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Abstract: The integration of location-based social networks and POI recommendation systems has the
potential to enhance the urban experience by facilitating the exploration of new and relevant locales.
The deployment of graph neural networks (GNNs) drives the development of POI recommendations,
but this approach also brings with it the challenge of over-smoothing, where information propagation
between nodes in the graph can lead to an excessive homogenization of the data. In prior works
that utilized GNNs for POI recommendation, the bipartite graphs constructed from users and POIs
as nodes failed to incorporate temporal dynamics, limiting the scope of the analysis to only spatial
structure information. To circumvent this issue, the incorporation of a temporal component can be
introduced during the aggregation process of graph convolution. In light of these considerations, the
present study proposes a novel regionalized temporal GCN (RST-GCN) recommendation model that
leverages self-attention mechanism to capture various levels of temporal information to better reflect
the dynamic changes of time. By combining the graph’s spatial structure with geospatial features,
similar users are distributed into distinct regional subgraphs, effectively avoiding the influence of
non-similar users. The efficacy of the proposed model has been demonstrated through empirical
evaluations conducted on two real-world datasets.

Keywords: POI recommender system; graph convolutional neural network; self-attention; regional
subgraph

1. Introduction

With the proliferation of social media, location data, and mobile Internet, urban life is
enhanced by the presence of various points of interest (POIs) such as restaurants, stores,
parks, and cultural venues. POI recommendation systems play a key role in helping city
dwellers discover new and exciting places based on their preferences and past experiences.
In recent years, POI recommendation has become an increasingly important task.

In early POI recommendation, algorithms mainly achieved mining POIs of interest to
users by analyzing the interaction between users and POIs and using rating information to
construct user preferences for POIs, and most of the work used collaborative filtering [1]
techniques to recommend POIs to users. In recent years, the emergence of graph neural
networks (GNNs) has driven the development of POI recommendation. The graph model
can be used in LBSN [2] to construct the interaction between POI and user as a bipartite
graph network. The utilization of graph neural networks (GNNs) has proven to be an effec-
tive approach to capturing the high-order connectivity [3] inherent in POI recommendation
systems. By incorporating multi-hop neighbors in the graph [4], the collaborative filter-
ing effect can be effectively represented and integrated into the learning process through
embedding propagation and aggregation. The utilization of GNNs in graph data learning
allows for the acquisition of deeper insights, owing to the unique information propagation
mechanism inherent in this approach. Zhong et al. [5] proposed a hybrid graph convolu-
tional network model to construct a spatial graph using the geographic distance between
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pairs of interest points, Zhang et al. [6] proposed a GNN-POI algorithm to use graph neural
network to construct a social network graph that uses a bi-directional long and short-term
memory model to simulate users’ sequential check-in behavior.

Because of the unique information propagation mechanism of GNN, as the number
of convolutional layers is added, the larger the number of neighboring nodes that can be
taken into account when each node embedding is updated. The model is better able to
represent the global features of the graph. However, not all information from neighbors
can be beneficial for embedding learning, and users with non-similar interests often bring
negative information propagation [7]. How to target information propagation becomes
a problem. In previous work based on GNN recommendations, the bipartite graphs [8]
constructed with users and POIs as nodes do not reflect the temporal factor [9], and their
topologies only involve information about the graph spatial structure, while a user’s
POI recommendation needs to be closely integrated with the user’s historical check-in
information to capture the user’s dynamic interest [10]. Therefore, the dynamic temporal
factor needs to be involved in the aggregation process of graph convolution.

In view of the above limitations, in this paper, we propose a new Regional Spatio-
Temporal GCN (RST-GCN) recommendation model. The model applies scaled dot product
attention and captures different levels of temporal information using a multi-head attention
mechanism. The acquired temporal information can better reflect the dynamic change of
time, and its participation in information propagation as neighboring temporal information
in graph convolution can achieve the capture of users’ dynamic interests. To prevent the
impact of non-similar users, we categorize users and the POIs they visit into separate
regional subgraphs, and the information propagation can only take place in the regional
subgraphs. To demonstrate the validity of our proposed model, we conducted extensive
experiments on both Foursquare and Gowalla datasets.

In summary, the main contributions of this paper are summarized as follows:

1. We propose a model called Regional Spatio-Temporal GCN (RST-GCN), which combines
graph structural features with geospatial features to divide regional subgraphs and
reduce the negative impact brought by non-similar users in information propagation;

2. We use a self-attention mechanism to capture dynamic temporal information as
temporal features of users and POIs in the GCN to participate in neighbor informa-
tion aggregation;

3. We conduct extensive experiments on relevant datasets to demonstrate the effective-
ness of our proposed RST-GCN.

The remainder of this paper is arranged in the following manner. In Section 2, we
revisit the relevant literature pertaining to POI recommendation. In Section 3, we conceptu-
alize the problem at hand. The specifics of the proposed RST-GCN model are expounded
upon in Section 4. In Section 5, we subject our proposed model to an evaluation through
comparison with existing POI recommendation models, as well as through the examination
of ablation experiments and the analysis of sensitivity parameters. Finally, in Section 6, we
summarize the paper and chart a course for future work.

2. Related Work
2.1. GNN-Based POI Recommendation

Graph-based approaches have been experimentally shown to be dominant in recom-
mendation problems, and the following are relevant recent works. STP-UDGAT [11] designs
global spatial-temporal preference (STP) neighborhoods to find high-order POI neighbors
by random wandering; GARG [12] treats POIs in sequences equally and adaptively divides
importance, and automatically identifies POI relevance; GPR [13] estimates user prefer-
ences by capturing the nonlinear geographic influence of the user-POI network and using
geographically latent representations of input and output influences; LightGCN [14] retains
the original graph model structure simplifying the GCN model by learning embeddings
through linear propagation in the user-item interaction graph making it more applicable to
recommendation tasks; IA-GCN [15] emphasizes relevant information in the user’s neigh-
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borhood and assigns higher attention weights to similar neighborhoods; PinSage [16] uses
random walking sampling in combination with graph convolution to learn embeddings on
the item-item graph of image recommendation tasks. The unequal relevance of nodes in
graph convolution requires targeted weight assignment for a selective aggregation process.
The above models take into account the variability of realistic geographic locations by
designing POI-POI graphs, which shows the need to combine graph structural features as
well as geospatial features to achieve more accurate recommendations.

2.2. Sequence-Based Recommendation

Sequence-based recommendations are widely used because they can capture the order
of users’ check-in POIs to obtain their dynamic preferences. Markov chains [17] were first
applied to sequential recommendations, using the most recently clicked items to infer
the change process of items from the next item. Deep learning-based algorithms have
further improved the efficiency of sequential-based recommendations, and Chen et al. [18]
proposed a supervised learning prediction model based on recurrent neural networks
(RNNs) considering location interests and contextual information of similar users; ATST-
LSTM [19] uses an attention mechanism to pick relevant historical check-in behaviors in the
input sequence using spatio-temporal contextual information; ATCA-GRU [20] proposes
a GRU model that uses an attention mechanism to perceive POI categories to predict the
most likely types of POIs to be visited at future moments; SASRec [21] uses self-attention
techniques to model sequential patterns and capture long-term semantics from them to
make effective recommendations; BERT4Rec [22] uses a deep bidirectional sequential
model optimization on top of the base model to make sequential recommendations; SAE-
NAD [23] uses a multi-head attention mechanism to distinguish user preferences and uses
inner product and radial basis functions for similar neighbor perception.

3. Problem Definition

This paper introduces a set of notations to describe a POI recommendation sys-
tem. The set of users, U, is represented as {u1, u2, · · · , uM}, where M is the number
of users. Each user is characterized by their ID and region information and is denoted
by um = 〈IDM, Region〉. The set of POIs is represented by P = {p1, p2, · · · , pN}, where
N is the number of POIs. Each POI is described by its ID, longitude, and latitude infor-
mation, represented by lN = 〈IDN , lonN , latN〉. The user-POI check-in matrix is denoted
as A ∈ RM×N , which is used to construct the user-POI bipartite graph, G = (W , E).
The node setW consists of user nodes and POI nodes, and E denotes the edge set. The
check-in behavior of users at different POIs is used to collect temporal information. The
user’s check-in temporal sequence and POI visited temporal sequence are represented by
Su = {p1, p2, · · · , pS} and Sp = {u1, u2, · · · , uS}, respectively, where S represents the
length of the sequence.

Based on the above information, the problem of POI recommendation is to make
recommendations of POIs in P to users, taking into account the constructed user-POI
bipartite graph G = (W , E) and incorporating the temporal information from the user’s
check-in temporal sequence and POI visited temporal sequence.

4. Methodology

In this section, we present our model in detail. RST-GCN improves GNN-based POI
recommendation algorithm by setting regional subgraphs to obtain similarity users’ high-
order interests and combining Transformer to obtain dynamic temporal features. Figure 1
shows the general architecture of RST-GCN.
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Figure 1. The general architecture of RST-GCN. 
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4.1. Temporal Feature Capture Layer

In this layer, we generate the user’s check-in temporal sequence Su = {p1, p2, · · · , pS}
and POI visited temporal sequence Sp = {u1, u2, · · · , uS}, where S is the length of the
temporal sequence. We designed the location encoding to efficiently capture the temporal
location embedding Vu =

{
v1

u, v2
u, · · · , vS

u
}

and Vp =
{

v1
p, v2

p, · · · , vS
p

}
. As in most of the

work, we add the position encoding to the embedding in the form of a sum, and the final
temporal user input embedding and final temporal user input embedding are denoted as
Tu =

{
e1

p + v1
p, e2

p + v2
p, · · · , eS

p + vS
p

}
, Tp =

{
e1

u + v1
u, e2

u + v2
u, · · · , eS

u + vS
u
}

, respectively.

For the above temporal user input embedding Tu =
{

e1
p + v1

p, e2
p + v2

p, · · · , eS
p + vS

p

}
,

the query, key, and value vectors are computed as follows and the self-attention function
can be formulated as:

hTu = so f tmax(
QKT
√

dk
)V (1)

Q = TuWQ, K = TuWK, V = TuWV , (2)

where hTu denotes the attention output embedding matrix; WQ, WK, and WV are the weight
matrices of query, key, and value; softmax function is used to normalize these scores into
attention weights; dk is the dimension of the K vector. Tp is also calculated in the same way.

We use multi-head attention to capture temporal information from different latent
perspectives and are fed into a feed-forward network (FFN). The final output is calculated
as follows:

hu = FFN(hTu
1 · · · || hTu

i · · · || hTu
k ) (3)

hp = FFN(h
Tp
1 · · · || h

Tp
i · · · || h

Tp
k ) (4)

where k denotes the number of attention functions.
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4.2. Regional-GCN
4.2.1. Embedding Layer

In the embedding layer, let EU ∈ RM×d be the user embedding matrix, EP ∈ RN×d be
the POI embedding matrix, which is the projection in the lower dimensional representation,
where d is the embedding size. The user-POI check-in matrix is denoted as A ∈ RM×N .
The user-POI bipartite graph G = (W , E) is constructed by the user-POI check-in matrix.
The set of nodes,W , comprises both user nodes and POI nodes, while E represents the set
of edges connecting these nodes. Direct interaction between the user and the POI as the
most reliable information will be updated by GCN aggregation and propagation.

4.2.2. Embedding Propagation Layer

Our model adapts the widely recognized and efficacious framework of LightGCN,
a GCN-based recommendation model, in its underlying architecture. By leveraging the
simplicity of the network structure demonstrated in LightGCN, we aim to develop a
recommendation model that is both performant and computationally tractable.

By constructing a regional subgraph, users with similar interests are classified using
graph spatial structure and geospatial features, and users of the same class are assigned
to the same regional subgraph, and one-hop neighbor POIs connected to the users are
also grouped into that regional subgraph. Therefore, the same POI may exist in multiple
region subgraphs, and users belong to only the regional subgraph in which they are located.
R = {r1, r2, · · · , ri} denotes the regional subgraph, where i denotes the number of regional
subgraphs. The way of constructing regional subgraphs will be elaborated in Section 4.2.3.
The initial embedding of all users and POIs are incorporated into the first-order graph
convolution operation to obtain the check-in relationship between every user and POI. This
is described as follows:

e(1)u = ∑i∈Nu

1√
| Nu |

√
| Np |

e(0)p (5)

e(1)p = ∑u∈Np

1√
| Nu |

√
| Np |

e(0)u (6)

where e(1)u and e(1)p represent the user and POI embeddings after the first convolution; e(0)u

and e(0)p represent the user and POI initial embedding matrices, respectively; Nu represents
the set of POIs visited by the user; Np represents the set of users who have visited POIs;

1√
|Nu |
√
|Np |

is used to achieve symmetric normalization.

Each convolutional layer processes only one order neighborhood information, incor-
porating a self-degree matrix and a normalization operation on the adjacency matrix. The
propagation formula is shown as follows:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)) (7)

In the high-order graph convolution calculation, through the division of regional
subgraphs, the user node belongs to only one of the regional subgraphs, but the POI
distribution lies in the subgraphs where all the user nodes associated with it are located,
and the POI embedding is the sum of the POI embeddings in all regional subgraphs, the
propagation through the k − 1 layer graph convolution is defined as:

e(k)u = ∑pr∈Nu

1√
| Nu |

√
| Np |

e(k−1)
pi (8)

e(k)pi = ∑u∈N i
p

1√
| Nu |

√
| Np |

e(k−1)
u (9)
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e(k)p = ∑s∈R e(k)pi (10)

where R denotes the set of each regional subgraph in which the POI is located; epi denotes
the embedding representation of the POI in the regional subgraph ri.

4.2.3. Regional Subgraph Construction

The regional subgraph setup module is designed to filter out the negative impact of
non-similar users and group users with similar interests into the same subgraph. The feature
vector representing each user is a combination of two parts: the user’s ID embedding after
first-order graph convolution, which provides information about the user’s relationship
with neighboring POIs (graph spatial features), and the user’s most frequently visited
location (geospatial features). To determine the most active geographic location of a user,
we use the latitude and longitude data of the POI that the user visits most frequently, which
is normalized before being used as an input feature.

Featureu = σ(W1(e
(1)
u + eup) + b1) (11)

where Featureu denotes the user feature vector used for classification; e(1)u is the user em-
bedding after first layer of graph convolution, representing the graph spatial structure
obtained by aggregating first-order neighbor POIs; eup is the representation of the geo-
graphic location where the user most frequently visits the POI; σ(·) we use LeakyReLU [24]
as the activation function; W1, b1 denote the weight matrix and bias vector, respectively.
After obtaining the user feature vector, we use a two-layer neural network to project the
obtained user feature.

U = W3(W2Featureu + b2) + b3 (12)

where U denotes the classification prediction vector obtained by projection, and users with
similar representations will be classified into the same regional subgraph. After generating
the specified number of regional subgraphs, users only aggregate neighbor information in
the regional subgraph where they are located and filter the neighbor relationships in the
non-regional subgraphs.

4.3. Using RST-GCN for Recommendation

In this paper, we construct a user-POI bipartite graph G = (W , E) using the user-POI
check-in matrix. We collect temporal information based on the check-in behavior of users
at different POIs and construct user check-in temporal sequence Su = {p1, p2, · · · , pS}
and POI visited temporal sequence Sp = {u1, u2, · · · , uS}. We use Transformer to obtain
the temporal features of each user node and POI node as part of the initial embedding
to participate in GCN. Then, we divide the regional subgraphs to shield the negative
information propagation of high-order non-similar users, and get the final embedding of
users and POIs by multi-layer GCN propagation. Finally, we rank the POIs and keep the
top k items as the recommended POIs.

4.4. Optimization

In this paper, we use the widely adopted BPR [25] algorithm to optimize the parameters
of the model.

Lpred = −∑ (u, p) ∈ R,
(u, z) ∈ R−

ln σ(ypred(u, p)− ypred(u, z)) + λ || Θ||22 (13)

where σ(·) is the sigmoid function; Θ is trainable parameters; λ controls the L2 regular-
ization strength;R is the existing user check-in behavior in the training dataset; andR−
represents the negative sampling strategy.
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5. Experiments and Results

In this section, we first present the experimental setup of this paper, which includes the
dataset, evaluation metrics, and baseline. Then, the experimental parameter settings of the
proposed method are analyzed. Finally, we describe the comparison of the experimental
results with other related methods and the results of the ablation experiments.

5.1. Experimental Setup
5.1.1. The Datasets

In order to validate the efficacy of our proposed approach, we have selected two well-
known, publicly accessible datasets in the domain of location-based social networks (LBSN),
namely Foursquare and Gowalla, for our experiments. These datasets have been extensively
used and validated in previous studies, and therefore serve as a reliable benchmark for the
evaluation of POI recommendation algorithms. The statistics of the dataset are presented
in Table 1.

Table 1. Statistics of datasets.

Dataset # of Users # of POIs # of Check-ins

Foursquare 24,941 28,593 1,196,248
Gowalla 18,737 32,510 1,278,274

In each of these datasets, we collected five key pieces of information pertaining to the
check-in behavior of users, specifically, the user ID, POI ID, latitude and longitude of the
POI, and the corresponding check-in timestamp.

In the preprocessing phase of the dataset, we mitigated the impact of users and POIs
with insufficient interactions by removing inactive users who had checked into fewer than
10 POIs and POIs that had been visited by fewer than 10 users. We then partitioned the
processed data into two segments, with an 8:2 ratio, for use as the training set and the test
set, respectively.

5.1.2. Evaluation Metrics

The proposed approach is evaluated using two commonly adopted metrics in the field
of POI recommendation, NDCG@K and Recall@K. The metrics are calculated based on
the average value obtained after multiple experiments, with K representing the number of
POIs recommended to each user, the metrics are calculated as follows:

Recall@K(u) =
1
| N |∑

N
u=1
| RK(u) ∩ T(u) |
| T(u) | (14)

NDCG@K =
1
| U |Σu∈U

ΣK
k=1

I(RK
k (u)∈T(u))

log (k+1)

ΣK
k=1

1
log (k+1)

(15)

5.2. Baselines

To verify the validity of our proposed RST-GCN method, we selected relevant baseline
methods for comparison, where the influencing factors in baselines are shown in Table 2.
These methods are described below.

Geo Teaser [26]: Geo Teaser uses geo-influence capture in user check-in temporal
sequence to learn the POI representation of certain specific moments, using geo-influence
to represent user preferences.

LightGCN [14]: LightGCN is a graph convolutional network model that removes
feature transformations and non-linear activation designs, which simplifies GCN to be
more suitable for collaborative filtering for recommendation tasks.

GeoMF [27]: GeoMF is a matrix factorization model that uses two-dimensional kernel
density estimation to explain the aggregation of geospatial regions.
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GPR [13]: GPR is a graph neural network-based geographic potential representation
model that uses graphical autoencoders to train incoming and outgoing influences, and
uses trained geographic potential representations to estimate users’ preferences.

GNN-POI [6]: GNN-POI is a model that uses graph neural networks to learn graph
spatial structure and combines bi-directional long short-term memory to simulate users’
continuous check-in behavior to obtain geographic and temporal features.

Table 2. Influential factors in baselines.

Graph Spatial Structure Sequential Effect Geographical Influence Temporal Influence

GeoMF

1 
 

✘ 

1 
 

✘ 4

1 
 

✘ 
GeoTeaser

1 
 

✘ 4 4 4

LightGCN 4

1 
 

✘ 

1 
 

✘ 

1 
 

✘ 
GPR 4

1 
 

✘ 4

1 
 

✘ 
GNN-POI 4 4 4 4

RST-GCN 4 4 4 4

‘

1 
 

✘ ’ indicates that the model does not involve the corresponding influence factor; ‘4’ indicates that the model
involves the corresponding influence factor.

5.3. Performance Comparison

In this section, we evaluate the experimental results of all methods on the datasets
Foursquare and Gowalla using the evaluation metrics of Section 5.1.2. Figures 2–5 depict the
results obtained from the experiment. The performance comparison results are summarized
as follows:

The data presented in the figure support the conclusion that our novel RST-GCN
approach is superior to all other baseline methods across both Foursquare and Gowalla
datasets, across all evaluation metrics. This observation underscores the strength of our
proposed technique. To unpack these results, comparison of each method and its corre-
sponding performance is shown below.
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The Geo-Teaser and GeoMF techniques in the baseline category are conventional
embedding-based methods that display lackluster performance across all metrics. It is
evident that utilizing the spatial topology of the graph and recursively updating the node
embeddings can more effectively express the user’s preferences. In comparison, GeoMF
outperforms Geo-Teaser due to its use of matrix decomposition to vectorize the user and
POI, while Geo-Teaser relies on the intersection of POI text information and geolocation
information for similarity calculation.

Excluding the aforementioned techniques, the RST-GCN approach outperforms all
other GNN-based methods across both metrics and datasets. (1) Compared with GPR,
GPR incorporates the outgoing geographical influence of the POI-POI directed graph as
a user part feature during information propagation, while representing the POI with the
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incoming geographical influence. However, GPR only models the relationship between
POIs in successive order in the temporal sequence. (2) Compared with GNN-POI, GNN-
POI leverages the BiLSTM method from the check-in sequence to acquire temporal features
as part of the user representation, thereby appending information regarding temporal
and geospatial features to the user and POI’s respective characteristics. Nevertheless, the
MLP model, as a classical feedforward neural network, disregards the interconnection
between nodes.
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The comparisons outlined above clearly illustrate the strength of our proposed frame-
work design: (1) we employ the structural features of the graph in combination with
geospatial features to segment the regional subgraphs, thereby mitigating the negative im-
pact of non-similar users in the information dissemination process; (2) we extract temporal
information from the temporal sequence to participate in the aggregation of neighbor-
ing information; (3) we utilize the self-attention mechanism and multi-headed attention
mechanism to further enhance performance.

As depicted in Figures 2–5, our method achieves significant improvement over the
strongest baseline method, with a 9.21% and 10.5% increase in the recall@20 and ndcg@20
metrics, respectively, for the Foursquare dataset. Similarly, for the Gowalla dataset, it
achieves a 5.96% and 7.81% increase in the recall@20 and ndcg@20 metrics, respectively.
These results highlight the efficacy and superiority of our proposed method over other
baseline and GNN-based methods.

5.4. Ablation Experiments

In this section, we set up ablation experiments based on the proposed approach,
removing the regional subgraph as well as the temporal feature capture layer, respectively,
to investigate the impact of the core content in the proposed model on the performance and
present the results in Table 3 with -R -T for each of the two variants. In terms of the results,
it is observed that both variants are weaker than RST-GCN, respectively, marking that both
designed components are to some extent able to facilitate the acquisition of user preferences.
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Table 3. Results of ablation experiments.

Method
Foursquare Gowalla

Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@10 NDCG@10 Recall@20 NDCG@20

RST-GCN -R 0.0839 0.0696 0.1288 0.0756 0.0884 0.0698 0.1375 0.0821
RST-GCN -T 0.0856 0.0703 0.1313 0.0775 0.0913 0.0715 0.1404 0.0832

RST-GCN 0.0922 0.0742 0.1447 0.0831 0.1062 0.0765 0.1547 0.0883

5.5. Parameter Sensitivity Analysis
5.5.1. Temporal Sequence Length

In this paper, we use temporal sequence to capture the dynamic interests of users. It
is difficult to obtain accurate preferences with short sequence length, and the computa-
tional complexity of the model’s multi-head self-attention mechanism increases when the
sequence length is too long. We need to set the optimal temporal sequence length according
to the properties of the dataset. We selected sequence lengths in the range {20, 30, 40, 50, 60,
100, 150} for comparison experiments and obtained the best settings for different datasets,
setting the temporal sequence length to 50 and 60 for the Foursquare and Gowalla datasets,
respectively, to obtain the best performance. As seen in Figure 6, the model performance
fluctuates and grows with increasing sequence length and decreases after achieving the
peak. The optimal temporal sequence length was found to be correlated with the average
length of user check-in sequences for different datasets (Foursquare: 47.96, Gowalla: 68.22),
so the sequence length can be selected for the new dataset in a targeted manner.
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5.5.2. Number of Regional Subgraphs

For the number of area subgraphs, we selected the values 1–5 for the corresponding
tests, where the value of 1 is used to set no regional subgraphs. The experimental results
are shown in the Figure 7 below, with the increase of the number of subgraphs, the similar
user grouping strategy becomes fine from coarse, users can get better information about
higher-order neighbors, and the reduction of non-similar users makes the experimental
performance gradually improves, and the best performance is obtained when the values of
3 and 4 are taken respectively. The performance does not increase significantly when the
value continues to grow, probably because the best number of similar users grouped in the
dataset has been obtained, and too many regional subgraphs are set to reduce the number
of similar users in the subgraph where the users are located, which reduces the number of
learnable neighbor embeddings and thus weakens the performance.
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6. Conclusions

In this study, we present a POI recommendation approach based on graph neural
networks (GNNs). Our method leverages the multi-head attention mechanism to capture
the temporal features of both the user’s check-in sequence and the POI visited sequence.
By using graph spatial structure and geospatial features to classify users into regional
categories, we construct regional subgraphs that allow users with similar preferences to
better learn from the node embeddings of their peers, thereby reducing the propagation of
information from non-similar nodes. Experiments conducted on real-world datasets, such
as Foursquare and Gowalla, have demonstrated the efficacy of our proposed approach.

In future work, we aim to further exploit user social relationship and behavioral
data to achieve precise user classification, which will enhance the embedding learning of
similar users within the regional subgraphs. Additionally, we will investigate more fine-
grained temporal sequence partitioning and optimization of temporal feature capturing by
incorporating aspects such as time intervals and periodicity.
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