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Abstract: Steel corrosion poses a serious threat to the structural performance of reinforced concrete
(RC) structures. Thus, this study evaluates the flexural capacity of RC beams through machine
learning (ML)-based techniques with six parameters used as input features: beam width, beam
effective depth, concrete compressive strength, reinforcement ratio, reinforcement yield strength,
and corrosion level. Four single and ensemble ML models are evaluated; namely, decision tree,
support vector machine, adaptive boosting, and gradient boosting. Hyperparameters of each model
were optimized using grid search and K-fold cross-validation with root mean squared error used
as the performance index. The predictive performance of each model was assessed using four
statistical performance metrics. The analysis results demonstrated that the decision tree model
exhibited overfitting and limited generalization ability. The adaptive boosting model also had a slight
overfitting issue. In addition, the support vector machine reported comparable accuracy to that of
adaptive boosting. Conversely, the proposed gradient boosting ensemble model achieved the best
performance with strong generalization ability, as indicated by its lowest mean absolute error of
2.78 kN.m, mean absolute percent error of 13.40%, and root mean squared error of 3.56 kN.m, and the
highest coefficient of determination of 97.30% on the test dataset. The optimized gradient boosting
model has been deployed into a graphical user interface, allowing for practical implementation of
the model and enabling fast, efficient, and intelligent prediction of the flexural capacity of corroded
RC beams.

Keywords: flexural capacity; beams; corrosion; artificial intelligence; machine learning; GUI

1. Introduction

Steel corrosion puts reinforced concrete (RC) structures at a risk of severe premature
deterioration due to its association with drastic damages, lifespan shortening, and costly
maintenance [1]. The generation of steel corrosion in RC members occurs mostly in aggres-
sive marine environments [1]. The global maintenance and rehabilitation costs of corroded
RC structures are estimated at USD 100 billion [2]. Additional costs estimated at 10 times
the maintenance cost are assigned to road closures, traffic diversions, and public distur-
bance, harshly affecting the countries’ economy and population’s comfort [3]. Therefore,
investigation related to the residual strength of RC members is currently of significant
interest to researchers worldwide.

Constructing RC structures in corrosive mediums without considering corrosion
susceptibility can lead to detrimental effects on the elements’ reinforcement, concrete
surface, and bond strength with steel bars, which subsequently degrade the bending
capacity of the members [4–6]. Particularly, corrosion decreases the cross-sectional area
of the rebars, thereby affecting the overall structural performance of the buildings [4]. In
addition, corrosion products expand the volume of reinforcement and therefore crack and
spall of the concrete cover and, in turn, reduce the effective height and cross-sectional
reinforcement area of the RC members [5]. Moreover, the corrosion products generated at
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the concrete-reinforcement interface reduce the adhesion of the composite and deteriorate
the bars’ ribs and consequently decrease the bond strength, which can worsen the stress
transfer mechanism between concrete and reinforcement and tension stiffening of the
corroded elements [6].

Several research studies have explored the potential risk and countermeasures of steel
corrosion on the flexural behavior of RC beams and slabs [7–11]. Three types of corroded
specimens were considered in the previous studies; namely, specimens exposed to natural
corrosive environments, specimens extracted from existing structures, and specimens
corroded using the impressed current/voltage techniques with a target corrosion level (CL).
Whereas the first and second specimen types might not be easy to prepare and test, the third
method is the easiest and fastest for laboratory investigation [7–10]. Almusallam et al. [7]
reported that RC slabs with a CL of 5% had a reduction of 25% in the flexural strength.
However, the drop in the flexural capacity was increased to 60% when the CL increased to
25%. Rodriguez et al. [8] pointed out that the structural capacity of corroded RC beams is
reduced due to the spalling and cracking of concrete. Mangat and Elgarf [9] demonstrated
that the degradation of the flexural strength is primarily caused by a steel-concrete bond
deterioration. Huang and Yang [10] suggested that the reduction of the ultimate strength
of corroded RC beams is related to the concrete properties and concrete cracks.

Few analytical models are currently available to evaluate the residual flexural capacity
of corroded RC beams [12,13]. Likewise, limited studies have been involved to predict the
residual flexural capacity of corroded RC beams from a set of numerical data [2]. Even
though the established analytical and numerical models have incorporated factors such
as corrosion level, bond strength, and beams’ geometries, they still suffer from a lack of
prediction accuracy. This is because the models are developed deterministically, based on
limited levels of parameters. Therefore, it is vital to develop a more reliable and accurate
model to enhance the prediction of the flexural capacity of corroded RC beams. Recently,
machine learning (ML) algorithms have emerged as a popular approach for improving
the accuracy of predictive models owing to their ability to identify complex and nonlinear
relationships between the independent and dependent variables [14–18].

Previous studies have demonstrated the effectiveness of ML models in estimating
the structural performance of both concrete [18,19] and steel [20] structures, resilience and
livability assessment of smart cities [21], and seismic risk assessment [22]. However, there
is a dearth of research employing ML-based models in predicting the flexural capacity
of corroded RC beams. Thus, this study aims to evaluate the efficiency of various ML
models in predicting the residual flexural capacity of corroded RC beams. A comprehen-
sive dataset of the flexural behavior of corroded RC beams was collected from previous
studies [8,12,13,23–27]. The dataset was then randomly split into 80% training data and
20% test data. Different single and ensemble ML models were then trained and evaluated
to select the best predictive model. Finally, the most effective model was integrated into a
graphical user interface (GUI) for practical implementation, allowing fast, accurate, and
intelligent prediction of the flexural capacity of corroded RC beams.

The remainder of this paper is structured as follows: Section 2 presents the research
significance, Section 3 presents the methodology, and Section 4 discusses the results. Lastly,
in Section 5, the paper concludes by pointing out the limitations of this study and recom-
mendations for future research.

2. Research Significance

As has been highlighted in the introduction, steel corrosion is a major threat to the
flexural performance of RC beams, and there is a need to consider the corrosion effect in
evaluating the residual flexural capacity of corroded RC beams. However, there is currently
no available data-driven model for evaluating the flexural capacity of corroded RC beams.
Therefore, the novelty of this study lies in the implementation of data-driven ML models to
develop accurate predictions for the flexural capacity of corroded RC beams. Furthermore,
a novel user-friendly GUI-based tool has been developed for practical implementation of
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the ML model, enabling fast, accurate, and intelligent prediction of the flexural capacity of
corroded RC beams. The main objectives of this study are as follows:

1. To develop ML predictive models that can accurately estimate the flexural capacity of
corroded RC beams.

2. To evaluate and compare the performance of various ML models using statistical
indices such as mean absolute error (MAE), mean absolute percent error (MAPE), root
mean squared error (RMSE), and coefficient of determination (R2) and select the most
accurate and reliable predictive model.

3. To develop a graphical user interface for the best predictive model, which facilitates
its practical implementation and enables fast, accurate, and intelligent prediction of
the flexural capacity of corroded RC beams.

3. Material and Methods

The methodology adopted in this study is summarized in Figure 1 and discussed in
the following subsections.

Figure 1. Flowchart of procedures adopted in this study.

3.1. Research Database

The first step involved compiling a database of the flexural capacity of corroded RC
beams, as illustrated in Figure 1. The database developed in this study consisted of the flexu-
ral capacity of 115 corroded RC beams obtained from the published literature [8,12,13,23–27],
particularly 16 sets from Rodriguez et al. [8], 24 sets from Azad et al. [12], 36 sets from
Azad et al. [13], 5 sets from El Maaddawy et al. [23], 20 sets from Xia et al. [24], 11 sets from
Wang et al. [25], 6 sets from Tan and Nguyen [26], and 8 sets from Yalciner et al. [27]. It is
worth noting that all the beams in the constructed database were subjected to accelerated
corrosion. As illustrated in Figure 2, the database employed included 6 input features with
a wide range of concrete and reinforcement characteristics, beam geometry, and mass losses
of corroded bars due to the chloride ingress. The input parameters were the beam width
(b), beam effective depth (d), concrete compressive strength ( f ′c), reinforcement ratio (ρ),
reinforcement yield strength (fy), and corrosion level (CL).
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Figure 2. Distribution of the input parameters.

Figure 2 displays the statistical characteristics of the input parameters, which can be
summarized as follows:

• Concrete compressive strength: the beams considered in this database had concrete
compressive strength in the range of 25 MPa 62.62 MPa.

• Beam geometry: the beams’ widths ranged between 80 mm and 250 mm, and the
beams’ effective depths were in the range of 96 mm to 359 mm.

• Reinforcement characteristics: the yield strength of steel reinforcement varied from
334 MPa to 593 MPa.

• Reinforcement ratio: the beams’ reinforcement ratios ranged between 0.0045%
and 1.84%.

• Mass loss: the mass loss of the beams, which was expressed as the CL, varied between
0% and 34.8%.

Moreover, statistical measures in terms of the histogram distribution for each parame-
ter and Pearson correlation coefficient (r) between the inputs are provided in a 6 × 6 matrix
in Figure 2. In addition, the matrix illustrates the scatter plots of the variables in the upper
and lower triangular matrices.

In the subsequent step, the compiled database was randomly split into training and
test datasets, comprising 80% and 20% of the complete dataset, respectively. These datasets
were then employed to train and evaluate various machine learning models, as depicted in
Figure 1. A brief background of the ML models is provided in the following subsection.
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3.2. Machine Learning Models

This study aimed to identify the most accurate and reliable predictive model for esti-
mating the flexural capacity of corroded RC beams, as depicted in Figure 1, by establishing
four ML models. Initially, single ML models such as support vector machine (SVM) and
decision tree (DT) were developed to predict the flexural capacity of corroded RC beams.
However, due to the complex nature of flexural behavior in RC beams with corrosion,
ensemble ML models, specifically adaptive boosting (ADB) and gradient boosting (GB),
were employed to improve the predictive capability and reduce the error of the ML models.

3.2.1. Single ML Models
Support Vector Machine

SVM is a supervised ML algorithm that can be used for regression and classification
problems. The input features in the SVM algorithm are mapped to a high-dimensional
space using a fitting procedure. For N number of training datasets {(xi, yi)}N

i=1εRQ × R,
SVM estimates the parameters of a regression function (Equation (1)) by minimizing the
regularized risk function (Equation (2)), which is conditioned by Equations (3)–(5) [28].

f (x) = w.φ(x) + b (1)

τ(w, ξ, ξ∗) =
1
2
‖w‖2 + C

1
2

n

∑
i=1

(ξi + ξ∗i ), i = 1, 2, . . . , n (2)

(w.φ(x) + b)− yi ≤ ε + ξi, i = 1, 2, . . . , n (3)

yi − (w.φ(x) + b) ≤ ε + ξ∗i , i = 1, 2, . . . , n (4)

f (x) = w.φ(x) + b (5)

ξi, ξ∗i ≥ 0 (6)

where ξi and ξ∗i are the slack variables, w is the weight vector, b is the bias, ε is the Vapnik’s
insensitive loss, and C is the regularization parameter.

The prediction of the SVM algorithm is achieved as per Equation (7) [29,30]:

f (x) = ∑
iεSV

(αi − α∗i )K(xi, x) + b subject to αi, α∗i ε[0, C] (7)

where SV stands for support vectors, K(xi, x) is the kernel function, b is a bias, C is the
regularization parameters, and αi and α∗i are the Lagrange multipliers of the lower and
upper SV, respectively.

Decision Tree

The DT algorithm is a widely used supervised algorithm and is considered the base
learner for many advanced algorithms. It is a non-parametric algorithm that can be used
for classification and regression analyses by constructing a flowchart-like structure [31].
The algorithm is known for its ease of data preprocessing, visualization, and interpretation,
as well as being unaffected by outliers. The DT algorithm is composed of three main nodes:
root, internal, and leaf. The root node identifies the main characteristic of the data, and the
internal and leaf nodes are branched from the root nodes. Each internal node represents a
test on an attribute, and the leaf node covers the response prediction.

The tree predictor is developed by iteratively partitioning the input space RN into
K distinct subspaces {R1, . . . , RK}, in which aggregation occurs for observations with
similar targets. This is accomplished by using the Gini Index and mean squared error
for classification and regression problems, respectively [32]. A minimal cost-complexity
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pruning algorithm is then utilized to trim the tree and avoid overfitting the DT model [32].
The DT model can be defined as per Equation (8):

h(x) =
K

∑
k=0

bk I(xεRk)
(8)

where Rk is the kth distinct subspace, bk is the prediction of the subspace Rk, and I(xεRk)
is

the indicator function (I(xεRk)
= 1 when x ∈ Rk).

Single DT algorithms have weaknesses in terms of data generalization, high variance,
and bias. To address this problem, ensemble models are employed, as discussed in the
following subsection.

3.2.2. Ensemble ML Models

Ensemble algorithms are a more advanced ML technique that seeks to reduce bias and
variance and improve the prediction performance of single models. This is accomplished
by sequentially combining multiple weak learners (in this study, DT) to create a single
strong learner. Boosting ensembles are the most frequently used ensemble models. Details
of the boosting ensembles are provided in the following subsections.

Adaptive Boosting

The first boosting algorithm to be developed was ADB. The ADB algorithm trains
and reweighs weak learners (DT in this study) iteratively over multiple training rounds
to correlate inputs (X) with the output (Y) parameter. The weighting vector is adjusted
during each training process to account for misclassified instances from previous iterations
(excluding the first iteration). Given a training dataset of Z samples in Equation (9), the
ADB algorithm iteratively trains several base learners ft(X) to construct a single improved
model F(X), see Equation (10):

(X, Y) = {(Xi, Yi)}Z
i=1 (9)

where Xi represents the ith input parameters and Yi is the ith response variable in the
training dataset.

F(X) =
K

∑
k=1

G{wk fk(X)} (10)

where K is the total number of base learners and wk is the weight of kth learner.
During the first iteration, the weight is uniformly distributed among the weak learners

with a constant weight of {w1, i = 1/Z, ∀i} [33]. Subsequently, the weighting process
of the observations is readjusted by assigning higher weight to the incorrectly predicted
observations in the initial iteration. The weight distribution for training step t is adjusted
according to Equation (11), where βt ∈ [0, 1] is the parameter related to the distribution
update (Equation (12)), and Lk is the average loss function (Equation (13)). A linear loss
function was also used in this study to assess the performance of the base learner, as shown
in Equation (14):

wk+1, i =
wk, iβk

1−Lk,i

∑N
i=1 wk, iβk

1−Lk,i
(11)

βk =
Lk

1− Lk
(12)

Lk =
N

∑
i=1

Dk, i Lk, i (13)

Lk, i =

∣∣Yk − fk,i(Xi)
∣∣

max
∣∣Yi − fk,i(Xi)

∣∣ , i = 1, . . . , N (14)
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Gradient Boosting

The gradient boosting (GB) algorithm is another type of boosting algorithms that
combines multiple base learners (DT in this study) sequentially and accumulates the results
in an additive model. The mathematical expression of the GB algorithm is presented in
Equation (15):

FK(x) =
K

∑
k=0

fk(x) (15)

where K is the number of base learners and fk is all possible base learner (DT in this study).
The GB algorithm utilizes the gradient descent method in each sequential iteration

to construct new trees from the previous base learners and reduce the loss function. The
GB model is initiated in the first iteration using a constant value as per Equation (16) to
reduce the loss. Following the first iteration, the GBDT model fits a new DT base learner
hk(X) at each iteration t, as shown in Equation (17), to the negative gradient descent (ri, k)
or pseudo-residuals of the previous learner in the sequence, i.e., training set

{
(xi, ri, k)

} N
i=1,

as presented in Equation (18), which is obtained by solving Equation (19):

Fo(X) = arg min
γ

N

∑
i=1

L
(
Yi, Ŷi

)
(16)

Fk(X) = Fk−1(X) + γkhk(X), f or k = 1, . . . , K (17)

ri, k = −
[

∂L(Yi, F(Xi) )

∂F(Xi)

]
F(X)=Fk−1(X)

, f or i = 1, . . . , N (18)

γk = arg min
γ

N

∑
i=1

L(Yi, Fk−1(Xi) + γhk(Xi)) (19)

in which, L(·) and γk are the training loss and multiplier, respectively.

4. Results and Discussion
4.1. Hyperparameter Optimization Results

As previously mentioned and depicted in Figure 1, the database was randomly divided
into training and testing datasets. The hyperparameters of the models were optimized
using the grid search technique, which involves searching through a predefined grid of
hyperparameters to find the optimal values of the hyperparameters. Additionally, to
address overfitting during the training process, the widely used K-fold cross-validation
method was employed. This method divides the dataset into k subsets or folds, trains the
model on k-1 folds, and validates it on the remaining one fold. This process is repeated
k times, where each subset of the data serves as both the validation and training set. The
cross-validated model’s performance is then calculated as the average performance across
the K validation sets. In this study, the widely used 10-fold cross-validation technique
(K = 10) was employed.

The optimization process was performed using RMSE as the evaluation metric. The
results of the hyperparameter optimization are presented in Table 1. The optimized SVM
utilized a radial basis function (RBF) kernel, with a regularization parameter (C) set to
30 and an epsilon value of 10−5. The decision tree was fine-tuned by optimizing its
hyperparameters, resulting in a maximum tree depth of five, a maximum of four randomly
chosen input features, a minimum sample requirement of two for splitting internal nodes,
and a minimum sample requirement of one for leaf nodes.
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Table 1. Optimized values of hyperparameters.

Model
Tuned Hyperparameters

Name Value

Support vector machine Regularization parameter, C 30
Epsilon, ε 10−5

Kernel type RBF

Decision tree Maximum tree depth 5
Maximum number of randomly chosen input

features 4

Minimum sample required to split an internal node 2
Minimum sample required at the leaf node 1

Adaptive boosting Number of estimators or base learners 10
Learning rate 0.15
Base learner Decision tree

Maximum depth of base learner 10
Maximum number of randomly selected input

features for base learner 3

Minimum sample required to split an internal node 2
Minimum sample required at the leaf node 1

Gradient boosting machine Number of base learners or estimators 20
Maximum depth 5

Fraction of samples used to fit each base learner 30%
Learning rate 0.25

The AdaBoost model was optimized with the number of estimators set to 10, a learning
rate of 0.15, and a decision tree as the base learner. For the base decision tree, the maximum
tree depth was set to ten, the maximum number of randomly selected input features was
three, a minimum of two samples were required to split an internal node, and the minimum
number of samples at a leaf node was one, as presented in Table 1. The optimized gradient
boosting model used twenty base learners, with a maximum tree depth of five, 30% of the
samples used for fitting each base learner, and a learning rate set to 0.25, as listed in Table 1.

4.2. Model Performance

Figure 3 presents the scatter plots of the experimental (Mexp) and predicted (Mpred)
flexural capacities based on the optimized ML models. The green line in the scatter plots
shows an ideal match between the predicted and experimental flexural capacities. The
results in Figure 3 demonstrate that all ML models achieved high predictive accuracy on the
training set, evidenced by their high R2, which ranged between 96.8% for DT to 99.8% for
ADB. Nevertheless, the predictive accuracy of the models varied markedly on the test set,
especially in the case of the DT model, which achieved a low R2 of 73.3% (Figure 3c). The
weak prediction of the DT model indicates overfitting and a lack of generalization ability of
the algorithm. Moreover, SVM exhibited the highest accurate prediction among the single
ML models with an R2 of 97.3% and 90.2% for training and test sets, respectively. It can also
be seen from Figure 3c,d that integrating decision trees into an ensemble framework, such
as ADB and GB models, substantially improved the prediction accuracy and generalization
capability of the models. This is evidenced by the improvement achieved in the R2 of both
ensemble models on both databases. In principle, the graphical comparison showed that
the accuracy of the ADB model was comparable to that of the SVM on the test database, as
evidenced by the close values of R2 on the test datasets. However, ADB prediction achieved
better distribution of the data, as the majority of the data was closer to the error bounds
compared to SVM prediction. Furthermore, GB prediction exhibited the highest prediction
accuracy compared to all models. This could be exemplified by the R2 (97.3%) of the test
set, which was 7.87%, 32.74%, and 7.51% higher than the SVM, DT, and ADB models,
respectively. The outperformance of the GB prediction implies the effectiveness of the GB
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algorithm in predicting the flexural capacity of corroded RC beams. The performance of
the models is further investigated and compared in the following subsection.

Figure 3. Predicted versus experimental flexural capacities of the studied beams with green line
indicating an ideal match between the predicted and experimental flexural capacities.

4.3. Comparison of Predictive Models

The efficiency of the fine-tuned ML models was rigorously evaluated by utilizing four
essential statistical performance indicators: MAE, MAPE, RMSE, and R2. The evaluation
results of the models are summarized in Table 2. Furthermore, Figure 4 presents the perfor-
mance metrics in spider plots to enable visualization and comparison of the performance
of each model against the others. Based on the results presented in Table 2, DT exhibited
the least accuracy and a clear case of overfitting, owing to the high statistical error and low
R2. In particular, the DT recorded MAE of 3.39 kN.m and 8.12 kN.m, MAPE of 14.61% and
37.29%, and RMSE of 5.09 kN and 11.05 kN on the training and test sets, respectively. In
addition, the R2 of the DT on the training set was as high as 96.8%, whereas on the test set,
the DT model exhibited a significantly low R2 of 73.70%. It can also be seen in Figure 4 that
the spider plot of the DT prediction on the test set significantly diverged toward a higher
MAPE error. This indicates that the DT model is not able to generalize well to new data and
suffers from overfitting. Furthermore, it could be seen that the SVM model outperformed
the DT model with a higher R2 of 90.2% on the test dataset compared to the DT’s R2 of
73.7%, as listed in Table 2. The SVM model also exhibited lower MAE, MAPE, and RMSE
on test and training datasets compared to the DT model. The SVM has 54.43%, 63.02%, and
39.10% lower MAE, MAPE, and RMSE on the test dataset, respectively, compared to the
DT model. The improved accuracy of the SVM prediction can also be revealed in Figure 4,
where the spider plot showed a lower error compared to the DT prediction.
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Table 2. Statistical measures of the models on the train and test sets.

Model

Training Set Test Set

MAE
(kN.m)

MAPE
(%)

RMSE
(kN.m)

R2

(%)
MAE

(kN.m)
MAPE

(%)
RMSE
(kN.m)

R2

(%)

SVM 2.97 12.23 4.71 97.3 3.70 13.79 6.73 90.20
DT 3.39 14.61 5.09 96.8 8.12 37.29 11.05 73.70

ADB 0.47 1.78 1.3 99.8 3.99 13.98 6.64 90.50
GB 2.41 8.24 3.48 98.5 2.78 13.40 3.56 97.30

Figure 4. Predictive performance of the models.

On the other hand, the results showed that the ADB model has an MAE of 0.47 kN.m
and 3.99 kN.m, MAPE of 1.78% and 13.98%, and RMSE of 1.3 kN.m and 6.64 kN.m on the
training and test sets, respectively. Even though the ADB model recorded a high R2 of 99.8%
on the training set, the predictive performance of the model was significantly dropped on
the test set, evidenced by the R2, which was reduced to 90.50%. This suggests that the ADB
model may also be suffering from some overfitting and generalization capability. The GB
demonstrated higher performance than the ADB model, with a lower error on both training
and testing datasets, as can be seen in Figure 4 and Table 2. The R2 of the GB model was
recorded at 98.5% and 97.30% on the training and test sets, respectively. Furthermore, the
GB prediction achieved MAE and RMSE of 2.78 and 3.56 on the test set, which is about
30.33% and 46.39% lower than those of the ADB prediction, respectively. This implies
that the GB model fits the data well and performs well on both the training and test sets.
Overall, the GB model exhibited the highest prediction accuracy with the highest R2 and
lowest error on the test sets among the investigated models. Thus, it can be used effectively
to accurately predict the flexural capacity of corroded RC beams.

4.4. An Intelligent Prediction Tool with Fast and Accurate Results

In an earlier discussion, it was observed that the proposed GB model had excellent
potential for predicting the flexural capacity of corroded RC beams. However, to make
the model practically useful, there was a need to develop a GUI-based software that
would be user-friendly. Therefore, a GUI software was developed for the GB model using
Python programming language, and a screenshot of the tool is shown in Figure 5. The
developed GUI tool is available for download via the following link: https://github.com/
twakjira/GUI-corrodedRCbeam-capacity, accessed on 5 March 2023. Figure 5 provides
a visual representation of the proposed model’s range of applicability. By utilizing this
GUI software, we were able to accurately predict the flexural capacity of corroded beam
in specimen B10-05. As shown in Figure 5, the predicted shear capacity of this specimen

https://github.com/twakjira/GUI-corrodedRCbeam-capacity
https://github.com/twakjira/GUI-corrodedRCbeam-capacity
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was 28.16 kN.m, which is highly consistent with the corresponding experimental value
(Mexp = 29 kN.m [8]).

Figure 5. GUI tool of the proposed model and flexural capacity prediction for corroded specimen
126 of Ref. [8].

5. Conclusions

This paper presents machine learning-based predictive models for estimating the
flexural capacity of reinforced concrete beams with corroded bars. Four different ML
models were established; namely, SVM, DT, ADB, and GB. The database was preprocessed
and randomly divided into training and test datasets using an 80/20 training/test split
ratio. The hyperparameters of the models were optimized using grid search and K-fold
cross-validation. Four commonly used performance metrics, including MAE, MAPE, RMSE,
and R2, were employed to evaluate the predictive performance of the models.

The following conclusions can be drawn from the results of this study:

• The DT model exhibited overfitting, with significantly higher values on the test
set compared to the training set, indicating that it may not generalize well to new
data. Specifically, on the training set, it achieved an MAE of 3.39 kN.m, MAPE of
14.61%, RMSE of 5.09 kN.m, and R2 of 96.8%. However, it showed overfitting with an
MAE of 8.12 kN.m, MAPE of 37.29%, RMSE of 11.05 kN.m, and R2 of 73.70% on the
test dataset.

• The SVM model achieved a relatively good performance with an MAE of 3.70 kN.m,
MAPE of 13.79%, RMSE of 6.73 kN.m, and R2 of 90.20% on the test set.

• The ADB model showed high performance on the training set with an MAE of
0.47 kN.m, MAPE of 1.78%, RMSE of 1.30 kN.m, and R2 of 99.8%. However, it
experienced a significant drop in the predictive performance on the test set, indicating
some overfitting and less generalization capability.

• The GB model outperformed the other models with the lowest MAE of 2.78 kN.m,
MAPE of 13.40%, and RMSE of 3.56 kN.m, and the highest R2 of 97.30% on the test
set. Consequently, the developed gradient boosting model can be used to accurately
predict the flexural capacity of corroded RC beams.

Finally, a user-friendly intelligent GUI-based tool has been developed to enable fast
and accurate prediction of the flexural capacity of corroded RC beams, thus facilitating the
practical implementation of the developed machine learning model. Further research is
recommended to focus on the shear capacity of corroded RC beams using machine learning
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models. Additionally, future research can investigate the failure mode of RC corroded
beams and develop classification-based machine learning models to predict the failure
modes of the beams.
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