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Abstract: Increasingly severe hydrological extremes are predicted for the Pannonian Basin as one of
the consequences of climate change. The challenges of extreme droughts require the adaptation of
agriculture especially during the intense growth phase of crops. For dryland farming, the selections
of the optimal land use type and sustainable agricultural land management are potential adaptation
tools for facing the challenges posed by increased aridity. To this end, it is indispensable to understand
soil moisture (SM) dynamics under different land use types over drought-affected periods. Within
the framework of a Slovenian–Hungarian project, soil moisture, matric potential and rainfall time
series have been collected at three pilot sites of different land use types (pasture, orchards and a
ploughland) in SW Hungary since September 2018. Experiments were carried out in soils of silt, silt
loam and clay loam texture. In the summers (June 1 to August 31) of 2019 and 2022, we identified
normal and dry conditions, respectively, with regard to differences in water balance. Our results
demonstrated that soil moisture is closely controlled by land use. Marked differences of the moisture
regime were revealed among the three land use types based on statistical analyses. Soils under
pasture had the most balanced regime, whereas ploughland soils indicated the highest amplitude of
moisture dynamics. The orchard, however, showed responses to weather conditions in sharp contrast
with the other two sites. Our results are applicable for loamy soils under humid and subhumid
temperate climates and for periods of extreme droughts, a condition which is expected to be the norm
for the future.

Keywords: drought; ecosystem services; land use; soil moisture dynamics; water stress

1. Introduction

Reports by the Intergovernmental Panel on Climate Change (IPCC) predict that the
increasing frequency of both extreme precipitation and prolonged drought periods is very
likely in the near future [1]. This pattern was exemplified in Hungary in 2010, with record
high annual precipitation totals, followed by the record low annual rainfall total of 2011.
However, thanks to the storage of surplus moisture from the previous year in soils, the
2011 drought did not cause remarkable losses in crop yields. Negative water balances,
water stress and drought will likely be manifested in diverse ways geographically in the
future [2]. Nonetheless, due to the rain shadow effect of the Alps and the Carpathians,
the Pannonian Basin will likely be affected by water shortages in the near future [3] and
alternating inundations by flash floods, inland excess waters [4–6] and soil erosion [7].

A novel element of sustainable adaptation to climatic conditions of negative water
balances could be integrated water management, equally directed to the prevention of
excess runoff and prolonged droughts [8,9]. In basin locations and areas of transit waters,
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such as the Pannonian Basin, water retention is of increasing importance [9,10]. This has
been crucial since the river regulation works in the early- and mid-1800s when water
conveyance had been accelerated artificially. Over the 1800s and 1900s, flood control
measures meant the cost-intensive construction of hydrologic structures (levees, dykes and
embankments). Nevertheless, recently, the negative consequences of the rapid conveyance
and limited storage of water through the Pannonian Basin have been recognized. The main
hydrological constraints are limited land availability and water retention and the reduced
storage capacity of the soil [11].

By recognizing the beneficial role of ecosystem services [12–14], a paradigm change
occurred in water management policies in many countries in Europe and North America.
Water conservation in a sustainable way has priority, especially in floodplains and low-lying
areas. Water should be retained in floodplains or various stormwater-mitigation facilities
(e.g., raingardens and flood retention pools), in natural and manmade reservoirs and other
water bodies instead of increasing the intensity of water conveyance [15].

Adaptation to the increased extremities of hydrologic phenomena (droughts and
floods) and the retention of water are indispensable in light of climate change [16]. There-
fore, analyzing the suitability of soil textural types, fertility, topography and crop varieties
may increase the profitability of the given land use type if managed site-specifically [17–20].

Hence, for sustainable site-specific best management practices, the re-evaluations of
landscape diversity and efficiency of increased water retention are essential [21]. As op-
posed to costly hydrologic structures that are often undesired for natural or seminatural en-
vironments [22,23], greener investments and eco-friendly solutions are needed [10], which
may comply with the EU Water Framework Directive or other similar frameworks [24–26].
To maintain a more balanced water budget in the long run, the following specific goals
should be stated [10]:

• decreasing hydrologic extremities;
• infiltration and subsurface recharge should be intensified over excess runoff;
• increased replenishment and recharge into the vadose zone as well as aquifers;
• canopy density and leaf area index (e.g., employing intercropping) shall be increased

to reduce throughfall and decrease evaporation loss.

Land use and management can significantly affect both atmospheric (e.g., greenhouse gas
emission rates and vapor content) and soil physical properties, including porosity hydraulic
conductivity [16,27], rate of infiltration, and volume of plant-available water [28–31]. Land
use changes may influence the intensity of certain elements of the water cycle, especially the
magnitude and time of evapotranspiration [32]. Fu et al. revealed the beneficial impacts of
intercropping and terraced agriculture on soil moisture [21]. Niu et al. demonstrated that
grasslands had the highest mean soil moisture contents among five different land use types
(grassland, cropland, poplar land, interdunes and shrubland) in north-eastern China [33]. The
degradation of physical soil properties can directly affect moisture dynamics in the vadose
zone. For example, soil productivity decreased by converting natural pastures to farmlands in
Iran [28].

The present paper reveals the findings of a Hungarian–Slovenian joint research project
titled “Possible ecological control of flood hazard in the hill regions of Hungary and
Slovenia”. The key objective of the project is providing data on moisture dynamics of
silty and loamy soils found on surfaces of high relief. The goal of this study is to present
the influence of land use type coupled with periods of different water balances (‘normal’
or dry summer periods) on moisture dynamics. According to our hypothesis, soils of
ploughlands should have a lower water retention capacity, whereas balanced moisture
dynamics characterize soils under closer-to-natural land use types. The novelty of our
paper is to provide data on the effect of agricultural land use types on soil moisture
dynamics. The selected area is markedly affected by a changing climate of increasing
aridity. Sustainable adaptation to changing climates at local scales helps in maximizing
the site-specific efficiency of ecosystem services. The present study complements previous
research carried out in Central Hungary [16].



Sustainability 2023, 15, 4925 3 of 15

2. Materials and Methods
2.1. Location of Study Sites

For the analyses, three sites were selected in the Transdanubian Hills (SW Hungary) in
the vicinity of the city of Pécs: at the villages of Boda (ploughland), Palkonya (orchard) and
Almamellék (pasture) (Figure 1). It is a region of a subhumid continental climate influenced
by the air masses (whether continental, Atlantic or Mediterranean) and the orographic
effect. Although in the long-term precipitation shows an increasing gradient towards the
western part of the country, in many years, field rainfall totals show a rather mosaic pattern.
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Figure 1. Location of the study sites on the digital elevation model (DEM) generated from a LiDAR
survey. (a) Almamellék (pasture); (b) Boda (ploughland); (c) Palkonya-Villánykövesd (orchard).

In all study sites, slightly eroded brown forest soils with clay illuviation (WRB: Endo-
calcic Luvisol) are found. All soils are formed on loess. The three sites are similar in terms
of textural type (silt and silt loam) and diagnostic soil type (Calcaric Phaeozem, WRB).

2.1.1. Ploughland Site (Foothills of the Mecsek Mountains)

This study site is located at a distance of 10 km west of city of Pécs, in the southern
footslopes of the Mecsek Mountains, gently sloping to the direction of the Pécs half-basin,
west of the village of Boda. The elevation of the lower and upper station is 172 and 182 m,
respectively (Table 1). The average slope for this site is 2.63◦, whereas the maximum is
6.48◦. The land use type is large-scale farming of conventional tillage, with sugar-beet,
cereals, sunflower, soybean and rape seed as the most common crops. In both study years,
this site was cropped with soybean. The distance between the two monitoring stations of
this site is 190 m. A derasional valley and an erosional gully are found at this site, uphill
and downhill of the lower station, which is located at the southern margin of a small grove.
These landforms and the grove likely influence the soil moisture budget around the station.

2.1.2. Orchard Site

The second study site lies at the southern edge of the village of Palkonya in the north-
western foreland of the Villány Hills. Land utilization is a cherry orchard. The parent
material is Pleistocene loess overlying a Mesozoic limestone. Elevation of the lower and
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upper stations is 175 and 182.7 m. The slope of the uphill station is steeper, with an average
slope of 18◦, whereas the slope is gradually decreasing to a footslope position closer to the
foothill station and the reservoir located in the valley bottom. The two stations of this site
were installed at a distance of 156 m.

Table 1. General geographical parameters of the three study sites.

Slope (◦)
Village Name Site Area (ha) Position EOV X (m) EOV Y (m) Elevation (m) Min Max Mean

Almamellék 7.4
Foothill 556,430.4 90,123.7 126.1

0.85 17.4 6.19Uphill 556,590.7 90,108.8 141.2

Boda 16.32
Foothill 571,380.0 81,182.9 175

0.02 6.48 2.63Uphill 571,518.2 81,322.1 182.7

Palkonya 6.85
Foothill 599,400.2 61,098.8 112.6

3.09 9.7 5.92Uphill 599,407.4 61,201.5 124.6

2.1.3. Pasture Site

This study site is situated in the Zselic Hills, where the elevation of the lower and
upper is 112.6 and 124.6 m, respectively. The average slope in the Almamellék site is 5.92◦

uphill from the uphill station, whereas it reaches a maximum of 9.7◦ immediately downhill
from the upper station. Furthermore, the land is utilized here as a natural pasture and
meadow. The monitoring stations are located at a distance of 167 m from each other.

2.2. Field Monitoring Setup

To track local moisture dynamics, SM monitoring was installed for each study site
in December 2018. At each site, two monitoring stations were deployed. Rainfall was
measured using tipping-bucket rain gauges (ECRN-100, Meter Group Inc., Pullman, WA,
USA) of 0.2 mm resolution. Rain gauges as well as WP4 temperature and relative humidity
sensors were installed only at the uphill stations. At both stations of each site, TDR-type
soil moisture sensors (Meter Group Inc., Teros 12) and tensiometers (Teros 21) were used
to measure volumetric water contents and matric potential, respectively. At each station,
4 sensors were deployed at depths of 10 and 30 cm (one soil moisture sensor and one
tensiometer at each depth). The depths were selected based on soil type (loamy soil) and
the typical crops grown in SW Hungary. Soils to a depth of 30 cm experienced the largest
fluctuation in soil moisture. TDR sensors had been laboratory-calibrated prior to their
installation in the field. Data were logged and stored with EM-60 data loggers at a time
interval of 15 min.

2.3. Particle Size Analysis of the Soil Samples

Soil samples were taken from the depths of the sensors. Organic matter and CaCO3
were removed from the samples using H2O2 and 10% HCl, respectively. The grain size
distribution of the soil samples was determined with static light scattering using a Malvern
MasterSizer 3000 (Malvern Inc., Malvern, England, United Kingdom) particle size ana-
lyzer. The textural type was determined using an MS Excel macro (https://www.nrcs.
usda.gov/resources/education-and-teaching-materials/soil-texture-calculator, accessed
on 10 January 2023) and clay–silt and silt–sand boundaries at 2 and 63 µm, respectively.

2.4. Calculation of the Pálfai Drought Index and the Aridity Indices

The Pálfai Drought Index (hereafter PaDI, [34]) was calculated for the three study sites
using mean monthly temperatures and weighted monthly precipitation totals. Potential
evapotranspiration was calculated using the Thornthwaite equation [35,36], widely applied
for the estimation of PET under humid and subhumid temperate climates.

2.5. Analysis of Field Data

The field data were statistically analyzed using MATLAB R2020b and MS Excel pro-
grams. The statistics focused on descriptive statistical parameter calculations (mean, me-

https://www.nrcs.usda.gov/resources/education-and-teaching-materials/soil-texture-calculator
https://www.nrcs.usda.gov/resources/education-and-teaching-materials/soil-texture-calculator
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dian, standard deviation, minimum, maximum and range of the data). Boxplots were
generated by the MATLAB program from raw data (excluding missing or inappropriate
values). The general description of the boxplots was the following: the boxes’ sizes show
the interquartile range (IQR, data fall into 25–75% percentile), the median was plotted on
the boxplots (red lines) and the outliers were measured (all variables located at a distance
from the median 1.5 times larger than the IQR were outliers). The whiskers showed the
5–95% percentiles.

3. Results
3.1. Soil Textural Types

Soil texture at the three sites was dominated by the silt fraction, hence the soils were
classified as either silt or silt loam types (Table 2). In general, all samples of the ploughland
and the foothill pasture had higher sand content (24–32%) than the other sites.

Table 2. Fine earth fractions and textural types of the soils of the monitoring sites.

Land Use Depth [cm] Slope Position Clay [%] Silt [%] Sand [%] Textural Type

Pasture 10 Uphill 4.88 95.02 0.10 Silt
Pasture 30 Uphill 4.56 87.79 7.65 Silt
Pasture 10 Foothill 2.48 72.56 24.96 Silt loam
Pasture 30 Foothill 2.87 64.53 32.60 Silt loam
Orchard 10 Uphill 4.43 86.56 9.01 Silt
Orchard 30 Uphill 6.63 93.37 0.00 Silt
Orchard 10 Foothill 3.68 86.97 9.35 Silt
Orchard 30 Foothill 4.08 86.56 9.36 Silt

Ploughland 10 Uphill 1.23 73.95 26.05 Silt loam
Ploughland 30 Uphill 0.75 69.24 30.76 Silt loam
Ploughland 10 Foothill 0.80 72.10 27.90 Silt loam
Ploughland 30 Foothill 1.21 75.67 24.33 Silt loam

3.2. Water Balance

Rainfall distribution showed a rather contrasting picture among the three sites. The
highest rainfall for both the summer and the period of January to August was measured
for the orchard site in 2019 and for the pasture in 2022, whereas the lowest rainfall total in
2022 was observed in the orchard (Table 3).

Table 3. Precipitation totals [mm] for the periods of January to August and June to August, 2019
and 2022.

Land Use 2019 2022

1–8 6–8 1–8 6–8

Pasture 469.7 187.4 390 180
Ploughland 466.7 185.3 310.4 163

Orchard 516.7 265.3 231.7 115

Both the antecedent (January to May) and summer precipitation of all three study sites
indicated marked contrasts between the two studied years (Figure 2). January and May’s
monthly precipitation totals demonstrated the largest variation between 2019 and 2022.

Mean monthly temperatures showed a less diverse pattern than rainfall among the
three sites. Both the highest mean annual and the highest summer mean temperatures were
recorded in the orchard in 2019 and 2022 (Table 4). Consistently, the lowest temperatures
were registered at the pasture in both studied years. Mean summer and mean annual
temperatures were about 1 ◦C and 0.2 ◦C higher in 2022 than in 2019, respectively. The
differences between spring season average temperatures were minor; however, the growing
season temperature at all sites was about 0.7 ◦C higher in 2022 than in 2019. The greatest
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variation was measured in autumn and differed by 0.8 to 1.1 ◦C from site to site (higher
in 2019).
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Figure 2. Monthly precipitation totals from January to August in (a) 2019 and (b) 2022.

Table 4. Mean annual, growing season (April–October), spring (March to May), summer (June to
August) and autumn (September to November) temperatures [◦C] in 2019 and 2022.

Land Use Annual Growing Season Spring Summer Autumn

2019 2022 2019 2022 2019 2022 2019 2022 2019 2022
Ploughland 12.17 12.29 17.4 18.1 11.2 11.4 22.28 23.31 12.7 11.5
Orchard 12.66 12.81 17.8 18.5 11.7 11.8 22.69 23.60 13.3 12.2
Pasture 12.02 12.18 17.1 17.8 11 11.3 21.91 22.89 12.5 11.5

The higher summer temperatures and lower precipitations of 2022 compared to
2019 generated significant differences in PET, aridity index and PaDI both seasonally
and annually. Monthly potential evapotranspiration revealed the greatest variations be-
tween 2019 and 2022 in the summer months. The close-to-record temperatures in July
(Tmax = 39.2 ◦C in Palkonya) generated a monthly PET of almost 160 mm at all three sites.
The largest differences in PET were registered in May.

PaDI and the aridity index demonstrated great variations between the two studied
years. Due to the high rainfall totals of 2019 at the orchard site, its PaDI did not indicate any
water stress in the first study year, whereas the other two sites had a PaDI of 4.2 and 4.6
which referred to mild drought conditions. Although drought conditions remained in the
class of mild drought in 2022 at the pasture and the ploughland, all three sites experienced
water stress with the highest increase in PaDI at the orchard site, which entered the class of
moderate drought (Figure 3a).

Aridity indices were around 1 in 2019 (common for Hungary since the onset of
meteorological measurements), whereas they turned into a negative water balance (AI > 1)
for the ploughland and the orchard by 2022 (Figure 3b).

Figure 4 shows the aridity index, total monthly precipitation and monthly evapotran-
spiration in 2019 and in 2022 for the ploughland, pasture and orchard locations. All sites in
2022 experienced semiarid or arid conditions especially during the growing season (from
April to October), except for September. However, in 2019 aridity was less severe, but still
reached the semiarid category during this most critical season. The orchard site remained
under subhumid conditions. Compared to Figure 4 (PaDI), the orchard site showed more
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intense drought in 2022, since over the growing season it experienced a lower amount of
plant-available water (less precipitation) against high evapotranspiration.
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In terms of the average aridity index, precipitation and evapotranspiration, summer
periods had intensively critical values for almost all sites, especially in 2022. The main
difference was found in the growing season when higher evapotranspiration and lower
precipitation in 2022 resulted in more arid conditions (Table 5). Nevertheless, on an annual
basis and in autumn the differences were negligible. During the winter of 2021/2022, all
sites received a substantial precipitation amount, but this was not able to compensate for
the low rainfall during the growing season in 2022. It is to be pointed out that in 2021 the
summer, and, in fact, the entire growing season were also moderately dry (mild drought,
with around PaDI = 5, not shown here).

Table 5. Summary statistics of the annual, growing season (April–October) and seasonal (spring,
summer, autumn and winter. Seasons are the same as in Table 4, and the winter periods have been
selected as the following: 2018/2019: December 2018–February 2019 and 2021/2022: December
2021–February 2022 mean of aridity index (AI), precipitation (P) and evapotranspiration (ET0).

Annual Growing Season Spring Summer Autumn Winter
2019 2022 2019 2022 2019 2022 2019 2022 2019 2022 2018/2019 2021/2022

Pasture
P 59.5 62.2 67.7 79.6 76.7 73.9 62.5 60 59.3 90.8 22.7 44.5

ET0 58.9 60.4 90.8 95.9 50.6 54.8 130.1 137.2 49.6 43.7 - -
AI 1.2 1.4 1.7 2.1 1.1 0.8 2.3 3.8 1.2 0.6 - -

Ploughland

P 57.5 51.4 66.8 54.8 70.9 64.8 61.8 54.3 54 69.1 29.4 41.3
ET0 59.6 61.1 92.3 97.6 50.9 54.9 132.5 140.2 50.1 43.7 - -
AI 1.2 1.7 1.8 2.7 1.0 1.4 2.7 3.8 1.1 1.2 - -

Orchard
P 60.1 43.8 79.2 47.3 67.9 41.3 88.4 38.3 52 72.6 18.4 33.0

ET0 60.9 62.5 93.9 99.0 52.3 56.2 134.8 141.7 51.2 45.4 - -
AI 1.2 1.8 1.3 2.8 2.2 1.7 1.5 4.0 1.1 1.3 - -
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3.3. Soil Moisture Regime

In general, the SM regime showed a rather variable picture for the three study sites.
On average, the natural pasture had the highest volumetric water content and soils and
that site had the most responsive behaviour to rainfall events. The foothill site of the
ploughland, however, had the lowest SM contents and the least variability of SM among all
sites (Figure 5). The orchard site revealed a contrasting picture between the two studied
years due to (i) necrosis, tree removal above the upper monitoring station and (ii) the
markedly less precipitation in 2022 compared to 2019. While the moisture regime at this
site demonstrated a great variability in 2019, the SM content showed a monotonously
decreasing trend over the summer of 2022.
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for (a–f) 10 cm and (g–l) 30 cm. The values on the right upper corners in subplots from (a) to (f)
represent the precipitation amount during the summer (June to August).
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The statistics of SM indicated marked variations among the three land use types.
Commonly, the pasture showed the highest SM content, and the ploughland had the lowest
median SM values. The footslope station of the ploughland revealed the lowest SM content
and the lowest SM range, likely influenced by the grove uphill. On the other hand, the
orchard showed the greatest range of SM over the two studied summers due to its extreme
water balance and the removal of tree canopy at the upper station (Figures 6 and 7). The
natural pasture presented the greatest water stress tolerance and the most homogeneous
water dynamics among the three land use types. At all stations, mean and median SM
contents in 2022 were either equal to (at the ploughland footslope, 30 cm) or lower than
those in 2019 (at all other stations).
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4. Discussion

Our research confirmed former results [16,21,27,30,37–45], i.e., moisture content of
the vadose zone is markedly influenced by land use type, distance from landscape and
morphological features, local water and moisture balance and soil texture.

In both summers, the most optimal moisture content (i.e., the highest median with
the lowest variability) was revealed in the pasture. The highest median SM content was
found here over both studied summers. A higher drought risk during the two studied
summers was found both at the ploughland and the orchard. SM contents were low in
the ploughland on many occasions and for prolonged periods in 2019, during which the
matric potential fell below the permanent wilting point (data are not shown here). The
longest of such periods lasted for 73 and 101 days in 2019 and 2022, respectively, at the
upper station of the ploughland. According to our a priori hypothesis, the ploughland
should have had a large evaporation loss and hence low mean SM content. Yet, due to the
dense canopy cover of soybean until late September, evaporation loss caused by direct solar
radiation was limited. The orchard performed well when the canopy was present at the
site (in 2019); however, when the land use type was changed by 2022, its water retention
capacity deteriorated. As a consequence, the orchard showed a markedly more negative
water balance in 2022 compared to 2019, further exacerbated by the effect of the absence of
canopy. The negative water balance of 2022 in the orchard produced the lowest median SM
content at both monitored depths of the upper stations.

Our results have been partly confirmed by the findings of Wang et al. [46], who found
the second highest SM content in grasslands in eastern China. Nonetheless, in their study,
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corn had the highest SM content due to the reduced evaporation from the soil. However,
Shi et al. [47] pointed out that intense transpiration created extreme water stress in orchards
in the Loess Plateau of China, underpinning our result concerning the high variations of
SM at the orchard site.

Opposed to the findings of Tölgyesi et al. [48], we did not find compelling evidence
of the drying effect of trees in the top 30 cm of the soil. This may be explained by (i) the
removal of trees, (ii) the finer soil textural types of our site and (iii) the extreme water
balance of the orchard site in 2022 compared to the ploughland and the pasture. Our results,
however, indicated the enhanced water retention and water storage capacity of the soil
due to the canopy cover and shading of the orchard (cherry) trees during the summer
of 2019, and hence contributed to the overall roles of natural ecosystem services. This
finding is corroborated by the results of Syrbe and Grunewald [41] and Ribeiro and Šmid
Hribar [49]. In a good agreement with the findings of the present study, previous studies
also demonstrated the benefit of low-impact agricultural practices for the reduction or
possibly the termination of the decline of plant-available water [50,51].

Depending on the water balance and the proximity of the groundwater table, the
direction of water motion may differ temporally or seasonally. During the summer, ac-
cording to matric potential data, capillary rise was common at all monitoring stations [30].
Such capillary rise-dominated periods were intermittently interrupted by intense infiltra-
tion events such as surface runoff and probably also through flow rates also intensified
during heavy thunderstorms (e.g., 2 August 2019: 51.5 mm and 9 June 2022: 55.2 mm).
Leitinger et al. revealed the marked influence of the slope gradient on the distribution of
SM along the hillslope in the Eastern Alps [40]. They also found a significant influence
of water balance and land management type on infiltration and surface runoff [40]. Their
findings revealed the impact by cattle trampling and treading; however, at our pasture site,
no grazing animals were kept.

5. Conclusions

The marked variations among the three study sites can be partially explained by
the difference in land use types, whereas the contrast between 2019 and 2022 can be
explained by the influence of water balance. The most stable behaviour was found for
the natural grazing land in both years. Our hypothesis, however, according to which the
ploughland should have demonstrated the worst moisture dynamics, was not proven,
especially in 2022. This is likely attributed to the (i) spatial variability of water balance
and (ii) crop type, as soybean forms a relatively dense canopy early in the growing season
and harvesting is commonly timed to late September and early October in SW Hungary.
Hence, evaporation loss from the soil due to direct irradiation is limited. A third possible
reason for the observed variation among the three sites is the insufficient spatial resolution
of field-monitored SM data.

Our result may be utilized by stakeholders in the field of agricultural and farming
businesses especially under subhumid climates of the temperate zone.

Although tackling the challenges posed by drought is not a novel phenomenon in the
Pannonian Basin, adaptation to altered climates is not just an option presently: it is crucial.
Therefore, a long-term analysis of climatic trends and water budget is indispensable, similar
to the site-specific differentiation and optimization of agriculture. The present study aimed
at providing data for studies of this type and delivering a more accurate understanding of
these processes with the aim to adjust ecosystem services at a local scale. The present study
could be improved with analyses performed (i) under more controlled conditions, (ii) within
a more restricted geographical area, (iii) using hydrologic models and (iv) estimating local
water balances at a higher spatial resolution.
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14. Dezső, J.; Lóczy, D.; Salem, A.M.; Nagy, G. Floodplain Connectivity. In The Drava River: Environmental Problems and Solutions;
Lóczy, D., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 215–230. [CrossRef]

15. Lóczy, D. Hydromorphological-Geoecological Foundations of Floodplain Management: CaseS from Hungary; Lambert Academic Publish-
ing: Saarbrücken, Germany, 2013; 382p.

16. Horel, Á.; Zsigmond, T.; Farkas, C.; Gelybó, G.; Tóth, E.; Kern, A.; Bakacsi, Z. Climate Change Alters Soil Water Dynamics under
Different Land Use Types. Sustainability 2022, 14, 3908. [CrossRef]

17. Abdelkadir, A.; Yimer, F. Soil water property variations in three adjacent land use types in the Rift Valley area of Ethiopia. J. Arid
Environ. 2011, 75, 1067–1071. [CrossRef]

https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf
https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf
http://doi.org/10.3390/su12051743
http://doi.org/10.1016/j.ejrh.2019.01.002
https://www.igipz.pan.pl/tl_files/igipz/ZGiHGiW/sgcb/sgcb_40/sgcb_40_07.pdf
https://www.foldrajzitarsasag.hu/downloads/foldrajzi_kozlemenyek_2010_134_evf_3_szam.pdf
https://www.foldrajzitarsasag.hu/downloads/foldrajzi_kozlemenyek_2010_134_evf_3_szam.pdf
http://doi.org/10.5772/28775
http://doi.org/10.3986/AGS.8754
http://doi.org/10.2166/wp.2015.009
http://doi.org/10.3986/AGS.7675
http://www.ecrr.org/Portals/27/Publications/NWRMpublication.pdf
http://doi.org/10.1080/03650340.2019.1566710
http://doi.org/10.1016/j.biocon.2008.02.019
https://cices.eu/content/uploads/sites/8/2009/11/CICES_Update_Nov2011.pdf
https://cices.eu/content/uploads/sites/8/2009/11/CICES_Update_Nov2011.pdf
http://doi.org/10.1007/978-3-319-92816-6_14
http://doi.org/10.3390/su14073908
http://doi.org/10.1016/j.jaridenv.2011.06.012


Sustainability 2023, 15, 4925 14 of 15

18. Jakab, G.; Németh, T.; Csepinszky, B.; Madarász, B.; Szalai, Z.; Kertész, Á. The influence of short term soil sealing and crusting on
hydrology and erosion at Balaton Uplands, Hungary. Carpathian J. Earth Environ. Sci. 2013, 8, 147–155.
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