1965, which had
ten factors including dissolved oxygen (DO), pH, coliforms, electrical conductivity (EC),
alkalinity, and chloride [32]. Several other water quality indices have been developed by
various scientists and organizations for the assessment of water quality.

In order to develop a way to communicate water quality issues to scientists, decision-
makers, and stakeholders, the Canadian Council of Ministers of the Environment (CCME)
created the water quality index (WQI) that are now widely used [33]. Similarly, the Na-
tional Sanitation Foundation (NSF) WQI also have both been utilized extensively around
the world [34]. The CCME WQI has several benefits over other techniques, including
adherence to various legal mandates and water uses, eligibility for water quality assess-
ment in particular locations, flexibility in the selection criteria, and acceptance of missing
data [32,35,36]. From a recent study it is revealed that water pollution is one of the major
problems in this river [23]. To the best of our knowledge, there is no published data to
date for evaluating the spatiotemporal changes in the Shari-Goyain River’s water qual-
ity, assessing the suitability of the river’s water, or identifying potential sources of water
contamination, all of which are critical for safeguarding the river’s ecological status. In
order to achieve sustainable benefits from this river, it is necessary to evaluate the current
situation and remain aware of what is occurring in various ecosystems throughout the
river. The local people are sensitive to ongoing ecological change over time [37]; thus,
the use of indigenous ecological information from local people can be an appropriate
approach for participatory and adaptive conservation resolutions of natural resources. For
this reason, scientists are now giving importance to the involvement of local people in
the development and conservation of the environment and biodiversity. Therefore, the
current study was conducted to evaluate the seasonal and spatial fluctuations of the river
water’s physicochemical parameters, to determine the variables and sources driving these
variations by using multivariate statistical methodologies and CCME WQI, and thus finally
identify the main cause of water pollution in the Shari-Goyain River according to local
people’s perceptions. Notably, this work is the first scientific assessment of coal mining
drainage-mediated water pollution in the Shari-Goyain River. The findings of the current
study are expected to provide new insights into the extent and sources of water pollution
in the Shari-Goyain River and thus to reinforce management decisions for the protection
and restoration of the river’s water quality.

2. Materials and Methods

The flowchart in Figure 1 provides an overview of the research methodology used in
the study.
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blue demonstrating a very high acid content. In a report in 2012, the Meghalaya State 
Contamination Control Board (MSPCB) identified acid effluents from coal mines as likely 
the primary source of water pollution in this region [40]. Meghalaya is currently home to 
a number of large mining projects, including open-pit hard rock mines and strip mines 
for coal production. However, while hard rock mines usually only pose dust problems, 
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ri-Goyain River in Bangladesh. In this river numerous cases of massive fish deaths have 
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This study was conducted from December 2018 to November 2019 in the Sha-
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downstream of the river viz., Lalakhal (S1), Sharighat (S2), Mukhtola (S3), Gowainghat (S4), 
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Figure 1. Flowchart of the research methodology.

2.1. Selection of Study Area

One of the main rivers in the Jaintia Hills district is the Myntdu River of Meghalaya.
Mihmyntdu, which is not far from the town of Jowai, is where the Myntdu River begins. Its
starting point is about 1420 m above the sea level. Umshariang, Lamu, and Lynriang Rivers
are its main tributaries. The two tributaries, Umshariang, which enters from the west, and
Lamu, which enters from the east, combine with the Myntdu River forming the tri-junction
of Leshka, which consists of three rivers. The Myntdu-Leshka Dam was built transversely
on this river. This river flows across the town of Jowai in the direction of Leshka, from
there to Borghat village and then gradually advances towards Bangladesh in its course,
and acquires the name Shari as it enters Bangladesh. The river is often described as the
guardian and protector of the inhabitants of the Jowai region. It is considered a blessing for
the people of the towns and villages that are nourished by its water [38]. The water of this
river is polluted day by day, and the main causes of water pollution include runoff from
agricultural lands, waste from residential activities, mining for coal and limestone, and
mining for other minerals [39]. As a result, the pH level of this river is low which poses a
serious threat to the waters and aquatic life [38]. Certain areas of the Myntdu River in the
West Jaintia Hills area have changed their color to a bright sky blue demonstrating a very
high acid content. In a report in 2012, the Meghalaya State Contamination Control Board
(MSPCB) identified acid effluents from coal mines as likely the primary source of water
pollution in this region [40]. Meghalaya is currently home to a number of large mining
projects, including open-pit hard rock mines and strip mines for coal production. However,
while hard rock mines usually only pose dust problems, coal mines emit polluted water,
soil, and occasionally sludge. Thus, the Meghalaya’s water supply in Jaintia Hills district
is negatively impacted by these coal mining activities [41]. The Myntdu River receives
polluted mine drainage, which finally flows to the Shari-Goyain River in Bangladesh. In
this river numerous cases of massive fish deaths have been reported [18].

This study was conducted from December 2018 to November 2019 in the Shari-Goyain
River. Six distant study sites were selected, covering both upstream and downstream of the
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river viz., Lalakhal (S1), Sharighat (S2), Mukhtola (S3), Gowainghat (S4), Jalurmukh (S5),
and Salutikar (S6) (Figure 2). This river is important for its rich biodiversity; however, its
fish production is continuously decreasing due to natural calamities, water pollution, and
other problems [17,23]. From its point of arrival into Bangladesh and its confluence with
the Surma River, there is a total of about 80 km [42]. The average daily recorded water
flow rate at the S2 site is about 126 m3/s, which represents about 5200 mm annual runoff
rate. This is a startlingly high flow rate, yet the catchment contains certain regions with
exceptionally high rainfall that, at their highest, can surpass the average annual rainfall
of 9000 mm. The average flow rate from November to March is 12 m3/s; however, the
dry season flows are substantially lower, with the average flow dropping to just 6 m3/s in
February, the driest month. During the wet months of May through August, the average
flow increases to 260 m3/s [42].
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(S5), and Salutikar (S6).
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2.2. Water Sampling and Measurement

A digital multi-sensor (YSI Multi-Sensor, model: Professional Plus, brand: YSI, origin:
USA) was utilized once a month to measure in situ physico-chemical variables such as
pH, EC, total dissolved solids (TDS), DO, and the temperature of the water in six study
sites with three replications. Additionally, a Secchi disk was used to measure the water
transparency. These samplings were done during 9:00 to 11:00 a.m. according to local time
of Bangladesh.

2.3. Calculation of CCME Water Quality Index

The CCME WQI model was developed from the British Colombia Water Quality Index
(BCWQI) by the Water Quality Guidelines Task Group of the CCME in 2001 and has been
used for evaluating the quality of surface water [31,43–45]. A committee created within
the CCME developed the WQI as a standardized approach [33,46,47] which can be used
for the sake of safeguarding aquatic life and evaluating the quality of the drinking water
by following the standards, as we did in Bangladesh [44,48,49]. As it is not a standardized
approach in Bangladesh, it was adopted following the methodology of Uddin et al. [44],
Serajuddin et al. [48], and Hasan et al. [49]. From one station to another, the parameters for
various measurements and sample techniques may vary. For at least four parameters, at
least four samples are necessary [50,51]. The mathematical calculation of CCME WQI has
been described below.

CCME − WQI = 100 −


√

F2
1 + F2

2 + F2
3
)

1.732


where F1 reflects the number of variables (failed variables) whose objectives are not fulfilled,
F2 is the proportion of individual tests (failed tests) whose objectives are not met, and F3
is the margin by which failed test values do not achieve their targets. After scaling the
normalized sum of the excursions from objectives to produce a range between 0 and 100,
an asymptotic function calculates F3. When an individual focus exceeds (or falls short of,
if the target is minimum) the objective, this is known as an “excursion” and is stated as
follows [33,46,52].

F1 =

(
Number o f f ailed variables
Total number o f variables

)
× 100

F2 =

(
Number o f f ailed tests
Total number o f tests

)
× 100

When a test value is less than the objective value, the excursion is calculated as follows:

Excursioni =

(
Failed test valuei

Objectivej

)
− 1

On the other hand, if the test value is more than the objective value, the excursion
value is determined as follows:

Excursioni =

(
Objectivej

Failed test valuei

)
− 1NSE =

∑n
n=i Excursioni

Number o f test
F3 =

(
NSE

0.01nse + 0.01

)
The computations yielded the following rankings for the CCME WQI: bad (0–44),

marginal (45–64), fair (65–79), good (80–94), and excellent (95–100) (Table 1) [33]. Numerous
studies have made water quality assessments based on the legal requirements of their
particular countries due to the CCME WQI’s success [32,35,44,53,54].
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Table 1. Rankings of CCME WQI values [33].

Status CCME WQI Value Description

Poor 0–44
The measurements frequently go far beyond the

recommended levels for water quality. Aquatic life is in
danger, degraded, or even extinct.

Marginal 45–64
The measurements frequently go above water quality

standards by a wide margin. Aquatic life is frequently in
danger or suffering.

Fair 65–79
The measurements occasionally and possibly significantly
exceed water quality standards. Although aquatic life is

protected, it may occasionally be in danger or compromised.

Good 80–94

The measurements almost never, and almost always by a
small margin, exceed water quality standards. The safety

and conservation of aquatic life are only slightly threatened
or harmed.

Excellent 95–100
The measurements never, or very seldom, go above the

recommended levels. There is no threat to or detriment to
aquatic life.

2.4. Questionnaire Design and Data Collection

Data (both qualitative and quantitative) regarding the local people’s perceptions about
the sources of water pollution in the Shari-Goyain River were collected from fishers, fish
traders, boatmen, businessmen, local leaders, and riverbank communities through focus
group discussions (FGDs), key informant interviews (KIIs), and personal interviews (PI).
First, six FGDs, each with 8–12 members and 12 KIIs, were performed at the study sites.
Based on the results of the FGDs and KIIs, a total of 11 sources of water pollution were
primarily noted and a questionnaire was developed to rank the pollution sources. In
developing the questionnaire, many questions concerning the causes of water pollution in
the Shari-Goyain River were considered. The questionnaire had two sections regarding
the demographic information of the respondents, and the causes of water pollution. The
respondents were asked to respond based on an 11-point scale, scaling the highest- to
lowest-ranked impacts on the Shari-Goyain River ecosystem. Based on the finalized
questionnaire, a total of 74 people were personally interviewed. People were asked to rank
the possible sources of water quality degradation and to give the respondents flexibility
when answering the questions.

2.5. Data Management and Analysis

Considering the four seasons, namely, pre-monsoon (March–May), monsoon (June–
August), post-monsoon (September–November), and winter (December–February), data
were analyzed seasonally. Water quality attributes were calculated through mean values
and standard deviation (SD) by using the Microsoft Excel. To identify possible relationships
among the six study sites and four seasons one-way analysis of variance (ANOVA), PCA,
and correlations were carried out by using the Statistical Package for Social Sciences (SPSS,
version 20). PCA was used on the collected data to identify fundamental interrelationships
amongst the parameters and to extort information about the correlation among variables
that were analyzed in the water samples [55,56]. Pearson’s correlation analysis was used
for the assessment of associations among the water quality parameters of the sampling sites.
A correlation coefficient value very near to 0 means that there was no linear relationship
between variables, and if the value is close to −1 and 1, it means that there was a strong
negative and positive relationship, correspondingly, between two variables for PCA [57].
However, the value of r < 0.50 with larger samples may have been highly statistically
significant at p < 0.01, which meant that a low strength of correlation was noted. Where
Kaiser–Meyer–Olkin (KMO) index and Bartlett’s sphericity tests were used, we were able to
factorize, check the normality, and efficiently justify the data. Values of correlation between
variables and those of the partial correlations were compared by KMO index. When the
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KMO index is close to 1, the PCA of the variables is suitable; but PCA is not applicable
when the KMO index is close to 0. Usually, for pleasing analysis, this KMO index should
be >0.5; thus, the KMO index for our study was satisfactory, as the value was 0.551 and the
null hypothesis was rejected (p < 0.05). Z-scale standardization with mean and variance
of zero and one was used, to minimize the variation in the variance of variables and to
regulate the inequality in the variable sizes and the measurement units [58,59]. Estimation
was done based on the correlation matrix of measured parameters, and the scores of PCA
were achieved from the standardized variables data. To maximize the variance of the
squared loadings, the varimax rotation was used. The number of factors was determined
based on the Kaiser’s condition [60]. Cluster analysis (CA) was used on the normalized
data based on squared Euclidean distances as a measure of similarity for investigating
similarity and dissimilarity in composition among sampling stations and seasons [61–63].
The proximity between two clusters is the increase in the squared error determined by
Ward’s method which is the most common method for classifying more perfect groups. For
testing every parameter, distributions were centered and decreased before clustering. The
clusters and their closeness with a deduction in the dimensionality of the main data are
illustrated in a dendrogram [64]. Finally, Kruskal-Wallis ANOVA by ranks was employed
to assess public perceptions about the major factors contributing to the deterioration of the
Shari-Goyain River’s water quality [26].

3. Results
3.1. Temporal and Spatial Variations in the Hydro-Chemical Parameters of River Water

The physicochemical parameters of the Shari-Goyain River water are found to fluctu-
ate greatly and, thus, often exceed or fall below the suitable limits for the survival of aquatic
flora and fauna (Tables 2 and 3). The mean value of water temperature was significantly
lowest (p < 0.05) in the winter (20.74 ± 1.81 ◦C) and the highest in the monsoon season
(28.93 ± 1.49 ◦C) (Table 2). Seasonally, the mean value of DO was found to fluctuate from
the minimum value of 5.25 ± 0.77 mg/L in monsoon season to the maximum value of
7.22 ± 0.94 mg/L in winter. Spatially, lower DO values were observed at stations down-
stream of the river (S4, S5, and S6). Temporally, the mean EC of water was significantly
higher (p < 0.05) in pre-monsoon and winter seasons than in monsoon and post-monsoon
seasons. Spatially, EC in S1 was significantly higher than in other sites, but no significant
difference was found between S1 and S2. Downstream, water EC shows a significant
(p < 0.05) reduction, whereas no significant difference was found in EC for S4, S5, and S6.
The average value of TDS was found to fluctuate from the minimum of 32.46 ± 7.95 ppm
in monsoon season to the maximum of 52.34 ± 11.38 ppm in winter. Water transparency
ranged from 65.11 ± 44.61 cm in post-monsoon season to 75.97 ± 58.87 cm in pre-monsoon
season and was significantly higher in the upstream sites (S1 and S2). The pH values in the
study sites varied a lot (3.87–7.70); the average pH value was acidic during the whole year,
but was highly acidic during the pre-monsoon season (3.87–6.61). Spatially, significantly
lower pH values were recorded at two sites, S1 and S2, upstream of the river which was
very close to the CMD discharge points upstream of the same river, the Meghalaya in India.

3.2. CCME WQI

The CCME WQI value of 33.40 at site 1 and 39.31 at site 2 indicated “poor” water
quality, while the CCME WQI value of 48.63, 47.28, 51.30, and 45.91 at sites 3, 4, 5, and 6,
respectively, indicated “marginal” water quality (Table 4). In this study, the river water
quality indicates that the river is affected by water pollution. Due to the wastewater
discharged during coal mining, the water quality of the two upstream sites is extremely
contaminated and presents high danger for aquatic life. Calculations revealed that several
anthropogenic pollutant sources may be similarly responsible for water pollution in other
monitoring sites.
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Table 2. Temporal fluctuation of water quality parameters in the Shari-Goyain River.

Parameters

Seasons

Winter Pre-Monsoon Monsoon Post-Monsoon

Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD

Temp. (◦C) 17.90–26.20 20.74 ± 1.81 c 24.20–29.90 27.46 ± 1.20 b 25.70–32.50 28.93 ± 1.49 a 23.60–31.80 27.26 ± 2.00 b

DO (mg/L) 4.38–8.56 7.22 ± 0.94 a 3.53–7.72 5.96 ± 1.03 b 3.14–7.08 5.25 ± 0.77 c 3.77–7.15 5.67 ± 0.89 b,c

EC (µS/cm) 42.3–137.4 94.1 ± 21.3 a 46.2–154.0 94.1 ± 31.5 a 42.3–119.7 67.1 ± 19.0 b 49.6–92.4 68.6 ± 12.3 b

TDS (ppm) 29–76 52 ± 11 a 22–76 45 ± 16 b 23–59 33 ± 8 c 23–47 34 ± 7 c

Trans. (cm) 22–165 69.65 ± 37.97 a,b 25–250 75.97 ± 58.87 a 30.00–245.00 65.55 ± 43.63 c 30–203 65 ± 44.50 b,c

pH 4.28–7.70 6.01 ± 0.90 3.87–6.61 5.76 ± 0.91 5.07–6.96 6.50 ± 0.29 5.28–6.81 6.24 ± 0.38

Values for each variable with a different superscript letter indicate statistically significant differences at p < 0.05.
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Table 3. Spatial fluctuation of water quality parameters in the Shari-Goyain River.

Sites
Water Quality Parameters (Mean ± SD)

Temperature (◦C) DO (mg/L) EC (µS/cm) TDS (ppm) Transparency (cm) pH

S1 24.63 ± 3.19 6.27 ± 0.98 104 ± 27 a 53.44 ± 14.53 a 144.98 ± 45.99 a 5.44 ± 0.89 a

S2 25.96 ± 3.88 6.24 ± 1.19 97 ± 26 a,b 48.19 ± 13.68 a,b 88.03 ± 49.00 a,b 5.72 ± 0.85 b

S3 25.89 ± 3.48 6.38 ± 1.16 82 ± 23 b,c 40.38 ± 12.02 b,c 45.96 ± 11.05 b 6.04 ± 0.55 c

S4 26.45 ± 3.38 5.85 ± 1.10 73 ± 15 c,d 37.41 ± 9.77 c,d,e 45.95 ± 9.82 c 6.45 ± 0.28 c

S5 26.91 ± 3.40 5.69 ± 1.24 64 ± 14 d 32.13 ± 7.93 d,e 44.33 ± 7.27 c 6.55 ± 0.28 c

S6 26.75 ± 3.80 5.72 ± 1.21 66 ± 18 d 33.43 ± 10.01 c,d,e 45.18 ± 6.78 c 6.57 ± 0.39 c

Reference
value

20–30
[65]

4–6
[66]

100–2000
[67]

<600
[68]

30–40
[69]

6.5–8.5
[65,70]

Values for each variable with a different superscript letter reflect statistical variations across sites at p < 0.05.

Table 4. Water quality index results.

Study Site CCME WQI Score Water Quality Status

Site 1 33.40 Poor
Site 2 39.31 Poor
Site 3 48.63 Marginal
Site 4 47.28 Marginal
Site 5 51.30 Marginal
Site 6 45.91 Marginal

3.3. Relations among Water Quality Parameters and Possible Source Identification

Based on Pearson’s correlation coefficients (r), Table 5 displays the correlation ma-
trix of the examined water quality parameters. A highly significant positive correlation
(at 0.01 significance level) was found between EC-TDS (r = 0.945), DO-TDS (r = 0.544),
EC-transparency (r = 0.514), transparency-TDS (r = 0.493), DO-EC (r = 0.422), and pH-
temperature (r = 0.246). Furthermore, a significant positive relationship was observed
between DO and transparency at the significance level of 0.05. The findings made it
quite evident that there was a highly significant (correlation is significant at the 0.01 level)
negative correlation between temperature-DO (r = –0.756), pH-EC (r = –0.607), pH-TDS
(r = –0.599), temperature-TDS (r = –0.560), pH-transparency (r = –0.538), pH-DO (r = –0.414),
and temperature-EC (r = –0.391). Additionally, temperature and transparency showed a
significant positive linear relationship at a significance level of 0.05. The very strong and
significant correlations showed that the parameters had come from similar sources.

Table 5. Correlation matrix of water quality parameters based on Pearson’s correlation coefficients.

Temperature DO EC TDS pH Transparency

Temperature 1
DO –0.75 ** 1
EC –0.39 ** 0.42 ** 1

TDS –0.56 ** 0.54 ** 0.94 ** 1
pH 0.24 ** –0.41 ** –0.60 ** –0.59 ** 1

Transparency –0.15 * 0.14 * 0.51 ** 0.49 ** –0.53 ** 1
** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (two-tailed).

To investigate the underlying correlations between the water quality variables of all
monitoring sites as well as to determine their characteristics, a PCA based on the correlation
matrix was performed. The scree plot (Figure 3) reveals the sorted Eigen values as a function
of the PC number in descending order. After the second Eigen value, the slope changes
dramatically and two components are retained (Figure 3). Therefore, the PCA of the total
dataset retained two principal components (factors 1 and 2) based on the Eigen values
greater than one, which explained about 79.17% of the total variance in the studied water
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quality parameters (Table 6). The first factor (PC1) contributed 58.46% of the total variance
because of strong positive loadings of pH, EC, and TDS, and a strong negative loading
of transparency. This phenomenon can be attributed to the presence of acidic runoff and
contaminants from various sources. The second factor (PC2) explains 20.71% of the total
variance. It had a strong positive loading on DO, a strong negative loading on temperature,
a moderate positive loading on TDS, and a poor positive loading on EC, which could be
attributable to natural and climatic drivers of the river water. Overall, these PCA analyses
revealed the potential sources of water contamination in the Shari-Goyain River water. This
contamination is the result of both natural and manmade sources.
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Table 6. Loadings of experimental variables by principal component analysis for the whole dataset.

Sl. So. Variables

Factors

Factor 1 (PC1)
Anthropogenic Acidic Factor

Factor 2 (PC2)
Natural Factor

01 Temperature (◦C) –0.126 –0.916

02 DO (mg/L) 0.191 0.898
03 EC (µS/cm) 0.825 0.374
04 TDS (ppm) 0.765 0.534
05 Transparency (cm) –0.789 –0.208
06 pH 0.831 –0.077

Eigen value 3.508 1.243
Percentage of variance explained 58.46 20.71

Cumulative % variance 58.46 79.17

3.4. Cluster Analysis Based on Spatial and Temporal Variations in River Water Quality

Spatial and temporal similarities and dissimilarities of water quality parameters were
grouped using the CA method. Figure 4 displays the dendrograms of water quality
parameters in seasons and stations, respectively, derived by Ward’s method during the
study period. Temporally, all four seasons formed two groups based on the CA results. The
first cluster included two seasons (winter and pre-monsoon) and the second cluster also
comprised another two seasons (monsoon and post-monsoon) (Figure 4A). Monsoon and
post-monsoon seasons were grouped into a single cluster, which may be related to the effects
of intense rainfall, which may have diluted the pollutants’ concentrations and thoroughly
distributed them along the river’s downstream reaches. Spatially, the sample sites were
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found to be clustered into two primary groups according to the CA results (Figure 4B),
indicating that the water pollutants in each group came from comparable anthropogenic
sources and that the sampling sites within each group have similar characteristics. Here,
cluster one is composed of stations S1 and S2, which displayed similar quality attributes
that correspond to higher pollution loads compared to the other cluster. Stations S1 and
S2 were located upstream of the Shari-Goyain River in the Bangladesh section, whereas
S1 was situated downstream of the coal-contaminated wastewater discharge points of the
Myntdu River in Meghalaya, India. Cluster two is composed of stations S3, S4, S5, and S6.
Cluster two corresponds to moderate contaminations as upstream pollutants were diluted
with the water from the Piyain, the Kapna, and their tributaries.

3.5. People’s Perceptions about the Sources of Water Pollution

The main sources of water pollution were underscored by the respondents (Table 7).
Kruskal-Wallis one-way ANOVA by ranks was used to accumulate the respondents’ per-
ceptions about the major sources of water pollutants in the Shari-Goyain River. People
were asked to rank the possible sources of water quality degradation in a numbering
system ranging from 1 to 11, demonstrating the highest- to lowest-graded impacts on the
Shari-Goyain River ecosystem, respectively. According to the people’s perception, the
main cause of water pollution in the river was coal mine drainage, followed by industrial
run-off, sewage from households, agricultural run-off, sewage from markets, poisoning
from fishing, blast fishing using explosives upstream, stone crushing waste, navigation,
tourism, and sand mining (Table 7). Notably, there was a statistically significant difference
between each of the sources that the respondents recognized and ranked. According to the
local people’s perception, the Shari-Goyain River receives a high load of CMD 2–3 times a
year in the pre-monsoon season, especially during April and May, and it receives a lower
amount of effluents throughout the rest of the year. During that period, mass mortalities
of fish and other aquatic organisms were observed in the river. Highly acidic pH might
be the main factor there. In the pre-monsoon season, pH is reduced up to 3.87 (Table 2).
Although mortality was mainly found in pre-monsoon season, the residents of S1 and S2
explained that mortality was also observed in December (winter) and is associated with
sudden rainfall.

3.6. Mitigation of the Transboundary Water Management Problem: Passive Treatment for Acid
Mine Drainage as a Nature-Based Solution

An outline of potential passive treatment approaches has been constructed based
on the previous literature (Figure 5). Constructed wetlands, vertical flow wetlands, and
bioreactors are a few examples of biological passive treatment methods that mostly rely
on bacterial activity and may incorporate organic matter to promote microbial sulfate
reduction and adsorb pollutants. Limestone and other alkalinity-producing minerals are
brought into direct contact with AMD (direct treatment), or with freshwater that is a step
upstream of the AMD, using geochemical systems. The chemistry and circumstances of
AMD must be considered before choosing an appropriate treatment method [71]. Results
from several passive treatment approaches were combined into a thorough USBM (U.S.
Bureau of Mines) publication [72], which illustrated a design decision tree that classified
polluted mine waters into chemical classes based primarily on alkalinity and acidity, and
secondarily on metal contaminants [73]. The design decision tree also identified the passive
treatment technologies that were most suitable for the specific water chemistry conditions
(Figure 5). This distinction allowed later researchers and designers to better concentrate on
important geochemical demands by explaining a large portion of the varied performance of
current systems. Numerous scholars have since adopted and changed the design decision
tree [71,73,74].
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Figure 4. Dendrogram based on hierarchical clustering (wards method) for seasons (A) and for six
sites (B).
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Table 7. Results of Kruskal-Wallis test for ranking the sources of water pollution.

Sl. No. Sources of Water Pollution Mean Rank Position

1 Coal mine drainage 37.5 A
2 Industrial run-off 177.5 B
3 Sewage from households 233.5 C
4 Agricultural run-off 318.5 D
5 Sewage from markets 408.5 E
6 Poisoning from fishing 469.5 F
7 Blast fishing using explosives 516.5 G
8 Stone crushing waste 535.5 H
9 Navigation 582.5 I
10 Tourism 588.5 J
11 Sand mining 614.5 K

Chi-square 494.449
Degree of freedom 10

Asymptotic significance 0.000
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4. Discussion

A statistically significant variation (p < 0.05) was found in the physicochemical pa-
rameters among the different study sites and seasons. The water temperature causes
substantial environmental effects by influencing the chemical, physical, and biological
parameters[75]. It appeared that the mean temperature in all sampling sites and seasons
was within the acceptable limit (20–30 ◦C) according to Bangladesh’s Environmental Con-
servation Rules [76]. In the Shitalakhya River, average temperature values throughout the
pre-monsoon, monsoon, and post-monsoon seasons were 28.00–28.15 ◦C, 30.30–30.65 ◦C,
and 24.80–24.97 ◦C, respectively, which are relatively similar with the present study [77].
Kumari et al. [78] found that the solubility of ambient DO in river water decreases with
the increase in water temperature, which supports the present study. The concentration
of DO is a critical factor in keeping aquatic habitats in balance. It is a primary factor in
determining the quality of water supplies. The river’s flowing water has a concentration
of roughly 10 mg/L [79]. However, the findings of the present investigation reveal that
the DO readings were within the permitted level (≥5 mg/L) for fisheries’ production [76].
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According to a comparable guideline for riverine fishes, warm-water adult fishes should be
protected at DO concentrations above 5.5 mg/L, or above 6 mg/L for other life stages [80].
Discolored, turbid, or exceptionally clear water indicates CMD pollution [81]. Because
there are so many iron hydroxide particles floating, water can sometimes have a distinctive
yellowish-reddish-brown color. The turbidity of the CMD water generally decreases down-
stream as the iron and aluminum flocculate and salts precipitate with decreasing pH values.
As a result, despite an unsuitable environment for aquatic organisms in acidic waters, it
could also be exceptionally clear in cases of low suspended matters, and thus may give the
wrong impression of being of good quality from visual observation [81]. This phenomenon
was also observed in the Shari-Goyain River during coal mining flushes.

Generally, pH is the indicator of the acidic or alkaline status of water. The standard
value for any purpose in terms of pH is 6.5–8.5 [76]. According to the U.S. Environmental
Protection Agency (EPA) [82], the suitable range of pH is 6.5–9.0 for freshwater aquatic life.
The most widely used indicator of CMD pollution is pH [83,84]. A possible reason for the
high acidity in the Shari-Goyain River is the CMD that comes from upstream of the Shari-
Goyain River. Gogoi & Saikia [84] studied water quality parameters concerning CMD at the
middle reaches of the Dikhow River in Assam, and found a pH of 5.53 ± 0.25 from April to
July when the river frequently comes into contact with the CMD [84]. Dave & Tipre [81]
correlated CMD waters with low levels of pH (<5.5) which supports the present study. In
Meghalaya, several devastating coal mining activities undertaken without environmental
consideration have adversely affected the water resources of the Jaintia Hills district of
Meghalaya, leading to streams with a very low pH (usually 3–5) [41]. Another study shows
that the bodies of water in the mining areas of Meghalaya have been adversely affected by
the contamination of acid mine drainage originating from coal mining operations. Low pH
(≤4.0), and low dissolved oxygen associated with coal would have resulted in the decline
or complete loss of fish fauna in the wetlands of the coal mining areas [85]. However,
polluted acid mine drainage finds its way into the Myntdu River and flows downstream to
the Shari-Goyain River. A possible reason for the high acidity in the pre-monsoon season is
the CMD that comes from upstream of the Shari-Goyain River. Thus, upstream polluted
water has a direct impact on the fish and wildlife resources of vast areas of aquatic habitat
in the Shari-Goyain River of Bangladesh.

The relationships between water quality measures in a river environment offers crucial
information about potential sources and pathways of variables [77,86]. The very strong
and significant correlations showed that the parameters had come from similar anthro-
pogenic sources [77,86]. The Kaiser criterion [60] was used to assess how many principal
components (PCs) should be kept. The PC loadings were divided into three categories:
strong, moderate, and weak, with absolute loading values of >0.75, 0.75–0.50, and 0.50–0.30,
respectively [59]. An Eigen value gives a measure of the significance of the factor, and the
factors with the highest Eigen values are the most significant. Eigen values of 1 or greater
are considered significant [87]. Due to their poor importance, variables that have Eigen
values less than one were deleted [79]. The PCA of the total dataset retained two principal
components (factors 1 and 2) based on Eigen values greater than one, thus explaining about
79.17% of the total variance in the studied water quality parameters (Table 6). The first
factor (PC1) contributed 58.46% of the total variance, because of strong positive loadings
of pH, EC, and TDS, and a strong negative loading of transparency. This factor can be
attributed to acidic drainage pollution sources where these variables originated mainly
from CMD [84,88]. Ray & Dey [88] analyzed the CMD waters collected from northeastern
Assam in India and found the CMD has a low pH and high TDS. The dissolution of oxi-
dized pyritic minerals found in coal and waste rock is what leads to this extremely acidic
environment. In the presence of pyrite, the rate of oxidation increases, causing sulfate ions
to develop [88]. However, there is no substantial salinity indicated by the EC values. The
second factor (PC2) explains 20.71% of the total variance. It had strong positive loading on
DO, a strong negative loading on temperature, a moderate positive loading on TDS, and a
poor positive loading on EC, which could be attributable to natural and climatic drivers of



Sustainability 2023, 15, 5218 16 of 21

the river water. Overall, these PCA analyses identified the potential contamination sources
of Shari-Goyain River water. This contamination is a result of mixed sources, including
those of both natural and anthropogenic origins.

Temporally, the first cluster included two seasons (winter and pre-monsoon), and
the second cluster also comprised two seasons (monsoon and post-monsoon). Monsoon
and post-monsoon seasons were grouped into a single cluster, which may be related to
the effects of intense rainfall, which may have diluted the pollutants’ concentrations and
thoroughly distributed them along the river’s downstream reaches. Spatially, the sample
sites were found to be clustered into two primary groups according to the CA results,
indicating that the water pollutants in each group came from comparable anthropogenic
sources and that the sampling sites within each group have similar characteristics. Here,
cluster one is composed of stations S1 and S2, which displayed similar quality attributes
that correspond to higher pollution loads compared to the other cluster. Stations S1 and S2
were located upstream of the Shari-Goyain River, whereas S1 is situated downstream of the
coal-contaminated wastewater discharge points of the Myntdu River in Meghalaya, India.
Cluster two is composed of stations S3, S4, S5, and S6. Cluster two corresponds to moderate
contaminations as upstream pollutants were diluted with the water from the Piyain, the
Kapna, and their tributaries.

Scientists and policy specialists must study how local communities perceive envi-
ronmental pollution and its effects [89]. According to the people’s perception, the main
cause of water pollution in the river was coal mine drainage, which causes mass mortality
incidences in aquatic organisms. The community living around the Shari-Goyain River has
observed that the waterway accumulates a large quantity of CMD during the pre-monsoon
season, particularly in April and May, while a lesser amount of effluents are present during
the remaining months of the year. During the pre-monsoon season, CMD causes the water
to become rapidly polluted, leading to the deaths of a large number of fish and other
aquatic life[18]. Near the mining site, coal releases large quantities of heavy metals [90,91].
In addition to altering cellular biochemistry, developmental deformities, DNA damage,
and general chromosomal abnormalities, these metals are also extremely poisonous [91–93].
The detrimental effects of coal dust include modifications to benthic habitats, the removal
or modification of microhabitats for reproduction, and changes to the biological and bio-
geochemical cycles of aquatic resources and their populations [91,94,95]. International
researchers discovered numerous detrimental effects of CMD (in coal mining zones) in the
gills of Oncorhynchus mykiss, as well as juvenile and adult mortality in Pimephales promelas,
and a mutagenic effect in Oryzias latipes [91,96,97]. Eight research studies on the effects
of coal on aquatic systems have been conducted in Colombia [91]. These reported that
carboniferous sediments from ports are positively correlated with polycyclic aromatic
hydrocarbon derivatives [91,98]. Shi & He [89] examined the perception of residents in
some coal mining areas of Shaanxi Province in China, where the main causes of environ-
mental pollution were assessed. According to the public perception of the major factors
contributing to environmental pollution in mining regions, the majority of locals believe
that the environmental pollution in study areas is mostly brought on by industries associ-
ated with coal and is made worse by weak law enforcement, inefficient management in the
mining districts, and low levels of environmental awareness among the local populace [89].
Fish and other aquatic fauna of the Shari-Goyain River have been prone to injury and
death, resulting in an alarming decrease in the gross fish production in the river. CMD
pollution has destroyed the natural fish breeding grounds of the river, leading to the further
detriment of the aquatic ecosystem. In addition, these toxic pollutants have entered the
bodies of cattle and humans through drinking water and fish consumption, leading to
adverse health effects such as mental disorders, weakness, headaches, abdominal cramps,
diarrhea, and anemia. This has consequently increased medical costs, leading to a rapid
decrease in the socio-economic status of the people that depend on the riverine resources.
Therefore, it is essential to take proper steps to ensure the survival of the aquatic ecosystem
and the livelihoods of thousands of riverbank dwellers, especially fishers. Both active and
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passive methods can be used to treat acidic CMD [99]. However, passive treatment is the
most suitable method for treating modest to moderate AMD discharges, but regular main-
tenance, inspection, and possibly renovation are usually needed [71,73,74]. From the above
discussions, one potential low-cost option for mitigating the impacts of coal mine drainage
as the main source of pollution might be nature-based solutions, particularly passive mine
water treatment approaches through constructed wetlands [100]. Constructed wetlands
combine naturally occurring biogeochemical, geochemical, and physical processes to re-
mediate acid mine drainage [99], which was identified as the main threat to water quality
and fauna in the transboundary Shari-Goyain River. For this purpose, typical local plants
that can reduce the pollutant input into the water body using phytoremediation should be
identified [13]. Moreover, this will support the catchment ecosystem services. In this way,
the passive treatment system will support a low-cost solution for the transboundary water
quality problem.

5. Conclusions

The Shari-Goyain River is one of the primary sources of water consumption for
humans and cattle, domestic washing, agricultural irrigation, and industrial use which
is being polluting daily. To assess the spatial and seasonal variations of surface water
quality, CCME WQI and multivariate statistics including Pearson’s correlation, PCA, and
CA were used. The water quality of the river is far from desirable for aquatic life, and
it is being impacted and deteriorated by external drivers. This demonstrated that the
pollutants in the river catchment region coming from the upstream coal mining areas have
an impact on the river’s water. Finally, Kruskal-Wallis one-way ANOVA evaluated the
perceptions about the main causes of water contamination in the Shari-Goyain River and
found coal mine drainage to be the main pollutant source. Therefore, a few permanent
water quality monitoring stations should be installed throughout the river, coupled with
thorough ecological studies. Since the Shari-Goyain River crosses international borders, it
is imperative to take immediate action to develop a solution for protecting the environment
of this river by assembling a team of scholars and administrators from Bangladesh and
India. A potential low-cost option for mitigating the impacts of coal mine drainage might
be nature-based solutions, particularly passive mine water treatment approaches through
constructed wetlands.
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