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Abstract: In the context of “carbon peak, carbon neutrality”, it is important to explore the spatial
correlation network of carbon emission efficiency in the construction industry and its formation
mechanism to promote regional synergistic carbon emission reduction. This paper analyzes the
spatial correlation network of carbon emission efficiency in China’s construction industry and its
formation mechanism through the use of the global super-efficiency EBM model, social network
analysis, and QAP model. The results show that (1) the national construction industry’s overall
carbon emission efficiency is steadily increasing, with a spatial distribution pattern of “high in the
east and low in the west”. (2) The spatial correlation network shows a “core edge” pattern. Provinces
such as Jiangsu, Zhejiang, Shanghai, Tianjin, and Shandong are at the center of the network of carbon
emission efficiency in the construction industry, playing the role of “intermediary” and “bridge”. At
the same time, the spatial correlation network is divided into four plates: “bidirectional spillover
plate”, “main inflow plate”, “main outflow plate”, and “agent plate”. (3) Geographical proximity,
regional economic differences, and urbanization differences have significant positive effects on the
formation of a spatial correlation network. At the same time, the industrial agglomeration gap has a
significant negative impact on the formation of such a network, while energy-saving technology level
and labor productivity differences do not show any significant effect.

Keywords: carbon emission efficiency of the construction industry; spatial correlation network; social
network analysis; QAP model

1. Introduction

Global warming caused by greenhouse gas emissions is a global environmental prob-
lem that has become a significant threat to the survival of humans and other species [1].
CO2 is the most important greenhouse gas. To maintain the global temperature, it is neces-
sary to ensure that the global community effectively reduces CO2 emissions. With the rapid
development of China’s industrialization, urbanization, and modernization, China has
been experiencing a rapid growth trend. However, the development pattern of high energy
consumption and high emissions has led to substantial CO2 emissions. Currently, China
has surpassed the United States as the world’s largest CO2 emitter [2] and contributes
one-third of the world’s annual CO2 emissions [3,4]. In response, Chinese President Xi
Jinping pledged at the 2020 UN General Assembly and Climate Summit that China will
strive to peak carbon emissions by 2030 and achieve carbon neutrality by 2060 [5,6]. In this
context, “low carbon” production is a key to economic development and an effective way
to combat climate change, and effective reduction of carbon emissions has become a must
for achieving “carbon peak, carbon neutrality”.
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Previous studies have determined that the construction industry accounts for more
than 40% of the world’s energy consumption and 36% of the world’s CO2 emissions [7].
In China, the construction industry is a pillar industry of the national economy, but it is
also a resource-intensive industry [8], which is responsible for 30% of the national CO2
emissions [9]. As a result, to achieve “carbon peak, carbon neutral”, it is necessary to
control the CO2 emissions of the construction industry. In 2022, nine tasks were put
forward in the Chinese 14th Five-Year Development Plan of Construction Energy Efficiency
and Green Buildings, including improving the development quality of green buildings
and the energy efficiency of new buildings, which put forward new requirements for
the low-carbon development of the construction industry. Carbon emission efficiency is
one of the important indicators to assess the development of a low-carbon economy, an
essential element of which is the efficiency of production technology considering carbon
emission, and which can reflect the energy utilization efficiency of production activities.
Improving carbon emission efficiency is an important way to reduce carbon emissions in the
construction industry. With the continuous development of Internet information technology
and regional economic integration, the spatial connections of production factors in the
construction industry are getting closer and closer, and the carbon emission efficiency of the
construction industry among regions also shows significant spatial correlation. Therefore,
the analysis of the spatial correlation network structure of carbon emission efficiency in
China’s construction industry and its formation mechanism from the perspective of spatial
correlation is of great theoretical significance and application value for constructing a
cross-regional construction industry carbon emission efficiency synergistic enhancement
mechanism and formulating a construction industry carbon emission reduction policy that
takes into account target and regional construction industry in the context of high-quality
economic development.

2. Literature Review

Carbon emission efficiency can be divided into single-factor and full-factor types. The
former defines carbon emission efficiency as the ratio of GDP to carbon emissions for a
single input-output system, such as carbon emissions per unit of GDP, CO2 emissions per
unit of energy, or energy consumption per unit of GDP [10,11]. However, the single-factor
carbon emission efficiency does not take into account the linkages with other factors of
production, which does not reflect the potential technical efficiency and substitution effects
between energy sources and other factors of production. Therefore, the total factor carbon
emission efficiency of multi-input-output systems [12–14] has recently attracted much
attention from scholars.

Research on the carbon emission efficiency of the whole industry mainly focuses on
the improvement in the static or dynamic carbon emission efficiency calculation model [15]
and the exploration of the spatial characteristics of carbon emission efficiency. For ex-
ample, Ding et al. used a new methodology based on the Cross-Efficiency Model and
the Malmquist Productivity Index to measure the dynamic changes in carbon emissions
efficiency in 30 Chinese provinces [16]. Wang et al. employed the DDF model to estimate
the carbon emission efficiency in China, as well as the Moran index to reveal the spatial
clustering characteristics of carbon emission efficiency [17]. Wang et al. adopted the super-
efficiency SBM model to measure the carbon emission efficiency of 61 cities in the Yellow
River basin and took the empirical orthogonal function and spatial autoregressive model
into consideration to explore the spatial and temporal heterogeneity and spillover effects of
the new values of carbon emissions [18]. Meanwhile, scholars have also conducted in-depth
studies on carbon emission efficiency in different industries, which are mainly focused
on the measurement, spatiotemporal characteristics, and exploration of the influencing
factors of carbon emission efficiency in agriculture [19], industry (including 28 industrial
sectors [13], three major industries [17], and the whole of industry [20]), tourism [21],
transportation [12,22], and construction. In addition, a few scholars have started to explore
the spatial correlation of carbon emission efficiency [22–24].
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Regarding studies on carbon emission efficiency in the construction industry, most
Chinese and foreign scholars adopt a non-parametric method. Zhou et al. used a three-
stage DEA model that removes the effects of environmental factors and random errors to
measure the carbon emission efficiency of the construction industry in three major regions,
and found that the eastern region had the highest efficiency value, followed by the central
and western regions [25]. Zhang et al. adopted the super-efficient SBM model to calculate
the carbon emission efficiency of the construction industry in 30 provinces and combined
it with spatial autocorrelation, and found that the carbon emission efficiency showed a
spatial distribution characteristic of “high in the east and low in the west” [26]. Yang et al.
used a three-stage SBM model to obtain the ability to distinguish multiple effective decision
units while eliminating environmental factors. Their results showed that the east region
exhibits the highest carbon emission efficiency of the construction industry, followed by the
central and western regions [27]. Some other scholars have employed the non-radial DDF
model [28] and the global Malmquist index [29] to measure the carbon emission efficiency
of the construction industry from both static and dynamic aspects, respectively. In terms
of influencing factors exploration, Zhou et al. measured the carbon emission efficiency of
the construction industry by adopting a super-efficient SBM model, and then investigated
the internal drivers and cross-industry shock effects of carbon emission efficiency in the
construction industry via an industry GVAR model [30]. Zhou et al. constructed a multiple
mediating effects model to investigate the mechanism of green taxes on carbon emission
efficiency in the construction industry. In addition, a few studies have investigated the
spatial differences and correlations of regional carbon emission efficiency in the construction
industry by spatial econometric models [31]. For example, Hui et al. considered spatial
spillover effects and employed spatial autocorrelation and SDM models to study the spatial
and temporal characteristics and influencing factors of carbon emission efficiency in the
construction industry [32]. Du et al. studied the effect of spatial spillover effects on the
regional distribution pattern of carbon emission efficiency in the construction industry by
using a spatial Markov transfer probability matrix [33]. However, the spatial econometric
approach only considers geographical proximity or adjacency, and most of the data it
involves are attribute data, which cannot directly reflect the relationships among different
regions [34]. However, studies on the spatial correlation of carbon emission efficiency in
the construction industry of provinces across China have not been conducted yet.

In general, the literature mentioned above provides a significant reference value for this
study, but there is still room for further development in this field. Firstly, most of the existing
studies are based on radial DEA models and non-radial SBM models, but both models have
certain shortcomings. The former ignores non-radial relaxation variables, and the latter
does not take into account the original ratio between the target value and the actual value,
resulting in deviations in efficiency values [35]. Secondly, the carbon emission efficiency
of the construction industry is mainly concentrated in the same period of reference, and
there is no cross-period comparison of efficiency. Finally, at present, some scholars have
investigated the spatial spillover effect of the carbon emission efficiency of the construction
industry using the Moran index and SDM model, but this kind of research mainly focuses on
“attribute data”, neglects the investigation of “relationship data”, and lacks attention to the
space-time evolution and differences of the carbon emission efficiency of the construction
industry from the overall spatial perspective, which limits the analysis and research on the
spatial correlation effect of the carbon emission efficiency of the construction industry [36].
Based on this, this paper takes the construction industry of 30 provinces in China as the
research sample and takes the period of 2004–2020 as the research period. The global EBM
model considers the radial ratio between the target and actual values of inputs and outputs
and the non-radial slack variables of each input and output, which effectively overcomes
the shortcomings of the above two DEA models and the comparability of efficiency across
periods [35]. Secondly, this paper uses social network analysis to compensate for the
shortcomings of “attribute data” and investigates the spatial correlation of carbon emission
efficiency in China’s construction industry based on “relationship data”. Finally, this paper
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employs the QAP regression analysis to further explore the formation mechanism of the
spatial correlation network, with a view to providing reference and support for cross-
regional construction industry coordinated emission reduction activities and contributing
to achieving “carbon peak, carbon neutrality” in China.

The rest of this article is organized as follows. Section 2 provides a review of the rele-
vant literature. Section 3 introduces the analysis method of the spatial correlation network
of carbon emission efficiency of China’s construction industry. Section 4 summarizes the
results. Section 5 discusses the research results. Section 6 includes the research conclusions
and policy suggestions.

3. Materials and Methods
3.1. Global Super-Efficiency EBM Model

To effectively solve the problems of inter-period comparability and insufficient decision-
making units (DMUs), Pastor et al. [37] proposed a global approach. We further constructed
a global super-efficient EBM model [38] by referring to Tone et al. [39]. Suppose there are k
DUMs; decision unit k inputs I factors xi(i = 1, . . . , I) and produces N desired outputs
yn(n = 1, . . . , N) and Z non-desired outputs bz (z = 1, . . . , Z). Then the global set of
carbon emission efficiency possibilities PPS for the construction industry is as follows:

PPST


(xt, yt, bt)|

T
∑

i=1

K
∑

j=1,j 6=k
λt

jx
t
ji ≤ xt

i ;
T
∑

t=1

K
∑

j=1,j 6=k
λt

jy
t
jn ≥ yt

n

T
∑

t=1

K
∑

j=1,j 6=k
λt

jb
t
j ≤ bt

z;
T
∑

t=1

K
∑

j=1,j 6=k
λt

j = 1; λ ≥ 0

 (1)

where: xt
ji,y

t
jn, bt

jz denote the i-th input, n-th desired output, and z-th non-desired output
of the j-th DUM, respectively, and xt

i , yt
n, bt

z are greater than 0; λt
j denotes the weight.

Under the CRS assumption, the equation is as (2):

γ∗ = min
θ+εx∑T

t=1 ∑I
i=1

ω−i s−i
xki

δ−∑T
t=1 ∑N

n=1
ω+

n s+n
ykn
−εb∑T

t=1 ∑Z
z=1

ωb−
z sb−

z
bkz

s.t.
T
∑

t=1

K
∑

j=1,j 6=k
λt

jx
t
ji + s−i ≤ θxk, i = 1, 2, · · · , I

T
∑

t=1

K
∑

j=1,j 6=k
λt

jy
t
jn − s+n ≥ δykn, n = 1, 2, · · · , N

T
∑

t=1

K
∑

j=1,j 6=k
λt

jb
t
jz + sb−

z ≤ δbkz, z = 1, 2, · · · , Z

λt
k ≥ 0, s−i , s+n , sb−

z ≥ 0

(2)

where: γ∗ denotes the objective function value; xki, ykn, bkz are the input, desired, and
undesired outputs of the k-th DUM, respectively; ω−i , ω+

n , ωb−
z are the weights of the input,

desired, and undesired outputs, respectively; s−i , s+n , sb−
z are the slack variables of the input,

desired, and undesired outputs, respectively; θ is the radial planning parameter; ε is the
non-radial importance; and δ is the output expansion ratio.

3.2. Modified Gravitational Model

Social network analysis is a quantitative method widely used in other disciplines such
as sociology, management, and economics [40], which takes “relationship” as the basic unit
of analysis and expresses the interactions among members as a relationship-based model by
studying network relationships. Therefore, identifying relationships is the key to analyzing
network relationships. The existing research methods for constructing spatial association
matrices are mainly the vector autoregressive (VAR) [41] and gravity models [34]. Since
VAR models are sensitive to time lags, they are only applicable to data spanning a long
period [7]. The VAR model is not applicable to cross-sectional data or to reveal the dynamic
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evolutionary characteristics of the network structure. Therefore, the gravity model is more
advantageous for describing the evolutionary trend of the spatially correlated network of
carbon emission efficiency in the construction industry.

The basic gravity model assumes that the spatial association between two provinces is
proportional to the size of each province and inversely proportional to the distance between
the two provinces [42]. The formula is as follows.

Iij = k
MiMj

Dij
b (3)

where Iij represents the gravitational index, which refers to the association between province
i and province j, Mi, Mj represents the size of the provinces, and Dij represents the distance
between two provinces. k is an empirical constant, and b is the distance decay coefficient.

Geographic proximity and economic correlation are important factors influencing
the spatial distribution of economic activity, which leads directly to an increase in energy
demand, resulting in a large amount of CO2 [43]. Thus, geographical distance and the
economic gap should be considered when constructing the provincial construction industry
carbon emission efficiency correlation network. In addition, the population also has a
great impact on the CO2 emissions of the provincial construction industry. Therefore, on
the basis of relevant factors, such as economic and demographic factors, we modified the
traditional gravity model to make it suitable for the construction of the spatial correlation
network of the carbon emission efficiency of the provincial construction industry. Based
on Zhang et al. [44] and Li et al. [45], the modified gravity model calculation formula is
as follows:

Gij =
COi

COi + Cj
×

3
√

PiCOiEi 3
√

PjCOjEj(
Dij

ei−ej

)2 (4)

where: Gij denotes the gravitational value between province i and province j; COi and
Cj denote the carbon emission efficiency of the construction industry in province i and
province j, respectively; Pi and Pj denote the year-end population in province i and province
j, respectively; Ei and Ej denote the regional gross output value (GDP) in province i and
province j, respectively; Dij denotes the spatial distance between two provincial capitals;
and ei and ej denote the GDP per capita of the i-th and j-th provinces, respectively.

In this paper, we have constructed a modified gravity matrix among 30 Chinese
provinces using the binarization approach [7,46,47] shown in the following equation.

Gij = G30×30 =


c1,1 c1,2 . . . c1,30
c2,1 c2,2 . . . c2,30
. . . . . . . . . . . .

c30,1 c30,2 . . . c30,30

 (5)

By calculating Equation (4), we can obtain the modified gravity matrix of carbon
emission efficiency of the provincial construction industry. If gij is greater than the critical
value, the corresponding value of the spatial correlation matrix is marked as 1, indicating
that there is a spatial correlation between province i and province j. Otherwise, there is no
spatial correlation.

3.3. Social Network Analysis Method

(1) Overall network structure characteristics. Network density indicates the closeness
of spatial network connections. Network hierarchy refers to the asymmetric accessibility
of the relationships among provinces in the associated network. Network connectedness
reveals the vulnerability and robustness of the associated network. Network efficiency
reflects the redundancy of spatial network connections. This paper selects the above
four indicators to explore the overall network structure characteristics, and the calculation
formula is referred to in the literature [7,48].
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(2) Individual network characteristics. Degree centrality indicates the degree of associ-
ation between the point and other points in the associated network. Closeness centrality
represents the ability of the point not to be influenced by other points. Betweenness
centrality is the ability to control information and resources [49]. This paper selects the
above three indicators to explore the individual network characteristics, and the calculation
formula of the indicators refers to the literature [48].

(3) Spatial clustering analysis. The CONCOR model is the primary method of spatial
clustering analysis in social network analysis, which can describe the characteristics of
spatial clustering. The CONCOR model can analyze the role of each location (block) in
the network. The block model analysis can reveal new network characteristics dimensions
and describe spatially associated networks’ internal structural state [50]. In addition, it is
possible to analyze the number of plates in the network, the provinces contained in each
plate, and the relationships and connections among the plates. Block model analysis is a
standard analysis method in social network analysis, and the block model is mainly used
to analyze the location of each node in the whole network, which is more conducive to
examining the development status and understanding the spatial association network and
complex connections among each block [48].

3.4. QAP Model

Since the regression variables represent the correlation matrix between two provinces,
it is possible that multicollinearity appears in the variables. Therefore, in this paper, in
order to analyze the formation mechanism of the spatial correlation network of carbon
emission efficiency in China’s construction industry, we introduced QAP correlation anal-
ysis and regression analysis [46]. The QAP model does not require the assumption of
independence and normal distribution, effectively avoiding the regression error caused
by multicollinearity.

Based on previous literature, the following influencing factors were selected in this
work: geographical proximity (C), GDP per capita gap (P), urbanization level gap (U),
energy saving technology level gap (T), labor productivity gap (L), industrial agglomeration
gap (A), and industrial development level gap (I). The specific meanings and references of
the indicators in this paper are shown in Table 1. The QAP model is established as follows:

G = f (C, P, U, T, L, A, I) (6)

where, except for C, the indicator data are the difference matrices built from the absolute
difference of the mean values of the corresponding indicator values for each province from
2004 to 2020.

Table 1. Statistical description.

Variable Definition Reference

Geographical proximity Spatial adjacency matrix Tang [24], He [46]
Regional economic level Ratio of regional GDP to population Song [43], Ma [36]
Urbanization level Ratio of urban population to total population He [46]

Energy-saving technology level Ratio of the total output value of the construction industry to
energy consumption Hui [32], Li [51]

Labor productivity Ratio of the total output value of the construction industry to the number
of employees in the construction industry Li [51]

Industrial agglomeration

IAij =
(

qij/qj

)
/(qi/q), where qij is the economic output of the i

industry in the j region, qj is the total economic output of the j region,
and, qi is the total output of i industry in the country, q is the country’s
total economic output.

Lu [1], Li [51]

Industrial development level Ratio of the total output value of the construction industry to
regional GDP Li [7], Huo [34]
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3.5. Indicator Selection

(1) Input indicators. There are differences in the measurement of capital stock in
academic circles, and it is difficult to obtain the depreciation rate of fixed assets in the
construction industry. Therefore, this paper selects fixed assets in the construction industry
as an index of capital input. In terms of the index of labor input, the number of employees
in the construction industry is selected as the measuring standard of labor input in the
construction industry. As for the index of energy input, the construction industry consumes
a wide range of energy, so this paper selects 13 kinds of energy consumption, such as coal,
crude oil, natural gas, electricity, etc., which are uniformly converted into standard coal
and then summed up to obtain the total energy consumption as the energy input. In terms
of the index of machinery and equipment input, “the total power of own construction
machinery and equipment at the end of the year” is chosen. (2) Output index. In this
paper, the total output value of the construction industry is selected as the expected output
indicator. The CO2 emissions of the construction industry are divided into direct CO2
emissions and indirect CO2 emissions, of which the calculation method of CO2 emission is
based on Li et al. [51].

3.6. Data Sources and Processing

The research period of this paper is 2004–2020, and the construction industry of
30 provinces in China (excluding Tibet, Hong Kong, Macao, and Taiwan due to the lack
of energy data) is used as the research object. The above data are mainly obtained from
China Statistical Yearbook, IPCC National Greenhouse Gas Inventory Guide, China Energy Sta-
tistical Yearbook, and China Construction Statistical Yearbook from 2004 to 2020. In order to
eliminate the influence of inflation, the regional GDP, gross construction output value, and
construction fixed assets are all adjusted to constant prices in 2004.

4. Results
4.1. Carbon Emission Efficiency Measurement Results of the Construction Industry

In this paper, based on the global super-efficient EBM model and the panel data of
the input-output index, the above data were processed by MAXDEA software, and thus
the carbon emission efficiency values of the construction industry in 30 provinces of China
from 2004 to 2020 were obtained.

At the provincial level, regional development is uneven and differences between
provinces are gradually increasing (Table 2). In 2004, the province with the lowest carbon
emission efficiency in the construction industry was Gansu Province, with an efficiency
value of 0.073, and the province with the highest efficiency in the construction industry
was Zhejiang Province, with an efficiency value of 0.504. The difference between the
two provinces is 0.431. By 2020, Beijing ranked first in the country with an efficiency value
of 1.044, and the province with the lowest ranking was Henan Province, with an efficiency
value of 0.227. The difference between the two provinces is 0.817. The gap between the
best and the worst efficiency shows an upward trend year by year during the sample
period. The results show that there are significant differences in the construction level of
the green economy in the construction industry in each province, which may be due to the
differences in natural resources, geographic location, policies, and other factors, as well as
the differences in talents, technology, capital, and other resources. It is inevitable that the
effect of energy saving and emission reduction measures varies from province to province.
Over the past 17 years, the carbon efficiency of the construction industry has grown rapidly
in some provinces, while low-ranking provinces are much behind the average.
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Table 2. 2004–2020 Carbon emission efficiency of the construction industry in 30 provinces of China.

Province 2004 2006 2008 2010 2012 2014 2016 2018 2020

Beijing 0.243 0.319 0.395 0.401 0.564 0.623 0.792 0.824 1.044
Tianjin 0.186 0.215 0.240 0.301 0.387 0.446 0.547 0.583 0.683
Hebei 0.110 0.129 0.150 0.167 0.181 0.234 0.274 0.305 0.394
Shanxi 0.111 0.142 0.148 0.164 0.202 0.226 0.245 0.271 0.306

Inner Mongolia 0.109 0.167 0.194 0.266 0.334 0.396 0.480 0.582 0.838
Liaoning 0.142 0.183 0.204 0.234 0.262 0.294 0.433 1.009 1.030

Jilin 0.108 0.151 0.184 0.247 0.224 0.269 0.427 0.391 0.617
Heilongjiang 0.287 0.380 0.433 0.362 0.338 0.371 0.444 0.695 1.022

Shanghai 0.253 0.305 0.368 0.430 0.524 0.626 0.823 1.023 1.031
Jiangsu 0.439 0.299 0.339 0.482 0.498 0.570 0.838 0.946 1.010

Zhejiang 0.504 0.378 0.416 0.449 0.477 0.522 0.619 0.753 1.018
Anhui 0.135 0.165 0.184 0.221 0.256 0.288 0.352 0.373 0.434
Fujian 0.184 0.197 0.201 0.224 0.266 0.280 0.321 0.346 0.377
Jiangxi 0.342 0.189 0.209 0.286 0.279 0.298 0.313 0.337 0.366

Shandong 0.120 0.162 0.191 0.244 0.267 0.336 0.412 0.475 0.501
Henan 0.139 0.152 0.172 0.154 0.171 0.192 0.219 0.224 0.248
Hubei 0.114 0.133 0.159 0.193 0.205 0.237 0.290 0.334 0.337
Hunan 0.174 0.152 0.184 0.224 0.265 0.300 0.351 0.390 0.422

Guangdong 0.170 0.177 0.219 0.253 0.541 0.307 0.406 0.382 0.405
Guangxi 0.127 0.118 0.182 0.260 0.278 0.333 0.344 0.292 0.310
Hainan 0.089 0.106 0.126 0.171 0.220 0.230 0.259 0.281 0.362

Chongqing 0.165 0.175 0.198 0.255 0.316 0.379 0.467 0.550 0.613
Sichuan 0.121 0.151 0.171 0.196 0.237 0.280 0.333 0.351 0.382
Guizhou 0.122 0.151 0.168 0.208 0.246 0.264 0.269 0.322 0.387
Yunnan 0.126 0.104 0.119 0.141 0.157 0.174 0.218 0.244 0.268
Shaanxi 0.116 0.146 0.153 0.187 0.238 0.269 0.328 0.350 0.363
Gansu 0.073 0.094 0.094 0.127 0.143 0.154 0.184 0.206 0.227

Qinghai 0.076 0.102 0.108 0.126 0.153 0.169 0.200 0.238 0.338
Ningxia 0.118 0.121 0.148 0.152 0.186 0.196 0.297 0.343 0.402
Xinjiang 0.113 0.146 0.171 0.188 0.204 0.224 0.293 0.343 0.396

Note: Due to space reasons, the remaining years are not released.

Second, from the perspective of the region (Figure 1), the regional carbon emission
efficiency of the construction industry during the study period is East > Central > West,
showing an overall trend of “East is high, and West is low”. From 2004 to 2020, the carbon
emission efficiency in the east increased from 0.222 to 0.714, with an average annual growth
rate of 7.58%. As for the central region, carbon emission efficiency increased from 0.176
to 0.469, with an average annual growth rate of 6.30%. Carbon emission efficiency in
the west increased from 0.115 to 0.411, with an average annual growth rate of 8.30%. It
can be seen that the western region bears the fastest growth, the eastern region is the
second, and the central region is the slowest. However, it is worth noting that the carbon
emission efficiency of the western construction industry is still the lowest among the three
regions, which indicates that the western region needs to further implement the low-carbon
development strategy of the construction industry. At the national level (Figure 1), the
carbon emission efficiency of China’s construction industry increased from 0.171 in 2004 to
0.538 in 2020, an increase of 215.35% year-on-year. Although the overall efficiency value is
steadily increasing, there is still a long way for China to go to improve the carbon efficiency
of its construction industry.
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4.2. Spatial Correlation Network Structure of Carbon Emission Efficiency in the
Construction Industry

In this paper, we used the modified gravity model to calculate the gravitational matrix
of each province between 2004 and 2020 and to visualize the spatial correlation network
structure of carbon emission efficiency in the construction industry in China. In addition,
Gephi software was chosen to draw the spatial correlation network. The network diagrams
are drawn for the years 2004, 2009, 2014, and 2020 with a time interval of 6 years. From
Figure 2, we can see that the spatial correlation has broken the limitation of geographic
location and has a spatial correlation not only with neighboring provinces but also with
non-neighboring provinces [52]. The provinces that are always located at the center of the
network include coastal provinces and cities such as Jiangsu, Zhejiang, Shanghai, Guang-
dong, and Tianjin, which have strong correlations with other provinces due to their high
level of low-carbon development in the construction industry, and which enjoy the advan-
tageously geographical location, sound construction, and transportation infrastructure,
making it easier for low-carbon exchanges and cooperation in the construction industry.
The remaining provinces are at the network’s edge, and the spatial association of carbon
emission efficiency in the construction industry shows a “core-edge” network structure.
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Figure 2. Spatial Network Structure of Carbon Emission Efficiency of China’s Construction Industry
in 2004, 2009, 2014, and 2020.

4.3. Overall Network Structure Characteristics

From Figure 3, it can be seen that the overall number of network relationships and
network density has steadily increased. The number of network relationships rose from
195 in 2004 to 219 in 2020, of which the maximum value of 229 was reached in 2015. The
network density is consistent with the change in the number of network relationships,
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rising from 0.224 in 2004 to 0.252, of which the maximum value of 0.263 was reached in
2015. According to the above changes, the spatial correlation strength of carbon emission
efficiency in China’s construction industry has been strengthened from 2004 to 2020, and
the interactions among provinces have been enhanced. However, it is worth noting that
there is still a large gap between the existing number of relationships and the maximum
possible number of network relationships (870), which indicates that the spatial correlation
network needs to be optimized continuously.
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The spatial network connectedness remained one during the study period, indicating
that the spatial correlation network structure has good connectivity and robustness, and all
provinces are in the spatial correlation network. No provinces are out of the network and a
significant spillover effect is observed in the network space [53]. The network efficiency
decreased from 0.668 in 2004 to 0.640 in 2020, where it reached the minimum value of 0.621
in 2015. This indicates that the number of connections in the spatial network gradually
increases with the development of the construction industry, the spatial association among
provinces becomes stronger [46], and the spatial network gradually becomes stable. The
network ranking degree decreased from 0.560 in 2004 to 0.480 in 2017, then increased to
0.520 in 2020, which indicates that the strict hierarchical structure within the carbon emis-
sion efficiency of the construction industry gradually disintegrated, and the interconnection
and influence among provinces were strengthened. However, the hierarchy of the carbon
emission efficiency network in the construction industry was still high as of 2020, and there
is still a specific hierarchical gradient in the spatial correlation network. Thus, the network
structure needs to be further optimized [53]. From the above, it can be seen that network
density and network efficiency showed high and low inflection points, respectively, in 2015.
This may be due to China’s strategy to promote the development of the central region and
the western region during the 11th and 12th Five-Year Plans. In addition, in response to the
international financial crisis in 2008, the Chinese government launched the “four trillion
yuan” stimulus plan and invested much money in infrastructure development [7]. These
policies have promoted the balanced development of regional economies and effectively
improved energy saving and emission reduction technologies in less developed regions.
Therefore, the spatial correlation network exhibits specific cyclical characteristics.

4.4. Individual Network Characteristics

To better compare the evolution of individual networks, the data from 2004 and 2020
is selected to measure in-degree, out-degree, degree centrality, closeness centrality, and
betweenness centrality (Table 3), which reveal the centrality characteristics of associated
individuals in spatial correlation networks [54].

Table 3. Centrality analysis of spatial correlation network of carbon emission efficiency of China’s
construction industry.

Province
Out-Degree In-Degree Degree Centrality Closeness Centrality Betweenness Centrality
2004 2020 2004 2020 2004 2020 2004 2020 2004 2020

Beijing 5 3 21 8 72.414 27.586 76.316 58.000 0.704 0.318
Tianjin 5 5 20 25 72.414 86.207 76.316 87.879 14.783 7.221
Hebei 3 3 6 8 24.138 27.586 56.863 58.000 0.480 0.249
Shanxi 6 6 3 6 20.690 31.034 55.769 59.184 0.846 1.099

Inner Mongolia 4 5 1 3 13.793 27.586 53.704 58.000 0.510 0.193
Liaoning 6 5 2 0 24.138 17.241 56.863 54.717 0.022 0.000

Jilin 6 4 2 1 24.138 17.241 56.863 54.717 0.049 0.015
Heilong jiang 6 9 0 0 20.690 31.034 55.769 59.184 0.849 0.000

Shanghai 5 6 27 26 93.103 89.655 93.548 90.625 11.507 4.678
Jiangsu 2 4 20 24 68.966 82.759 76.316 85.294 8.795 2.915

Zhejiang 5 6 19 18 65.517 65.517 74.359 74.359 4.131 2.743
Anhui 4 6 8 7 27.586 27.586 58.000 58.000 0.286 1.986
Fujian 7 8 8 17 41.379 62.069 63.043 72.500 4.131 9.838
Jiangxi 5 7 3 5 17.241 24.138 52.727 56.863 0.131 2.528

Shandong 7 7 20 22 72.414 79.310 78.378 82.857 8.264 5.633
Henan 6 7 8 9 31.034 31.034 59.184 59.184 0.555 9.315
Hubei 7 11 1 8 27.586 51.724 58.000 67.442 1.234 5.788
Hunan 8 9 4 5 31.034 31.034 59.184 59.184 0.156 1.394

Guang dong 7 9 14 8 58.621 41.379 70.732 63.043 0.732 1.949
Guangxi 7 8 2 3 24.138 31.034 56.863 59.184 0.211 0.464
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Table 3. Cont.

Province
Out-Degree In-Degree Degree Centrality Closeness Centrality Betweenness Centrality
2004 2020 2004 2020 2004 2020 2004 2020 2004 2020

Hainan 7 7 0 0 24.138 24.138 56.863 56.863 0.131 0.000
Chong qing 9 10 1 4 31.034 37.931 59.184 61.702 0.386 0.945

Sichuan 9 8 0 2 31.034 27.586 59.184 58.000 0.106 0.000
Guizhou 11 11 3 7 41.379 41.379 63.043 63.043 0.783 7.084
Yunnan 8 9 0 0 27.586 31.034 58.000 59.184 0.211 0.000
Shaanxi 7 9 0 2 24.138 31.034 56.863 59.184 0.527 0.671
Gansu 9 11 2 1 37.931 41.379 61.702 63.043 1.636 0.462

Qinghai 8 8 0 0 27.586 27.586 58.000 58.000 0.318 0.000
Ningxia 8 10 0 0 27.586 34.483 58.000 60.417 1.038 0.000
Xinjiang 8 8 0 0 27.586 27.586 58.000 58.000 0.529 0.000
Average 6.5 7.3 6.5 7.3 37.701 40.230 62.588 63.855 2.135 2.250

As shown in Table 3, the largest difference between the in-degree and out-degree from
2004 to 2020 was in Beijing, with a difference of 15. This indicates that Beijing’s position in
the correlation network is gradually marginalized. There are 10 provinces featuring the in-
degree being greater than the out-degree, namely, Jiangsu, Zhejiang, Shanghai, Shandong,
Tianjin, Beijing, Hebei, Fujian, and Henan, indicating that these provinces are vulnerable
to the carbon emission efficiency of the construction industry in other provinces. The
construction industry development level of these provinces is high, which can effectively
attract construction talents, capital, low-carbon technology, and other resource factors
from all over the world and effectively transform the resource factors to promote the
construction industry’s carbon emission efficiency. This makes the network structure show
spatial polarization.

(1) Degree centrality. The mean value of the degree centrality of the spatial correlation
network of carbon emission efficiency in the construction industry increased from 37.701
in 2004 to 40.230 in 2020. The point degree centrality of nine provinces, namely, Jiangsu,
Zhejiang, Shanghai, Guangdong, Tianjin, Shandong, Fujian, Guizhou, and Gansu, is always
higher than the mean value, indicating that these provinces have more connections with
other provinces in the spatial correlation network and are in the center of the spatial corre-
lation network of carbon emission efficiency in the construction industry. This is because
these provinces are mainly located in most of the economically developed coastal areas in
the East and the core areas in the central and western parts of China, with relatively sound
transportation infrastructures and ideal geographic locations so that they can communicate
more smoothly with other provinces on low-carbon development. At the same time, the
low-carbon technologies in the construction industry in these provinces are more advanced,
which can quickly generate the “siphon phenomenon” and low-carbon technology spillover
effects. The provinces with a low degree of centrality are located in the northeastern and
western regions led by Liaoning, Jilin, Xinjiang, Qinghai, etc. These provinces are remote,
with a weak economic base, less convenient transportation, and less connected with other
provinces. Therefore, they are in a marginal position in the construction industry spatial
association network.

(2) Closeness centrality. The mean value of the closeness centrality of the spatial
correlation network of carbon emission efficiency in the construction industry increased
from 62.588 in 2004 to 63.855 in 2020. The maximum value decreased from 93.548 in 2004 to
90.625 in 2020. The minimum value increased from 52.727 in 2004 to 54.717. The values of
the above three variables do not change much, which indicates that the spatial association
network is generally in a relatively balanced state. The closeness centrality of seven
provinces, namely, Jiangsu, Zhejiang, Shanghai, Tianjin, Shandong, Fujian, and Hubei, is
higher than the average. These provinces enjoy geographical advantages and play the role
of core actors in the spatial correlation network, leading to more spatial connections with
other provinces [49]. The closeness centrality of provinces such as Liaoning and Jilin is
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lower. Due to economic development and geographical constraints, it is hard for these
provinces to access advanced low-carbon technologies and development resources from
other provinces and suffer from less significant spatial spillover from other provinces.
Therefore, they play the role of marginal actors in the network and it is necessary for these
provinces to gain more links with other provinces.

(3) Betweenness centrality. The mean value of betweenness centrality of the spatial cor-
relation network of carbon emission efficiency in the construction industry increased from
2.135 in 2004 to 2.250 in 2020, and the number of provinces above the mean value increased
from 6 to 10. This indicates that the dominant role of the central node of the network shows
an upward tendency. In 2020, the betweenness centrality of 10 provinces, namely, Jiangsu,
Zhejiang, Shanghai, Tianjin, Shandong, Fujian, Jiangxi, Henan, Hubei, and Guizhou, was
higher than the average value, accounting for 85.56% of the national betweenness centrality.
It shows that these provinces have substantial control over the resources such as talents,
information, capital, and technology in the spatial correlation network. At the same time,
they have a more vital ability to facilitate the establishment of links with other provinces
and are in the position of network hubs in the spatial correlation network. This makes
them play the role of “intermediaries” and “bridges” in the network. In particular, Hubei,
Henan, Guizhou, and Fujian have become important links and fulcrums for promoting the
flow of carbon emission efficiency factors and resources from the eastern coastal region to
the southwest and northwest regions due to their special geographical location. They serve
as a link between the east and the west, as well as the north and the south [54]. While the
remaining provinces only accounted for 14.44% of the national intermediary center, most
of these provinces were remote and had weak economic bases and outdated technology.
Furthermore, they have weak control over resource factors and were in a marginal position
in the network dominated by other provinces. Therefore, we need to optimize the structure
of the spatial correlation network of carbon emission efficiency in the construction industry
to improve the imbalance between the former and the latter, which has a massive gap in
the control of resource factors.

4.5. Network Clustering Characteristics

To ensure that the research results are more in line with the current situation [55].
This paper uses the CONCOR module in Ucinet (maximum partition density set to 2
and convergence criterion set to 0.2) to perform a block model clustering analysis on the
spatial correlation network of carbon emission efficiency of the construction industry in
30 Chinese provinces in 2020, and the analysis results divide the 30 Chinese provinces into
four segments [56]. As seen from Table 4, the number of intra-slab relationships in the
spatial correlation network total 50, accounting for 22.83% of the total network relationships
in 2020. The number of extra-slab relationships totals 169, accounting for 77.17% of the total
network relationships in 2020, showing a significant spatial clustering effect and spatial
spillover in the carbon emission efficiency of the construction industry in each province [57].
The distribution of provinces in the four plates is shown in Table 4.

Table 4. Division of plates.

Plate Province

First plate (I) Anhui, Henan, Shanxi, Heilongjiang, Liaoning, Xinjiang, Gansu, Qinghai,
Ningxia, Jilin

Second plate (II) Guangdong, Chongqing, Hunan, Shaanxi, Guangxi, Sichuan, Hubei,
Jiangxi, Hainan, Gansu, Yunnan

Third plate (III) Beijing, Inner Mongolia, Hebei
Fourth plate (IV) Jiangsu, Zhejiang, Shanghai, Shandong, Tianjin, Fujian

In the first plate, the number of relationships within the plate is 6. The number of
outgoing and incoming relationships outside the plate is 68 and 18, respectively, with fewer
relationships within the plate and more overflow outside the plate. At the same time, the
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actual proportion of internal relationships within the plate is 8.11%, which is less than the
desired proportion of internal relationships of 31.04%. Therefore, the first plate belongs
to the “net outflow plate”. In the second plate, the number of intra-block relationships
is 30. The number of outgoing and incoming relationships outside the block are 68 and
14, respectively, with the close spatial association of both internal and external network
members; meanwhile, the actual internal relationship ratio is 30.61%, which is smaller than
the desired internal relationship ratio of 34.48%. Therefore, the second plate belongs to the
“agent plate”, which acts as a communication link among elements in the whole spatial
correlation network [57]. Most of the provinces in the second plate are geographically
located at the junction of the three regions. It is evitable that the second plate is the only
path to transmit exchanges of low-carbon technologies and natural resources between the
east and the west. At the same time, provinces in the second plate are internally adjacent to
each other and communicate very closely, which makes them act as a link. The number
of intra-plate relations in the third plate is 3, while the number of outgoing and incoming
relations outside the plate are 8 and 15, respectively, with a small difference between the
number of outgoing and incoming relations. In addition, the ratio of expected internal
relations is 6.90%, which is smaller than the actual ratio of internal relations of 27.27%.
Therefore, the third plate is a “bidirectional spillover plate”. In the fourth plate, the number
of in-panel relationships is 11, while the number of out-plate relationships and in-plate
relationships is 25 and 122, respectively. The number of in-plate relationships is much
larger than out-plate relationships. Moreover, the actual internal relationship ratio is 30.56%,
which is larger than the actual internal relationship ratio of 17.24%. Therefore, the fourth
plate belongs to the “net inflow plate”. The reason for this is that the provinces in the
fourth sector are located in the center of the spatial correlation network of the construction
industry and are vulnerable to the spillover effects of other provinces. They are also located
in the eastern coastal regions, with superior geographical locations and good transportation
facilities. However, insufficient natural resources limit development. As a result, they rely
on the resources from other provinces to promote their construction industry’s low-carbon
development, which shapes their position of “net inflow plate”.

From the above, we can see that the four significant segments play different roles
in forming the spatial correlation network of carbon emission efficiency in China’s con-
struction industry. In this paper, the network density matrix of the four major sectors is
converted into a like matrix (the value of 1 for the network density matrix greater than 0.252
and 0 otherwise), which is used to explore further the spatial network relationship among
the four major sectors. As shown in Table 5, the first, second, and third plates all produce
spatial spillover to the fourth plate, and there is a connection within the fourth plate, which
indicates that the fourth plate is in the center of the network, and the other plates provide
the required resource to it. In addition, there are also internal linkages within the second
and third sectors, and the first sector also generates spatial spillover to the third sector.

Table 5. Spillover relationship and its image matrix between spatially related sectors of China’s
construction industry carbon emission efficiency.

Plate I II III IV

Outflow relation
Inside the plate 6 30 3 11

Outside the plate 68 68 8 25

Inflow relation
Inside the plate 6 30 3 11

Outside the plate 18 14 15 122

Expected internal relationship ratio % 31.03% 34.48% 6.90% 17.24%

Actual internal relationship ratio % 8.11% 30.61% 27.27% 30.56%

Image matrix

I 0 0 1 1
II 0 1 0 1
III 0 0 1 1
IV 0 0 0 1
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4.6. Spatial Correlation Network Structure Formation Mechanism
4.6.1. QAP Correlation Analysis

To investigate the formation mechanism of the spatial correlation network of carbon
emission efficiency in the construction industry. This paper adopts the QAP model to con-
duct regression analysis on the influencing factors. Before the QAP regression is conducted,
QAP correlation analysis is used to measure the correlation between the spatial correlation
network of carbon emission efficiency in the construction industry and each influencing
factor to explain whether it is suitable for applying QAP regression analysis. Therefore, this
paper set the number of random permutations to 5000, and the QAP correlation analysis
results are obtained using UCINET 6. As seen from Table 6, the correlation coefficients
of geographical proximity, regional economic level gap, and urbanization level gap are
positive at a 1% significance level, indicating that they are significantly and positively corre-
lated with the spatial correlation network of carbon emission efficiency in the construction
industry. At the 5% significance level, the correlation coefficients of the energy efficiency
technology gap and the industrial agglomeration gap are positive. Revealing that they
are significantly and positively correlated with the spatial correlation network of carbon
emission efficiency in the construction industry. At the 10% significance level, the labor
productivity gap negatively influences the formation of the spatial correlation network,
and the gap in the industrial development level is not correlated with the formation of
a spatial association network. Therefore, this factor is excluded from the paper. Table 7
shows the correlations among the variables, and it can be seen from Table 7 that there is a
multicollinearity problem among the variables. To address this problem that exists in the
explanatory variables, this paper uses QAP for regression analysis.

Table 6. QAP correlation analysis and regression analysis.

Variable Correlation Coefficient p Value Regression Coefficient p Value

C 0.195 0.000 0.339 0.000
P 0.390 0.000 0.341 0.000
U 0.262 0.000 0.084 0.033
T 0.049 0.035 0.024 0.536
L −0.049 0.073 −0.024 0.787
A 0.039 0.032 0.053 0.041
I 0.037 0.253 — —

R2 — — 0.231
Adjustment R2 — — 0.226

Table 7. Correlation Matrix between Variables.

Variable A U P T C L

A 1 ***
U 0.041 1 ***
P 0.060 0.554 *** 1 ***
T 0.139 ** 0.153 ** 0.243 *** 1 ***
C −0.154 *** −0.158 *** −0.159 *** −0.064 ** 1 ***
L 0.139 ** 0.153 ** 0.243 *** 1 *** −0.064 * 1 ***

Note: *** indicates significant at 1% level, ** indicates significant at 5% level, and * indicates significant at
10% level.

4.6.2. QAP Regression Analysis

As above, the number of random permutations is set to 5000 to study the formation
mechanism of the spatial association network in this paper. The QAP regression results
are shown in Table 6. The adjusted R2 is 0.226, which indicates that geographic proxim-
ity, regional economic level gap, urbanization level gap, energy saving technology level
gap, and industrial agglomeration gap can explain 22.6% of the spatial correlation effect.
From Table 6, geographical proximity is significant at a 1% level, of which the regres-
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sion coefficient is positive, indicating that geographical proximity has a positive effect
on the formation of the spatial correlation network. This is because commercial linkages
and resource transportation are more common in geographically adjacent provinces, thus
strengthening the spatial links [7]. Regional differences in economic levels are significant at
the 1% level, and their regression coefficients are positive, revealing that more significant
regional differences are able to strengthen the spatial correlation. This is mainly because
the more significant the “potential energy difference” between regions, the more signifi-
cant the “siphon effect” and “trickle-down effect” of factors under the action of market
mechanism [54], representing that, on the one hand, provinces with high regional economic
levels tend to attract capital inflows from other provinces so that provinces with higher
economic levels have enough capital to adopt better energy-saving technologies [40], while,
on the other hand, provinces with weak economic development and abundant resources
provide their resources for these high-tech provinces for further processing, both of which
contribute to a closer spatial correlation of carbon emission efficiency in the construction
industry. The urbanization level gap is significant at the 5% level, of which the regres-
sion coefficient is positive, indicating that the larger the urbanization level gap is, the
stronger the spatial correlation, similar to the regional economic level gap. The industrial
agglomeration gap is significant at the 5% level, and its regression coefficient is small and
negative, which means that regions with similar types of industrial agglomeration are more
likely to generate spatial spillover because they have the same development model. In
addition, their low-carbon exchanges are not hindered, making them more closely linked
spatially. Although the regression coefficients of the energy-saving technology level and
labor productivity gap are positive, they do not significantly affect forming of a spatial
correlation network of carbon emission efficiency in the construction industry.

5. Discussion

This paper provides a new perspective for the spatial analysis of carbon emission
efficiency in China’s construction industry. Firstly, this paper adopts a global non-expected
output super-efficiency EBM model to measure the carbon emission efficiency of the con-
struction industry in 30 Chinese provinces. The global EBM model achieves comparability
of efficiency across periods while solving the inherent problems of radial and non-radial
models, namely, the radial DEA model ignores the influence of non-radial slack variables,
while the non-radial SBM model tends to neglect the original between the target and ac-
tual values, resulting in an underestimation of the actual performance when evaluating
invalid DMUs [35]. Secondly, this paper constructs a spatial correlation matrix by using the
modified gravity model, which overcomes the time lag of the traditional VAR model and
can analyze the evolution characteristics of the network structure through cross-sectional
data. The modified gravity model considers the geographic proximity and relevant fac-
tors (population size and regional economic level) that affect the emission efficiency of
the construction industry, which can better reflect spatial characteristics [7]. This model
has been widely used in constructing spatial association matrices [36,43,55]. Again, this
paper analyzes the overall network characteristics, individual network characteristics, and
spatial aggregation characteristics and finds that the carbon emission efficiency of China’s
construction industry has broken the traditional geospatial proximity restriction, mani-
festing a complex, multi-threaded spatial correlation [53]. The spatial correlation network
shows a “core-edge” network structure, and the provinces at the center of the network
belong to the “net inflow plate”. Finally, the QAP method can overcome the problems
of multicollinearity and autocorrelation. Therefore, this paper applies this method to the
correlation and regression analysis of the factors influencing spatial correlation. It is found
that geographical proximity is the most critical factor in the formation of the spatial correla-
tion network [46,58–60], and the differences in regional economic levels and urbanization
levels also largely contribute to the formation of the spatial correlation network [56]. The
similarity of regional industrial agglomerations contributes to the formation of the spatial
correlation network as well.
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Given the above research, there are still some limitations in this research. First, due
to the availability of data, this paper only studies the spatial correlation network at the
provincial level, lacking more in-depth research. In the future, it is advisable for scholars to
dig deep into the data and explore the spatial correlation network at the municipal level.
Secondly, the adjusted R2 of QAP regression is only 0.226, which shows that the selection
of influencing factors is one-sided, and more factors need to be added in future research to
further explore the formation mechanism of the spatial correlation network. Finally, our
discussion of policy recommendations is limited to the macro level. In the future, we will
carry out further detailed research on the cost of policy recommendations.

6. Conclusions and Policy Recommendations
6.1. Conclusions

This paper first measured the carbon emission efficiency of China’s construction in-
dustry in 30 provinces from 2004 to 2020 via the global super-efficiency EBM model, then
revealed the evolution characteristics of the spatial association network of the carbon emis-
sion efficiency of China’s construction industry by the modified gravity model and social
network analysis. Finally, the QAP model was used to investigate the formation mechanism
of the spatial association network. The main findings of this paper are as follows:

(1) From 2004 to 2020, the carbon emission efficiency of China’s construction industry
increased from 0.171 in 2004 to 0.538 in 2020, with an overall steady increase. The carbon
emission efficiency of the construction industry showed a spatial distribution pattern of
“high in the east and low in the west”, indicating the differences between provinces were
gradually increasing.

(2) During the study period, the carbon emission efficiency of China’s construction
industry has broken the traditional geospatial proximity restriction, presenting a complex,
multi-threaded spatial correlation, with the spatial correlation network showing a “core-
edge” network structure. From the overall network characteristics, the network density
and efficiency showed an upward and downward trend, respectively, during the study
period, and the network connectedness was always 1. From the perspective of individual
network characteristics, the eastern regions of Jiangsu, Zhejiang, Shanghai, Tianjin, and
Shandong have been at the center of the network, playing the role of “core actor” in the
spatial correlation network and playing essential roles in “intermediary” and “bridge” as
well. From the perspective of network aggregation characteristics, the spatial correlation
network can be divided into “bidirectional spillover plate”, “net inflow plate”, “net outflow
plate”, and “agent plate”. Most of the provinces located in the center of the network belong
to the “net inflow plate”, and most of the provinces located at the junction of the three
regions belong to the “agent plate”, which plays the role of a link. (3) The results of QAP
correlation and regression analysis show that geographic proximity, regional economic
level differences, and urbanization differences have a significant positive impact on the
formation of the spatial correlation network. The industrial agglomeration gap has a
significant negative impact on the formation of the spatial correlation network. However,
the regression coefficients of differences in energy-saving technology levels and differences
in labor productivity are positive but not significant, and their impact mechanisms still
need to be further improved and strengthened.

6.2. Policy Recommendations

To achieve the goal of “carbon peak, carbon neutrality” as soon as possible, the
following suggestions for cross-regional collaborative carbon reduction in the construction
industry are proposed based on the results of the study:

Firstly, the government should establish a cross-regional collaborative carbon emission
reduction mechanism for carbon emission efficiency in the construction industry, pay
attention to the spatial correlation effect of carbon emission efficiency, strengthen the
low-carbon development exchange among geographically adjacent provinces, consider
the issues related to cross-regional collaborative management of carbon emission in the
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construction industry from the perspective of the overall network structure [47], and
coordinate the actions of all parties under the overall layout to form a 1 + 1 > 2 emission
reduction effect. Secondly, the government should optimize the spatial correlation network
structure of carbon emission efficiency in the construction industry, focus on breaking the
spatial network hierarchy, encourage Jiangsu, Zhejiang, Shanghai, Tianjin, Shandong, and
other eastern regions to play the leading role in the spatial correlation network [55], and
improve the spatial spillover effect of low-carbon technologies in the central provinces of
the network to promote the low-carbon development of the construction industry in other
provinces. Provinces at the edge of the network should take advantage of the abundant
resources, strengthen the economic exchanges with the central provinces of the network,
and strive to become the central position of the network. Thirdly, the characteristics of
the four plates in the spatial correlation network of carbon emission efficiency in the
construction industry should be fully considered, and regionally differentiated policies
for carbon emission reduction in construction should be formulated. For provinces in
the “bidirectional spillover plate” and the “net outflow plate”, the government should
promote low-carbon technology innovation and green building materials. In addition,
the government should learn from foreign advanced building energy efficiency and low-
carbon technologies and use industrial transfer methods to solve the problem of high carbon
emissions while taking on more carbon emission reduction tasks. For provinces in the “net
inflow plate, they should introduce advanced low-carbon technologies to improve energy
efficiency and make full use of resources to develop wind power, photovoltaic, and other
clean energy technologies. Provinces in the “agent plate” should take advantage of their
geographical location to connect the eastern and western regions, continue to strengthen
the role of regional exchange links, build bridges between the eastern and western regions
for carbon emission reduction in the construction industry, and further promote the flow
of low-carbon technologies. In addition, the government should strengthen the mutual
communication among the four major sectors and implement a cross-sector collaborative
carbon emission reduction mechanism. Fourth, the government should consider the impact
of regional development, urbanization, and industrial agglomeration gap on forming
a spatial correlation network. On the one hand, the government should balance the
advantages and disadvantages of regional development and urbanization disparities and
strengthen the spatial linkage between regions while narrowing the gap. On the other
hand, the government should establish a similar industrial agglomeration model for each
province, and provinces with lower carbon emission efficiency should learn the industrial
distribution model of provinces with higher carbon emission efficiency to optimize the
industrial structure within the provinces and effectively promote the formation of a spatial
correlation network.
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