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Abstract: Vehicular ad hoc networks (VANETs) are wireless networks of automotive nodes. Among
the strategies used in VANETs to increase network connectivity are broadcast scheduling, data
aggregation, and vehicular node clustering. In the context of extremely high node mobility and
ambiguous vehicle distribution (on the road), VANETs degrade in flexibility and quick topology,
facing significant issues such as network physical layout construction and unstable connections.
These challenges make it difficult for vehicle communication to be robust, reliable, and scalable,
especially in urban traffic networks. Numerous research investigations have revealed a nearly optimal
solution to various VANET difficulties through the application of techniques derived from nature
and evolution. On the other hand, as key productivity sectors continue to demand more energy,
sustainable and efficient ways of using non-renewable resources continue to be developed. With
the help of information and communication technologies (ICT), parameter tuning approaches can
reduce accident rates, improve mobility, and mitigate environmental impacts. In this article, we
explore evolutionary algorithms to mobile ad hoc networks (MANETs), as well as vehicular ad hoc
networks (VANETs). A discussion of three major categories of optimization is provided throughout
the paper. There are several significant research works presented regarding parameter tuning in
cluster formation, routing, and scheduling of broadcasts. Toward the end of the review, key challenges
in VANET and MANET research are identified.

Keywords: VANET; evolutionary algorithms; parameter tuning; clustering; routing; broadcast
scheduling; optimization

1. Introduction

To achieve efficient communication in a vehicular ad hoc network (VANET), many
elements must work together. Considering practical implementation, however, it is not
easy to consider all the elements at once. Nonetheless, many research studies have found
that nature and evolution offer an almost ideal solution to multiple VANET issues. VANETs
are a multi-hop paradigm development [1]. The concept is to include mobile transceivers in
cars so that they can interact. VANET signals are primarily generated by these types of inter-
actions, called vehicle-to-vehicle (V2V) interactions. There is also communication between
the car and the highway facilities, called vehicle-to-infrastructure (V2I) communication.
Both the scheduling and transmitting systems have been researched in VANETs [2].

In a VANET environment, a vehicle attempts to warn an incoming vehicle through a
broadcast packet which will be broadcasted to all the nodes in the network. An effective
transmitting algorithm is therefore essential in VANETs. Due to the large battery in VANETs,
energy is not a critical parameter, as vehicles can charge their batteries while on the move.
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The primary cellular technique planned for use in VANETs [3] is WAVE communication
centered on IEEE 802.11p. IEEE 802.11p describes various prioritization rates for the
transmission of messages. One significant characteristic of WAVE engineering is that
roadside units (RSU) are considered stationary entry points, enhancing the network’s
overall efficiency. Consequently, the VANET acts as a composite network that combines
the features of portable networks such as MANET with those of stationary networks such
as the internet to constitute a composite network. The node connectivity in VANETs is
much greater than MANET mobility. However, highway lanes restrict the movement of
vehicles. Therefore, node mobility in a VANET is more dynamic. The mobility models of
VANETs have gained much attention because a real VANET mobility system is essential in
the simulation evaluation of VANET [4].

To the best of our knowledge, there have not been many comprehensive studies
conducted on bio-inspired optimization for parameter tuning in VANETs. As a result of the
gaps in knowledge within the research community, this article discusses the development
of prospective research fields in VANETs, such as the transmission algorithm, routing,
mobility, self-organization, variation in bandwidth utilization, and topology, and discusses
the development methods for each of these research areas. It is the primary objective of
this article to demonstrate the effectiveness of evolutionary approaches, which are still
underutilized when it comes to computer networks and MANETs, which are still not
sufficiently investigated.

VANETs are mainly suited for security applications such as crash prevention and road
barrier alerts as well as traffic data and infotainment facilities such as video streaming [5].
This article is a comprehensive study of various bio-inspired parameter tuning approaches
used in the VANET setup. To the best of our knowledge, there is no comprehensive study
which outlines works that employed evolutionary algorithms (EA) to solve problems in
MANET and VANET. This article characterizes the three primary functionalities of any ad
hoc network, namely clustering, routing, and broadcast scheduling, which are optimized
by EAs.

The remainder of this article is organized as follows. Section 2 discusses the literature
review. In Sections 3 and 4, different evolutionary algorithms are applied to MANETs and
VANETs. Several cluster formation and parameter optimization methods are presented in
Section 5, with a particular focus on MANETs and their power problems. A discussion of
routing parameter optimization techniques is presented in Section 6. In Section 7, we discuss
various methods for scheduling broadcasts within VANETs. An in-depth discussion of
various challenges associated with the use of evolutionary analysis is provided in Section 8.
Finally, Section 9 outlines the conclusions. Figure 1 shows the organization of the paper.

Figure 1. Organization of the paper.
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2. Evolutionary Algorithms for Optimization Problems

As technology advances, smartphones are becoming increasingly connected. Con-
sequently, there is a high degree of heterogeneity and portability in the design of mobile
networks consisting of any communication unit, which is incompatible with the current
communication network design. Today, we have many biological systems capable of
handling the challenges we face in these heterogeneous networks after decades of de-
velopment: fault restoration, flexibility, self-organization, stabilization, and cooperative
behavior, among others. The development of algorithms based on nature is becoming
increasingly common among researchers to resolve complex problems; for example, the
layout of networks is commonly used. Evolutionary algorithms (EAs) are popular iterative
metaheuristics [6–8] (e.g., estimated optimization methods) that are used to fix NP-complete
problems. In general, they are responsible for developing a number of timely alternatives,
which are developed concurrently with (presumably) stronger alternatives. They demon-
strate an alternative that is measured by individuals to determine its performance. By using
the substitute method, future generations are guaranteed to be able to survive with the
most capable individuals.

The EA works on a pool of potential solutions until the end condition has been met,
which often follows the discovery of the best solution or several iterations. Typically,
various EA classes are distinct from the developmental carriers used in evolution. This
development is carried out through the application of alternatives of some stochastic agents
(typically called developmental agents) to imitate a developmental mechanism. Individuals
are assessed to measure the performance of their alternative (the best individuals live
through substitute methods for the next generations). EAs iterate on a variety of applicant
alternatives until the termination condition is reached (generally after finding the appro-
priate alternative or performing a certain amount of iterations). The general workflow
of an EA is depicted in Figure 2. In all iterations, some developmental carriers develop
alternatives, such as sibling choice, recombination (or overlap), and extinction. The devel-
opmental agents that are implemented in development typically vary from the distinct EA
classes. Numerous distinct EA classes can be found in the literature. The first established
genetic algorithms (GAs) [9–11], evolution strategies (ESs) [12], evolutionary programming
(EP) [13], and genetic programming (GP) [14] were traditionally found in EAs.

Figure 2. Functioning of a generalized evolutionary algorithm.
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GA was originally developed for linear representational computing issues (although
these are now also used in other computational and ongoing computing issues). In contrast
with GAs, ESs operate on a single alternative (instead of one population) to fix real-life
factors, and only choice and mutation carriers are used in the phase of evolution. Instead
of binary character chains or real factors traditionally used in GAs and ES, GP operates
for a tree-shaped community of people (i.e., programs). EP is finally comparable to GP,
but the program design is corrected for optimization. Today, the sector of evolutionary
algorithms is increasing and developing. A few of the newly created algorithms are Particle
Swarm Optimization (PSO) [15], Differential Evolution (DE) [16], Ant Colony Optimization
(ACO) [17], and Estimation of Distribution Algorithms (EDAs) [18]. Figure 2 depicts the
functioning of a generalized evolutionary algorithm.

The PSO is influenced by swarms that support the motions of leaders (e.g., bee
or seafood swarms), whilst DE develops approaches through the use of data on other
population alternatives relying on straightforward formulas focused on geometric activities.
Typically, ACO implementations are constructive EAs for combinational issues. They are
influenced by the conduct of ants who seek food sources. The ACO process begins with
the creation of vacant alternatives and the assignment of attributes to each variable one
at a time. The values are stochastically allocated, but the solution quality of the various
assignments in the past is taken into account. In conclusion, EDAs calculate the distribution
of variables in population solutions after each iteration and randomly generate the next
population of computed distribution-based solutions. As a result of reviewing the literature,
we were able to discern that there are not many articles that incorporate all the bio-inspired
parameter tuning approaches for VANET and MANET into a single article. The purpose of
this paper is to help researchers gain a comprehensive understanding of the work that has
been conducted in the field.

3. Evolutionary Algorithms in MANETs
3.1. Online and Offline Optimization

Online and offline methods are distinguished by whether the metaheuristic is per-
formed in advance or during operation. Offline methods search for the finest feasible
algorithm setup to be used early on during execution. These procedures are repeated
until the optimal solution is identified (if possible) or when a simulated evaluation of the
solutions’ performance is complete. To this end, the system model strongly affects the
algorithm’s efficiency. If the difficulty level varies, these offline methods are not appropriate
during runtime. In online methods, intense calculations are normally necessary, and so
a central unit can be used. However, ad hoc networks are decentralized schemes; either
restricted servers are used or offline methods are favored that can handle lightweight
metaheuristics. The literature shows that all current projects have offline technology owing
to the energy constraints of nodes comprising an ad hoc network, and this is generally
time-consuming. For example, Wu et al. [19] suggested an iterated local algorithm, which
attempts to discover the minimum span tree to link all networks.

The authors in [20] suggested solving the minimum power transmission issue. In
these last two instances, the algorithms involve global understanding, and they are offline
and distributed. The authors in [21] have provided an anti-colonial routing algorithm. It
also places resting nodes in a predefined pheromone stage. This decentralized internet
strategy utilizes local understanding. Other examples of swarm intelligence operating the
internet using local understanding are portrayed in [22–24], which combine both bee and
ant optimization methods. This work considers offline-based optimization and therefore
does not handle the time issue.

3.2. Centralized and Decentralized Systems

The entire system is optimized or decided by one single unit in a centralized scheme.
It would take data from all sources, either globally or locally, and provide these data to the
vital decision-making unit. The system requires significant cooperation in the latter scenario,
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which raises overheads and causes delays. The entire plan will fail if the central component
fails. A decentralized system is when nodes perform and decide locally by changing the
future behavior based on the results obtained. The development of an internet optimization
method for a decentralized mobile ad hoc network with worldwide understanding is not
feasible. NSGA-II is used to establish the sleep timetable in sensor networks, maximizing
the volume attained and reducing the number of devices used [25].

An offline and concentrated method requiring worldwide expertise is being used
in this situation. In this particular case of sensor networks where a previously known
specified area and certain information can be gathered in advance for optimum settings,
a centralized computation using the experience of the entire network is interoperable.
Many literature studies use a decentralized strategy to solve issues in ad hoc networks.
This is the case for the Broadcasting Based on Ant Colony System Optimization Algorithm
(BAOA) [26], where the scheduling systems for colonial bees are used to minimize complete
power use. Kusyk et al. suggested a decentralized and internet genetic algorithm using
conventional and evolutionary game theory for self-spreading nodes in a region with
local understanding alone [27]. Dorronsoro et al. carried out a comprehensive survey of
optimization algorithms to resolve ad hoc network problems [28].

4. Evolutionary Algorithms in VANETs

The main areas of research are routing protocols, broadcasting systems, and optimizing
clustering parameters in VANETs. Broadcast algorithms have recently become a popular
study area because they represent one of VANET’s significant applications [29]. For instance,
if a car wants to transmit a signal to all other cars in the network, it should ensure that this
signal reaches all other cars by applying a collision avoidance approach. This characteristic
becomes crucial for VANETs in broadcast algorithms. In VANET, power consumption is
not a parameter of concern, as cars can fuel themselves by using a built-in self-rechargeable
battery. The IEEE 802.11p-based Wireless Access for Vehicle Environment (WAVE) employs
RSUs to increase the network’s overall efficiency [30]. Numerous biological systems seen
in nature that are products of evolution continue to provide answers to problems such
as scheduling, mobility, self-organization, stability, collective efficacy, and others [31].
According to common belief, evolutionary algorithms (EA) are optimization methods that
may be specifically designed to address NP-complete problems. The EAs (individuals) are
generated by applying some stochastic operators to the solution. Following that, a precise
fitness function is used to assess the options.

For the next generation, most fit solutions are maintained. Generations will process
iteratively until an optimal solution is identified or a maximum number of generations is
reached. Depending on the EA approach chosen, different operators will be added to each
iteration. Essential biological needs such as finding food, following the herd, reproducing,
moving around, etc., make up the underlying idea of computational methodologies. These
core requirements were shown to be strongly related to identifying computer networks and
communication options. This article describes the participation of the current evolutionary
computation in fixing traditional ad hoc vehicle network issues.

4.1. Existing Evolutionary Algorithm Approaches in VANET

Evolutionary approaches to computing use computational methods to define alterna-
tives in VANETs. To fulfill basic needs, such as detecting food particles, reproducing, etc.,
the main premise of these technologies is that they mimic the natural behaviors of plants,
birds, cattle, and people. Much research has recently been conducted using bio-inspired
strategies in computer networking issues such as planning, routing, congestion control, and
safety. A classification of evolutionary computation used in VANETs is shown in Figure 3.
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Figure 3. Classification of evolutionary computation in VANETs.

4.2. Self-Organization and Adjustability

Even though VANET is a dynamic system, a self-organizing mechanism is required
each time an automobile joins or exits the network. The routes must be adjusted to the
node’s entry/exit and the information updated for all nodes. The AntHocNet [31] algo-
rithm is focused on ants’ self-organization conduct to find food particles. The AntHocNet
algorithms follow two methodologies for gathering path data that can be broadcast to other
network nodes. An ant follows the most frequently used route from origin to target in the
first method. A second method, referred to as pheromone propagation, is used by ants
to accumulate routing information regarding frequently visited nodes. The information
collected can then be used by other nodes to determine the natural path to take. The
technique exhibited significant improvements in packet delivery ratio (PDR), overhead
routing, and end-to-end latency when compared to well-known algorithms such as Ad
Hoc On-demand Distance Vector (AODV) and Optimized Link State Routing Protocol
(OLSR). AODV is a routing protocol for ad hoc networks that is loop-free. It is intended
to be self-starting in a mobile node environment, withstanding a wide range of network
characteristics such as node mobility, connection failures, and packet losses. OLSR, on the
other hand, acts as a proactive, table-driven protocol, exchanging topological information
with other network nodes on a frequent basis [29].

4.3. Dynamic Change in Network Size (Scalability and Robustness)

In a vehicle-based ad hoc network, the network size can be quickly changed. This
feature is one of the most challenging aspects of VANET. The use of bio-inspired methods
also provides an alternative solution to this problem. List et al. [32] provided a methodology
for defining the easiest route to nutrition with the assistance of ants. Refs. [33,34] discuss
how nesting mates are determined in bee colony algorithms along with optimal bird
transport organization among a large number of people. Vehicle nodes are susceptible to
network disruption influencing throughput. Recently, the evolutionary approach to solving
network robustness has drawn the interest of scientists. As part of the human immune
system, viruses, germs, parasites, etc., are eliminated. The authors of [35] employed this
mechanism to detect network intrusions. The findings indicate that the evolutionary
approach is more effective than many conventional methods [36].
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4.4. Topology Management

Two typical strategies of development to resolve the issue of adding extra nodes
to improve small-world functioning in VANETs were utilized, namely NSGA-II and
MOCHC [37]. The study concentrated on maximizing the number of additional nodes
added to the cluster to increase its co-efficient and proposed both a centralized and decen-
tralized strategy to deal with the problem. Maximum coverage with the time threshold
problem (MCTTP) of installing RSUs at places that strengthen throughput is researched
in [38]. The primary goal is to improve the RSU service region.

4.5. Broadcasting Algorithms

To define the best conflict-free transmission system in a finite number of time slots, the
evolutionary technique was used. Ref. [39] addresses the broadcast scheduling problem,
which is the problem discussed above, using Binary Particle Swarm Optimization (BPSO).
The literature also reveals that other well-known EAs, such as GA [40], have been employed
to address the same problem [39,40].

4.6. Routing Protocols

A mono-objective linear evolutionary algorithm is used in the Adaptive Message
Routing (AMR) [41] technique to create end-to-end QoS routing. The two restrictions
to maintain a constrained value, in the authors’ opinion, are connection probability and
hop. In this model, the vehicle network is depicted as a grid made up of fixed nodes and
vehicles with RSUs at their core. Based on data from both the medium and the road, the
RSU determines an optimal route for vehicles. The best path is calculated using the road
identifiers (RIDs) that are present at each chosen intersection. Importantly, AMR is capable
of dealing with network disruptions by allowing cars to hold and deliver signals while
being prepared to forward them to the next legitimate vehicle.

xChangeMobile [42] uses multi-objective linear GAs. xChangeMobile utilizes two
routing protocols, VanetDFCN and ChunkXChange, which are optimized utilizing GA
for inter-vehicle material return. The strategy seeks to address the data stream missed
due to barriers along the highway, which in turn impacts communication. Ref. [43] deter-
mined the ideal vehicle data transfer protocol (VDTP) parameter settings. Additionally,
this protocol transfers files in the transport layer. There are five development methods:
Particle Swarm Optimization (PSO), Differential Evolution (DE), genetic algorithm (GA),
Evolutionary strategy (ES), and simulation annealing (SA). Packet size, packet delivery,
and retransmission time are the three parameters.

4.7. Mobility Models

Mobility is a significant problem for VANETs, as cars appear to travel at different
speeds. So, while trying to perform tests, choosing a suitable mobility model is essential.
Five parameters are used in [28] to optimize an industrial model generator for VANET
situations. All parameters rely on the rate of the appeal of certain target regions. Inner
congestion proportion is the proportion of traffic derived from the housing region and
the proportion of cars starting at an hour. The reference of the suggested mobility model
engine and actual information acquired from the city of Luxembourg were adopted as the
fitness function for the issue. The authors used the OpenStreetMap-based macro mobility
model VehILux.

5. Cluster Formation and Parameter Optimization

The literature works studied in this section show that several clustering procedures
concentrate primarily on MANETs and their power problems. However, there are a few
specific solutions to VANETs. Most systems concentrate on the lane, road identification, and
speed as the grounds for clustering, but none of the procedures, to our understanding, re-
quire the reputation of being a node to shape a cluster with speed, location, and lane. In [44],
the authors obtained highway IDs and used them to form stable groups. Additionally, the
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authors utilized the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for optimizing
the Adaptive Weighted Clustering Protocol (AWCP). It has also been demonstrated that
Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Differential
Evolution (MODE) can play significant roles in ad hoc network modeling. According to
Aadil et al. [45], referring to insects’ behavior, which shapes organizations, we can come
up with the most creative solution. The recommended approach is computer-based and is
better suited for circumstances when a comprehensive survey is required to determine the
best option. A multi-head clustering technique employed in [46] uses a master–slave strat-
egy to create and maintain stable clusters. It is to be noted, however, that the methodology
has not enabled all cars to follow the same course in many instances.

In [47], the algorithm for the identification of cluster leaders was intended explicitly
for roads. The approach has another parameter, differentiation metrics, which places cars
traveling quickly into one group and cars traveling at a reduced speed in another group.
The Weighted Clustering Algorithm (WCA) was suggested in [48], which selects a measured
weight node including velocity, energy level, neighbor number, and median range. It is
evident from all the clustering algorithms that the setup parameter has a significant impact
on the created nodes. The enhancement of parameter settings such as cluster size, hello
interval, and time out interval is therefore of utmost importance for distinct versatility
circumstances. The authors of [49] used metaheuristic algorithms in genuine VANETs to
enhance the AODV protocol’s QoS and file transfer protocols (FTPs).

Metaheuristic solutions have been discovered to fix VANET issues with channel allo-
cation [50,51]. An overview of clustering algorithms is given in Table 1. The study in [52]
proposes a Reputation-Based Weighted Clustering Protocol (RWCP). To formulate the strat-
egy, it is essential to take into account the number of times each node has become a cluster
head (CH) for each cluster. Nodes that become CHs more frequently are considered more
credible and are more likely to be asked to become CHs of specific groups. Furthermore,
the study also examines how to optimize the algorithm by generating a multi-objective
clustering problem in VANETs with the Firefly Algorithm to find the parameters necessary
to tune the suggested clustering protocol (RWCP).

Table 1. Clustering overview.

Protocol Cluster Size Performance Metric Simulation Tool

MOBIC [1] NA Radio propagation ns-2

Kayis [2] Based on speed Speed No Simulation

Su [3] Based on traffic direction Direction MATLAB

Rawshedh [4] Based on speed Speed, location, and direction C testbed

Maslekar [5] NA Location and direction NCTUns

RMAC [6] NA Speed, location, and direction ns-2

APROVE [7] Based on traffic direction Distance and speed ns-2

DBC [8] Depends on density Node density, link quality, node
reputation, and traffic conditions JiST/SWANS++, VanetMobiSim

Almalag [9] Depends on radio propagation lane with the most traffic ns-3

Wang [10] NA Vehicle density, link quality,
and sustainability MOVE, ns-2

ALM [11] NA Relative mobility SUMO, SIDE/SMURPH

VWCA [12,53] Flexible Direction MATLAB

AMACAD [13] Flexible Speed, location, and direction JAVA testbed

HCA [14] Based on radio propagation Radio propagation OMNET++, SUMO

ASPIRE [15] NA Network characteristics ns-2

Zhang [16] NA Relative mobility ns-2

Maslekar [17] Based on radio propagation Direction NCTUns

RWCP-MOFA [52] Adaptable PDR, no. of clusters, control
packet overhead NETSIM, MATLAB
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6. Routing Parameter Optimization

A dedicated cellular multi-objective genetic algorithm has been used to optimize the
Metropolitan MANET broadcast technique. The article focuses primarily on MANETs in
their entirety and does not primarily reflect on vehicles [54]. Cheng and Yang [55] used
GA for the management of the multicast transmission problem in MANETs. However, [56]
created new routing algorithms for MANETs that are based on ACO considering its au-
thoritative layout. The calculation of PSO was used to cope with scheme resources [57].
The standard OLSR [58] method was used to select a path depending on the link’s acces-
sibility. This scheme, however, has several shortcomings in terms of complete resource
use and distribution to determine the longest route based on the number of hops. In [59],
the authors evaluated the efficiency of two progressive transmissions based on network
funds and reduced the time limit. It provides precise neighbor information even if distinct
constant bit rate (CBR) sizes are used. When there is a dependency on time synchronization
between the traffic source and destination and the connection is used to carry traffic at a
consistent bit rate, this service type is employed. In [60], the authors considered adjusting
routing parameters so that each node could intermittently trade data. This adjustment was
powerful, and the routing panel was rapidly determined, but it was more suitable for less
vibrant topology.

Likewise, QoS readings in reaction moment and message failure were ensured by [61].
QoS also allowed the use of mobile devices to enhance the strength of the connection.
Toutouh et al. [62,63] provided a helpful evaluation with some obstacles and specifica-
tions; QoS was used to upgrade OLSR parameters in packet errors and PDR by reducing
the refresh period interval. Tuning routing parameters is the main problem for efficient
upgrades between adjacent nodes and promotes stronger road exploration choices under
highly vibrant circumstances. The aim of adjusting routing protocol layout parameters is
to enhance routing ability and adjust them to realistic circumstances. Identifying defective
paths and upgrading the protocol repair process are also the main objectives of enhance-
ment. Wang et al. [64] studied and linked four car tracking algorithms to choose the best
algorithm for a variety of transport circumstances at distinct adaptability rates (e.g., travel
duration and traffic burden). It will likely offer both road executives and commentators a
significant link. Yuan et al. [65] proved the use of a time-dependent milestone graph and
rider understanding of vibrant road models. They are planning to execute a two-phase
calculation for all purposes and find the shortest way to the target at arrival. A cluster-
ing method based on entropy differences is used to assess the allocation of travel time.
Ortiz et al. [66] showed a smart path metric. FA-OLSR consolidates a certain number of
parameters and relies on fugitive logic.

Methodologies for scheduling optimization in VANET have used evolutionary al-
gorithms, as shown in [67–69], such as ACO and PSO. Most of these methods are used
to enhance methods with the highest performance feature, which results in a decreased
drop in packets, energy, and extended network life. However, the impediments of these
approaches are that the route is enhanced based on just two capability features: hop num-
bers and route performance. Table 2 shows the evolutionary algorithms used for VANET
routing and their various categories, objectives, and performance metrics. In short, the
primary goal of this work is to characterize the highest parameter scores in distinct VANET
circumstances for the routing protocol. Certain characteristics are obtained through the
detection of the optimal moment to adjust configuration, particularly concerning load
and error.
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Table 2. EAs in routing.

Algorithm Category Protocol Objective Type Objectives Performance
Metrics

Genetic Algorithm

AMR [19] Mono-objective E2ED Scalability, Complexity, Delay

IGRP [20] Mono-objective Enhanced connectivity Scalability, Complexity, Delay

Hybrid DTN [21] Mono-objective Delay Complexity

xChange Mobile [42] Multi-objective Packet drop
and bandwidth Complexity

SLAB [22] Multi-objective Enhanced connectivity
and bandwidth Scalability, Complexity, Delay

Parallel Genetic
Algorithm GAP [23] Multi-objective Energy and

configuration time Scalability, Complexity, Delay

Ant Colony
Optimization

MAR-DYMO [24] Mono-objective Enhanced lifetime Delay, PDR,
Routing Overhead

TACR [25] Mono-objective Malicious
message detection

PDR,
Routing Overhead

[26] Multi-objective Cost, bandwidth, and
connectivity

Delay, PDR,
Routing Overhead

MAV-AODV [27] Multi-objective Lifetime, hop count Delay, PDR,
Routing Overhead

Particle
Swarm Optimization

pPSO [28] Multi-objective PDR,
delay overhead

Delay, PDR,
Routing Overhead

[29] Multi-objective Adjusting system
parameters

Delay, PDR,
Routing Overhead

Bee Colony Optimization

QoSBee [30] Mono-objective Delay Delay, PDR,
Routing Overhead

HyBR [31,70,71] Mono-objective Shortest path Delay, PDR,
Routing Overhead

BLA [32] Multi-objective Cost,
delay, and bandwidth

Delay,
Bandwidth

Firefly Optimization FA-OLSR [72] Multi-objective Parameter tuning PDR, Mean Routing Load,
End-to-End Delay

Harmony
Search Algorithm EHSO [73] Multi-objective OLSR parameter tuning PDR, End-to-End

Delay, Overhead

7. Broadcast Scheduling in VANETs

VANET Medium Access Control (MAC) manages the necessary vehicle transmission.
VANET features such as fast-evolving topology, robust node connectivity, and QoS make
it hard to develop MAC protocols. A Discrete Firefly Algorithm (DFA) approach has
not been used to solve the diffusion scheduling problem in VANETs, to the best of our
knowledge. Contention-based and contention-free are the two classifications of MAC
protocols. Each node must interact with other nodes in the network to enter the stream
if it wants to transfer information. However, contention-free procedures enable only one
server at any moment to connect and thus be free from collision [74]. A standard for vehicle
communication is IEEE 802.11p [75]. The IEEE 802.11p MAC protocol operates on both
Enhanced Distributed Channel Access (EDCA) and Collision Avoidance Multiple Access
Carrier Sense (CSMA/CA), and it employs a priority entry scheme. A broadcasting method
cannot be enabled without interruption since it is a contention-based MAC.

A disputed system [76] employs an advanced broadcasting technology without col-
lision and late messages. Adaptive broadcast frame (ABF) is also used, which is further
split into time zones. A particular vehicle is designated for the collision-free delivery of
safety messages at each instant period. The authors created a contention-free MAC protocol
for VANETs in [77]. In contrast to DMMAC, VeMAC provides control channel multi-hop
broadcasting service (CCH) with a mechanism to stop concealed terminal issues brought on
by moving vehicles. There are already a number of images in [77,78] that do not work well
with the rapid geometry of VANET. The proportion of frames is either slightly greater than
or not enough for the required amount. The authors of [77,79] decreased crash frequency by
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identifying various disjoint time zones for left-and-right and RSU cars. In [79], the duration
of the image is twice as long or reduced according to the circulation density. It often uses a
separate tree method to decrease the likelihood of crashes.

Efficient and reliable hybrid cars can acquire time frames through MAC’s environment
during the contention-based booking phase or switch the three-way WSA/RFS hand-
shake [80]. A vehicle must send an RFS to the service provider for verification with an ACK
signal to use the service. When ACK signals are received, nodes can transmit non-safety
alerts without the danger of crashes with neighboring cars. Since we have regarded a
VANET depending on TDMA, setting aside time slots will allow for improved transmis-
sion without a crash. Through an evolutionary process that takes interference constraints
into account, the channel planning problem is developed. The evolving strategy achieves
two objectives:

• Reducing time periods.
• Enhancing the network stream using variables by increasing the number of broadcasts

without human interaction.

The broadcasting problem has previously been addressed by a number of algorithms.
The majority of diffusion planning issues are solved by scheduling a time period during
which each unit is given a communication space and reconstitutes by synchronizing its
cores. It has been demonstrated that the issue of channel scheduling is NP-complete [81,82].
In [29,81], developmental techniques are shown to be efficient in fixing issues such as
routing procedures, topology management, and programming. Evolutionary computers
seem to offer optimal alternatives for NP in most instances for entire issues. Ant Colony
Optimization is used in an intelligent urban setting to optimize car congestion. The
authors suggest a structure that defines an ideal route to keep vehicles flowing on the
highway [83]. Moreover, [84] shows the use of Particle Swarm Optimization (PSO) to rectify
very-large-scale integration (VLSI) circuits. The technique of building an integrated circuit
by fitting millions or billions of MOS transistors onto a single chip is known as very-large-
scale integration. In the strategy [52], an integrated discrete firefly algorithm that is then
benchmarked with traditional progressive methods such as the genetic algorithm (GA)
and cuckoo search (CS). Ref. [85] portrays Adaptive TDMA slot assignment protocol and
Ref. [86] depicts a scalable CSMA and self-organizing TDMA MAC for IEEE 802.11 p/1609.
Several new MAC protocols based on TDMA are given in Table 3 for a better understanding.

Table 3. MAC protocols for VANET.

Protocol Year Mobility Model Density Broadcasting Ability Traffic Model Multi-Media Support Coverage Simulator

CFR MAC [35] 2014 Highway High Yes Bi-directional No Low N/A
HER-MAC [36] 2014 Highway Low Yes Bi-directional Yes N/A MATLAB

VeMAC [37] 2011 Highway/
Urban High Yes Bi-directional Yes Short MATLAB

and NS2
ATSA [38] 2013 Highway Medium No Bi-directional No N/A MATLAB

CS-TDMA [39] 2014 Highway Medium Yes Bi-directional Yes N/A MATLAB
VeSOMAC [40] 2007 Highway Low No Unidirectional Yes Medium NS2

STDMA [41] 2009 Highway High Yes Bi-directional No Long MATLAB
SOFTMAC [42] 2009 Highway Low N/A Unidirectional Yes N/A N/A
DMMAC [43] 2010 Highway Medium Yes Unidirectional N/A Short NS2

ADFA [87] 2020 Highway Medium Yes Unidirectional No Yes NETSIM

8. Challenges in Using Evolutionary Approach for Ad Hoc Networks

Evolutionary algorithms have been used in mobile ad hoc networks for the past
decade [52,72]. In these complicated networks, however, there are still many optimization
issues that can be fixed using an appropriate evolutionary algorithm. Different optimization
techniques of evolutionary algorithms such as evolutionary algorithms and simultaneous
evolutionary algorithms are frequently suggested. When evolutionary algorithms require
powerful computer capital, parallelizing the evolutionary functions will allow genetic
algorithms to be executed using various processors and core processors, thereby decreasing
the time needed for computing. For instance, the DEAP Python [88] module makes it easy
for consumers to compare progressive algorithms with the SCOOP module.
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Another task is to use evolutionary tools in actual test beds to confirm and validate
the outcomes of the experiment. It can also be an exciting option in decreasing the number
of moments needed by experiments, which is likely the major bottleneck when introducing
adaptive tools to ad hoc multi-hop networks. For example, ns-2, although it is the most
renowned mobile multi-hop ad hoc network event-based network simulator, it can take up
to several minutes (based on the computational energy of the simulation running). This
may be impractical in some instances. A subject that may be researched further in ad hoc
mobile multi-hop networks is genetic programming. Similar to genetic algorithms, genetic
programming works by using computer programs.

Theoretically, genetic programming can provide the optimal broadcast tools or imple-
mentation strategies [89]. Genetic programming, however, also has certain disadvantages
such as calculation time or unnecessary development. Also prevalent is the use of fully
integrated evolutionary algorithms [90,91]. Most studies reviewed in this paper have em-
ployed distributed implementations. However, comprehensive data are highly expensive
when it comes to message exchange in a portable multi-hop network. Figure 4 shows the
widely used simulators identified in the study. The analysis shows that ns-2 is the most
widely used simulator for ad hoc networks, followed by MATLAB. There are many works
which have used custom simulators built by the authors for their research.

Figure 4. Analysis of simulators used for the study. ns-2 [92], MATLAB [52], Custom [N/A],
JiST/SWANS++ [93], ns-3 [70], NETSIM [52], VANET Mobisim [78], GloMoSim [76], SUMO and
Omnet++ [87], OPNET [81], VEINS [83], NCTUns [79], SIDE/SMURPH [80], Traffic Simulation
3.0 [77].

Vehicle movement requires the constant sharing of data to renew data on the present
state of the network. The dispersed application of evolutionary algorithms should con-
tribute to a scarcity of funds because portable mobile wireless phones usually have fewer
assets than laptops and PCs. The primary benefit of a dispersed application is that the
algorithm works remotely so that the nodes can be adapted to the different local network
circumstances. The efficiency of portable wireless multi-hop networks is achieved through
several efficiency metrics which measure the value of the developing algorithms. When
assessing VANET and MANET routing protocols, the most frequently used performance
metrics are the packet delivery ratio (PDR), which represents the ratio of received and
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transmitted packets; the mean routing load (MRL), which measures the routing load; and
the end-to-end delay (E2ED), which computes the delay in packet delivery.

For instance, the increase in PDR, which is desired, will also increase the unwanted
MRL and E2ED metrics by transmitting more forwarding packets. Using a multi-objective
optimization method, the developers will be able to find all feasible alternatives and decide
which parameter settings influence efficiency measurements (Pareto Front). It is crucial to
keep in mind that using a multi-objective optimization technique is preferable to assess
the performance measure using a single expression. This is because in such circumstances,
one performance indicator might outweigh the others while disregarding the effect of other
quality metrics on fitness.

The transmission of algorithms and motion designs also presents numerous difficulties.
Algorithms for communication differ from algorithms for information dissemination. The
aim is to deliver data to a target station in the transmission of data. In contrast, the
purpose of the data algorithm is to spread information over the whole network or a
collection of network nodes. Evolutionary algorithms may be used to optimize transmission
algorithms in the same manner as information dissemination algorithms. Concerning
models of mobility, the intention is to pattern the mobility of people, taking into account
both geological and social information. Some key protocols have been studied, and their
critical issues along with other relevant information are portrayed in Table 4. The tactical
mobility of nodes in ad hoc networks is also a growing research area, particularly when
nodes are unmanned aerial vehicles (UAVs). As a result, MANET may be utilized to share
data and plan mobility legislation based on the information acquired [94–97]. This new type
of ad hoc network for portable multi-hops presents unique difficulties in the development
of mobile networks, with special characteristics such as active and open three-dimensional
flexibility [45,98].

The flexibility of UAVs is, at present, limited. Accordingly, unique communication
protocols customized for UAVs should take such a restriction into account. Finally, after
implementing an evolutionary algorithm, local search algorithms such as simulated an-
nealing, hill climbing, and tabu search algorithms may enhance the worldwide alternative.
The concept is to investigate the regions in which the developmental engine provides the
ideal alternatives.

Table 4. Key challenges in MANET and VANET.

Type of Network Reference EA Used Key Issues Optimization Problem

MANET

Gutiérrez-Reina et al. [49] GA To improve
the range of notification. Topology

Reina et al. [50] GA To improve
communication. Topology

Dengiz et al. [51] PSO To improve
communication. Topology

Kusyk et al. [99] GA with Game theory To improve
communication. Topology

Singh and Bhukya [100] GA with local search To minimize the energy of
the network. Broadcast

Reina et al. [101] GA
To maximize accessibility and

minimize delaying and
re-transmittance packages.

Broadcast

Iturriaga et al. [102] Parallel GA

To enhance exposure and
reduce power,

retransmission and limit the
number of channels.

Broadcast

Yetgin et al. [103] GA To reduce energy and costs. Routing
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Table 4. Cont.

Type of Network Reference EA Used Key Issues Optimization Problem

VANET

Schleich et al. [104] GA

To maximize the
clustering coefficient and reduce

the distinction
between the median route

longitude of the subsequent
network and the median route
longitude of the selected chart.

Topology

Cavalcante et al. [105] GA To improve
communication. Topology

Abdou et al. [106] GA

To reduce or eliminate the
percentage of

collisions, the spread time, and
the number of
transmissions.

Broadcast

García-Nieto et al. [107] PSO, DE, GA, ES,
and SA

To reduce time and the amount
of missed

packets and improve
messages transmitted.

Routing

Toutouh et al. [28] PSO, DE, GA, ES,
and SA

To reduce load and wait for
routing and

enhance message
transmission.

Routing

García-Nieto and Alba [108] PSO, DE, GA, ES,
and SA

To reduce routing load and
interruption

and maximize package delivery.
Routing

This article discusses research works in the field of VANET and MANETs which have
utilized the capabilities of EAs. Research works related to ad hoc network components
such as clustering, routing, and scheduling which take advantage of the effectiveness of
EAs are portrayed and have been compared and shown in Tables 1–3. A brief analysis of
simulators used in the study is also given in the article. Further discussions on the key
challenges faced in VANET and MANET are depicted in Table 4.

Optimization problems are ubiquitous in various fields, including engineering, finance,
and computer science. Tabu search and neighborhood algorithms are two powerful tech-
niques for solving these problems. Tabu search is a metaheuristic algorithm that utilizes a
memory-based mechanism to avoid revisiting previously explored solutions [109,110]. The
algorithm utilizes a tabu list that records previously explored solutions to avoid revisiting
them. This mechanism helps to prevent the algorithm from getting stuck in local optima
and encourages the exploration of the entire search space. Tabu search also uses aspiration
criteria to enable the algorithm to revisit previously explored solutions if they provide a
significant improvement to the current solution [111,112].

Neighborhood algorithms, on the other hand, focus on exploring the search space
around the current solution. These algorithms explore different neighborhoods of the
current solution to identify better solutions. Neighborhood algorithms can be divided
into two categories: deterministic and stochastic. Deterministic neighborhood algorithms
explore all possible solutions in the neighborhood, while stochastic neighborhood algo-
rithms explore a random subset of the neighborhood. The effectiveness of tabu search
and neighborhood algorithms has been demonstrated in various optimization problems,
including the traveling salesman problem, the job shop scheduling problem, and the vehicle
routing problem [110]. These techniques have also been used in various fields, including
logistics, transportation, and finance.

9. Conclusions

This article presents the results of recent research studies which employed evolutionary
algorithms to address optimization challenges in ad hoc multi-hop networks. In this
article, we describe the characteristics and restrictions that must be considered when using
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evolutionary algorithms in mobile ad hoc multi-hop networks. The primary difficulties
in this area of study have been identified through an analysis of the original research
in the field. It is still early in the development of these mobile ad hoc networks that
these systems are being put into practice. A more complex and dispersed development
algorithm will soon be possible due to the increased computing capacity of integrated
digital systems. VANET research in the direction of environmental sustainability will be
vital in the near future.
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