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Abstract: Due to the rapid development of wind power, the stable operation of doubly fed induction
generators (DFIGs) has attracted much attention. This paper focuses on the finite frequency (FF) H∞

control for the DFIG with input delay, aiming to reduce the effects of current harmonic interferences
and gain disturbances on the DFIG and improve the stability of the system. First, a DFIG state–
space model with input delay under current harmonics was constructed. Second, based on the
DFIG state–space model, an FF H∞ state-feedback controller was designed from the frequency
domain perspective, which makes the DFIG stable and robust against harmonic interferences and
gain disturbances. Third, via the generalized Kalman–Yakubovich–Popov (GKYP) lemma and the
Lyapunov theory, the FF H∞ performance was evaluated in the form of linear matrix inequalities
(LMIs), and then the state feedback FF H∞ controller was designed. Finally, the simulation results
showed the efficiency of the proposed approach.

Keywords: doubly fed induction generator; finite frequency domain; input delay; gain disturbance;
H∞ performance

1. Introduction

With the heavy consumption of fossil fuels, the quick depletion of natural resources
and the severe deterioration of the environment, the exploration and deployment of clean
and renewable energies has become urgent for sustainable economies [1]. Wind energy
has attracted global attention since it is recyclable and does not pollute the ecological
environment [2]. Wind power has the advantages of a wide abundance of reserves, high
utilization rates and small land occupation [3]. Due to the transmission protocol and
transmission environment, the signal transmission of DFIGs usually produces a time delay.
The time delay is always present in the control and feedback channels of wind turbines
because of the time required for the feedback digital controller to calculate and transmit,
as well as unpredictable events during transmission (slowing down of data transmission
due to temperature variations and electromagnetic interference). Studies show that small
delays may hamper the control effects and even destabilize wind turbine systems [4].

Among wind systems, doubly fed induction generators (DFIGs) are low-cost and
high-efficiency by virtue of constant frequency and variable speed advantages, and they are
the mainstream type of wind turbines at present. The power quality is strongly influenced
by the wind power grid connection. (1) Power electronics used in DFIG systems may cause
harmonic pollution and affect the power quality. (2) The randomness of the wind speed in
the wind farm causes changes in the output power, resulting in inevitable fluctuations and
flicker in the voltage. (3) The intermittent wind power may lead to severe grid frequency
fluctuations, which affects the power quality. In DFIG-based wind farms, DFIGs cannot
ignore time delay in their input. In [5], considering time delay uncertainties in wind
turbines, a multi-delay stabilization via the Casimir function was developed. In [6], a
compensator was installed to overcome time delay effects. In [7], in the small disturbance
stability sense, wind power stabilization was constructed, and sufficient criteria were
obtained.
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Practical signals only have finite frequency features; for example, seismic waves
emerge only in the frequency interval (0.3,8) Hz, while human acoustic perception is most
sensitive over (4,8) Hz. By [8], finite frequency (FF) current harmonics are associated with
the stator itself, rotor converter and grids. In [9], when three-phase grid voltages are
unbalanced, the grids will generate stator negative sequence voltage and current. However,
most control strategies for DFIGs are contrived commonly in the entire frequency (EF)
domain sense [10]. This brings in high conservatism in controller parametrization, which
leads to low robustness under FF harmonics.

To cope with the delay and gain disturbances, various control strategies are employed,
including adaptive [11], sliding mode [12], model predictive [13], and H∞ optimal [14].
In particular, H∞ control has been intensively considered for wind turbines for stability
robustness and disturbance attenuation. For practical DFIGs, the limitation of micropro-
cessor memory and word length, as well as A/D and D/A conversion errors, may cause
the control to be inaccurate. This gain disturbance can easily lead to the destruction of the
closed-loop system stability and performance degradation. Though remarkable theories
have been established in the FF sense, few works are specified for DFIGs. Therefore, it is
still substantial and challenging to deal with DFIG control in the FF sense.

This paper addresses the H∞ control for a single DFIG with input delay under FF
current harmonics interference and gain disturbance. More precisely, the H∞ index is
used to evaluate current harmonics and gain disturbance. By exploiting the generalized
Kalman–Yakubovich–Popov(GKYP) lemma, the performance indices are converted into
LMIs, and controller parametrization is solved by means of LMI feasible solution. In
brief, this study contributes a novel type of FF control for the wind turbine DFIG with
input delay under controller gain disturbances and current harmonics. Through the GKYP
lemma and the Lyapunov theory, the FF H∞ performance is transformed into linear matrix
inequalities (LMIs) to facilitate the design of FF controllers with input delay. It has not been
fully considered in previous studies on the control of the wind turbine DFIG. Moreover, a
sufficient condition is presented to design the optimal FF controller for the DFIG.

The suggested H∞ control improves robustness against time delay and gain distur-
bances, in comparison to those by EF control ones.

Notations: For a matrix M, its transpose, inverse and orthogonal complements are
denoted by MT , M−1 and M⊥, respectively. MH = MT means conjugate transpose. MT =
M > 0 means that the symmetric matrix M is positive. Given a square matrix P, He(P) =
P + PT . In denotes the n× n identity matrix. R and C denote the real and complex number
sets, respectively. Rn×m and Cn×m denote the set of all real and complex matrices of
dimension n×m, respectively. Also, ∗ denotes the transposed element in the symmetric
position.

2. Preliminaries and Problem Formulation

A wing wind power system with a doubly fed induction generator (DFIG) is sketched
in Figure 1. Accordingly, the DFIG-based wind turbine system consists of a windmill,
a gearbox, a doubly fed induction generator, a slip ring and a converter. Electrically,
the DFIG stator is directly connected to a power grid and the rotor is connected to the
power grid through a converter. The rotor side provides the excitation current with
adjustable amplitude, phase and frequency. The intermediate converter is in the form
of two back-to-back PWMs that can achieve four-quadrant operation. The DFIG has the
advantages of variable speed and constant frequency such that maximum energy tracking
and grid frequency synchronism under wind fluctuations can be achieved simultaneously.
In principle, doubly fed means that the stator and rotor of the induction generator are
connected to the power grid and thus both of them can create energy exchanges with the
power grid. To realize doubly fed operations, PWM inverters are installed on the generator
side, which make the rotor excitation flexible and fasten the power exchange [15].
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Figure 1. Scheme of a DFIG-based wind turbine system.

2.1. Electromechanical Transient Modeling of DFIG

To model the electromechanical transient of the DFIG in the steady state, it is assumed
that the steady state electromechanical transient is much slower than those of the electronic
switching in devices such as the converters. Hence, it is reasonable to say that the switching
dynamics of the electronic devices have died out where the electromechanical transience of
the DFIG in the steady state is concerned. Together with DC capacitor voltage dynamics
of the rotor being neglected, the steady state equivalent circuit of the DFIG is given in
Figure 2.
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Figure 2. Dynamic equivalent circuit of the DFIG wing turbine system.

As denoted in Figure 2, the subsequent notations are adopted throughout the paper.
s is the rotor slip rate; Lss and Lrr are the stator and rotor self-inductances, respectively;
Lm and Xm are the mutual inductance and reactance, respectively; Rr and Rs are the rotor
and stator resistances, respectively; ωs and ωr are the synchronous angular velocity and
rotor angular velocity, respectively; Uds(Udr) and Uqs(Uqr) are the d− and q− shaft stator
(rotor) voltages, respectively; Ed

′ and Eq
′ are d− and q− shaft rotor voltages under the sub-

transient, respectively; ids(idr) and iqs(iqr) are the d− and q− shaft stator (rotor) currents,
respectively. In the above and what follows, the time variable t is dropped for simplicity.
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The electromechanical transient of the DFIG in the steady state sense can be modeled
as a third-order equation and its corresponding power equations:

2H dωr
dt = Tm − Te

dE′d
dt = − 1

T0′
[E′d − (L− L′)iqs] + sωsE′q − Lm

Lrr
uqr

dE′q
dt = − 1

T0′
[E′q + (L− L′)ids]− sωsE′d +

Lm
Lrr

udr{
Ps = Te = E′dids + E′qiqs
Qs = E′dids − E′diqs

(1)

where H is the inertia time constant of the wind turbine as a single mass point model.
Tm = Fωr and Te are the mechanical and electromagnetic torques on the generator rotor; F
is the force acting on the mechanical torque.

Due to the widespread use of power electronics technology, most of the current AC
excitation power supplies of DFIGs use two back-to-back PWM converters. The dual PWM
converters contain a net-side converter and a rotor-side converter. However, because of
the small capacity of the DFIG exciter converter, the control capability of the whole wind
turbine is weak. There are mainly field-oriented control (FOC), also called vector control
(VC), and direct torque control (DTC) for the DFIG control system, currently. In this paper,
the rotor-side converter of the wind turbines adopts the vector control strategy [16,17]. The
rotor voltage control equation is:{

udr = Rridr + σLrr
didr
dt −ωsσLrriqr

uqr = Rriqr + σLrr
diqr
dt + ωs(

Lm
Lss

ψs + σLrridr)
(2)

where σ = 1− L2
m

Lss Lrr
.

It can be seen in (1) and (2) that if the rotor excitation power in the DFIG can be
exploited as a voltage source, by controlling the rotor excitation voltages udr and uqr, while
the sub-transient voltages E′d and E′q can be modified to achieve the DFIG power control
objectives.

2.2. Linearization and State–Space Remodeling of DFIG

The equations in (1) and (2) together are nonlinear differential algebraic ones, whose
analytical solution is not directly available. In other words, if Equations (1) and (2) are
directly used for FF controller design, it will involve a large number of numerical integra-
tions in controller parametrization, which will greatly reduce the operating speed of the
controller. Therefore, the nonlinear differential equations need to be linearized in advance.

In (1), we rewrite ωr = 1−ωs, selecting the operating point (ωr0, ids0, iqs0, Ed0
′, Eq0

′).
Then, we select ∆ωr, ∆E′d, ∆E′q as state variables, ∆ωr, ∆P′ and ∆Q′ as output measure-
ments, udr and uqr as input control actions. Due to the power electronic devices in the
DFIG, switching harmonics are inevitable. Any distortion of the control waveform will be
coupled to the stator side as harmonics [18]. Assuming the current harmonic of the stator
ids and iqs are viewed as disturbances. The linearized state–space model for the DFIG is{ .

x(t) = Ax(t) + B1 p(t) + B2u(t)
y(t) = Cx(t) + Du(t)

(3)
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and

A =

 −
F

2H − ids0
2H − iqs0

2H
−E′q0 − 1

T0′
1−ωr0

E′d0 ωr0 − 1 − 1
T0′

 ∈ R3×3, B1 =

 0 0
0 L−L′

T0′

− L−L′
T0′

0

 ∈ R3×2,

B2 =

 0 0
0 − Lm

Lrr
Lm
Lrr

0

 ∈ R3×2, C =

 1 0 0
0 ids0 iqs0
0 −iqs0 ids0

 ∈ R3×3, D = 0.

2.3. Input Time Delay and Gain Disturbance in DFIG

The time delay in signal processing always exists in the state–space Equation (3).
More specifically, feedback digital controllers require time to calculate and transmit, so
the time delay is not simply avoidable. In this study, to improve the robustness of the
DFIG against input delay, a memoryless state-feedback control (4) was applied to suppress
current harmonics in the rotor current p(t) of (3).

u(t) = (K + ∆K(t))x(t− τ), t ∈ [0, ∞) (4)

where 0 < τ < τm is input time delay K ∈ R2×3 is the static gain matrix to be designed,
and ∆K ∈ R2×3 is gain disturbance caused during implementation but in the form of

∆K(t) = RU(t)TK (5)

where R ∈ R3×1 and T ∈ R1×2 are the real constant, and U(t) ∈ R is an unknown time
varying continuous scalar function that satisfies U2(t) = U(t)TU(t) ≤ I.

Hence, the closed-loop system of the DFIG with the controller (4) is given by{ .
x(t) = Ax(t) + B1 p(t) + B2(K + ∆K)x(t− τ)
y(t) = Cx(t) + D(K + ∆K)x(t− τ)

(6)

In particular, when neglecting the gain disturbance ∆K, the transfer function from p(t)
to y(t) is denoted by Gpy(s, K) and given by

Gpy(s, K) = (C + e−τsDK)(sI3 − A− e−τsB2K)−1B1 ∈ C3×2 (7)

where I3 stands for the 3× 3 identity matrix.

2.4. FF Performance Specification for DFIGs

In the frequency domain, signals can be represented by several finite or infinite
frequency trigonometric functions, which follow from the Fourier transform or generally
the spectrum transform. For energy signals in power systems, the energy spectra are
concentrated in some FF fashions. PWM is widely used in DFIGs, which includes harmonics
in the air-gap magnetic field of the induction generator. One can impose some sinusoidal
excitation voltage on the excitation circuit, and from the obtained spectra, the current
harmonics are mainly in the frequency range of (250,550) Hz, as explained in [8]. In [9],
it was also found that the DFIG frequency spectra of the output waveform are mainly
concentrated around the integer multiplications of the switching frequency fs such as
2fs, 3fs, etc. With respect to the (2,4) kHz converter switching frequency, external current
harmonics to the DFIG are mainly around (2,8) kHz. In [19,20], specifications of grid
harmonics are summarized among (50,150) Hz. Therefore, if FF features of switching and
disturbances are not taken into account in H∞ control, no practical optimal performance in
the DFIG can be obtained.

Ωd = {ω ∈ R|(ω−ω1)(ω−ω2) ≤ 0} = [ω1, ω2] (8)
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where ω2 > 0 and ω1 > 0 are the upper and lower bounds for frequencies in harmonic
interference and disturbance, respectively. Now we are ready to introduce the finite
frequency (FF) performance for our later use.

Definition 1. Considering the system (6), the FF H∞ performance index of Gpy(s, K) is

‖Gpy(jω, K)‖Ωd
∞ := sup

ω∈Ωd

σ[Gpy(jω, K)] > 0

where σ(·) denotes the maximum singular value of (·), and Gpy(jω, K) is given in (7).

2.5. Problem Formulation

The control problem for the DFIG in Figure 1 is: fix the controller K in Equation (5)
such that the corresponding augmented-state system (7) is asymptotically stabilized when
∆K = 0, and with respect to a given scalar γ > 0, the H∞ performance in the FF interval
Ωd satisfies

‖Gpy(jω, K)‖Ωd
∞ < γ

To address the formulated problem, the following lemmas will be exploited.

Lemma 1 ([21]). For the transfer function Gpy(s, K) in (8), if there exists a matrix Π = ΠT such
that [

GH
py(jω) I

]
Π
[

Gpy(jω, K)
I

]
< 0, ∀ω ∈ [ω1, ω2]

if and only if there exist matrices P = PT , X = XT , Q = QTand Z = ZTsatisfying[
A B2K B1
I 0 0

]T

(Φ⊗ P + Ψ⊗Q + Ψ0 ⊗ τmZ)
[

A B2K B1
I 0 0

]
n

+

[
C DK 0
0 0 I

]T

Π
[

C DK 0
0 0 I

]
+

 X− τ−1
m Z τ−1

m Z 0
τ−1

m Z −X− τ−1
m Z 0

0 0 0

 < 0
(9)

where

Ψ =

[
−1 jωc
−jωc −ω1ω2

]
, Ψ0 =

[
1 0
0 0

]
, Φ =

[
0 1
1 0

]
, Π =

[
1 0
0 −γ2 I

]

In the above, ω2 ≥ ω1 > 0and ωc = (ω1 + ω2)/2are used.

Lemma 2 (Projection Lemma [22]). For matrices Ψ = ΨT , K and M, there exists a matrix X
satisfying Ψ + He(KXM) < 0, if and only if K⊥ΨK⊥T < 0 and (MT)

⊥Ψ(MT)
⊥T < 0.

Lemma 3 (Jensen Inequality [23]). For any matrix P = PT > 0 ∈ Rn, a scalar λ > 0, a vector
function ω : [0, λ]→ Rn such that the following integrals are well-defined, then

∫ λ

0
ωT(s)Pω(s)ds ≥ (

∫ λ

0
ω(s)ds)

T

P(
∫ λ

0
ω(s)ds)

Lemma 4 ([23]). Given matrices Q = QT , R T of appropriate dimensions, we have

Q + RU(t)T + TTUT(t)RT < 0, ∀t ≥ 0 (10)
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for any U(t) satisfying UT(t)U(t) < I, if and only if there exists a scalar µ > 0 such thatQ µR TT

∗ −µI 0
∗ ∗ −µI

 < 0 (11)

Several remarks about Lemmas 1 to 4:

• Lemma 1 follows from the generalized Kalman–Yakubovich–Popov (GKYP) lemma,
which is a frequency domain criterion that guarantees the existence of Lyapunovv–
Krasovskii functionals for stability analysis in nonlinear systems via strict positive
realness in terms of transfer function [24,25]. In other words, the GKYP lemma
provides us with time/frequency domain stability conditions. However, the LMI
inequality of Lemma 1 must be interpreted in the time–domain fashion but related to
some FF factors of the transfer function.

• The assumption that (A, B1, C) is a minimal state–space realization of Gpy(s, K) is
needed for generalizing the KYP lemma rigorously [26]. Thus, the pair (A, B1) is
controllable, and the pair (A, C) is observable.

• Lemmas 2–4 can be interpreted both in the time and frequency domain ways. Confined
to our discussion, they are used only in the time–domain fashion.

• The inequality (10) of Lemma 4 is a time–domain inequality. The equivalent inequality
(11) should be interpreted also in the time–domain way if we retrieve the proof
arguments between (10) and (11). The point plays a key role in combining the results
in Lemmas 1 and 4.

3. FF H∞ Controller Design of DFIG

In this section, a criterion of the FF H∞ controller is presented for DFIGs with input
time delay, which guarantees asymptotic stability and the desired H∞ performance of the
closed-loop DFIG system in (6). There will be four theorems to explain the controller design
procedures, where the stability conditions in LMI are given in Section 3.1, LMIs under
the harmonic interference attenuation condition are formulated in Section 3.2, and the H∞
controller design and parametrization are provided in Section 3.3.

3.1. Stability Analysis

Theorem 1. For any delay 0 < τ < τm, the closed-loop DFIG system (6) with ∆K = 0 is
asymptotically stable, if there exist a scalar α > 0 and matrices P1 = P1

T > 0, R1 = R1
T > 0,

S1 = S1
T > 0 and J such that the inequality Θ1 < 0 holds. Here, Θ1 = ΘT

1

Θ1 =

τmS1 − αHe(J) P1 − αJ + αJT A αJT B2K
∗ R1 − τ−1

m S1 + αHe(AT J) αJT B2K + τ−1
m S1

∗ ∗ −R1 − τ−1
m S1

 < 0 (12)

The proof of Theorem 1 is given in Appendix A.1.

3.2. FF-Domain H∞ Performance Analysis

Theorem 2. Let the FF interval Ωd be defined in (8) and the delay 0 < τ < τm and a scalar
γ > 0 be given. Then, the closed-loop DFIG system (6) with ∆K = 0 satisfies the FF H∞

performance inequality ‖Gpy(s, K)‖Ωd
∞ < γ, if there exist matrices P2 = P2

T > 0, Q2 = Q2
T > 0,

X = XT > 0, Z = ZT > 0 and J such that the inequality Θ2 < 0 holds. Here, Θ2 = ΘT
2 is given

by



Sustainability 2023, 15, 4520 8 of 19

Θ2 =


−Q2 + τmZ P2 + jωcQ2 − J 0 0 0

∗ −ω1ω2Q2 + He(AT J) + X− τ−1
m Z JT B2K + τ−1

m Z JT B1 CT

∗ ∗ −X− τ−1
m Z 0 KT DT

∗ ∗ ∗ −γ2 I 0
∗ ∗ ∗ ∗ −I

 (13)

The proof of Theorem 1 is given in Appendix A.2.

3.3. FF Controller Parametrization

It must be noticed that in Theorems 1 and 2, the gain disturbance ∆K is not considered.
To enhance the stability robustness of the closed-loop system (6) against gain disturbance
∆K 6= 0 by means of the practical controller K + ∆K, the results of Theorems 1 and 2 must
be modified. The following theorem can be obtained by using Lemma 4.

Theorem 3. For any time delay 0 < τ < τm, there exists a controller (4) with gain disturbance
∆K = RU(t)TK constrained by (5) such that the closed-loop system (6) is asymptotically stabilized
and satisfies the FF H∞ performance, if there exist matrices P1 = P1

T > 0, R1 = R1
T > 0,

S1 = S1
T > 0, P2 = P2

T > 0 Q2 = Q2
T > 0, X = XT > 0, Z = ZT > 0 and a general matrix

J, the following LMIs holds true.

Θ3 = ΘT
3 =:


φ11 φ12 φ13 φ14 0
∗ φ22 φ23 φ24 0
∗ ∗ φ33 0 φ35
∗ ∗ ∗ −µI 0
∗ ∗ ∗ ∗ −µI

 < 0 (14)

where


φ11 = τmS1 − αHe(J), φ12 = P1 − αJ + αJT A
φ13 = αJT B2K, φ14 = µαJT B2R
φ22 = R1 − τ−1

m S1 + αHe(AT J), φ23 = αJT B2K + τ−1
m S1

φ24 = φ14, φ33 = −R1 − τ−1
m S1, φ35 = KTTT

Θ4 = ΘT
4 =:



Ψ11 Ψ12 0 0 0 0 0
∗ Ψ22 Ψ23 JT B1 CT µJT B2R 0
∗ ∗ Ψ33 0 KT DT 0 KTTT

∗ ∗ ∗ −γ2 I 0 0 0
∗ ∗ ∗ ∗ −I µDR 0
∗ ∗ ∗ ∗ ∗ −µI 0
∗ ∗ ∗ ∗ ∗ ∗ −µI


< 0 (15)

where


Ψ11 = −Q2 + τmZ, Ψ12 = P2 + jωcQ2 − J
Ψ22 = −ω1ω2Q2 + He(AT J) + X− τ−1

m Z
Ψ23 = JT B2K + τ−1

m Z, Ψ33 = −X− τ−1
m Z

The proof of Theorem 1 is given in Appendix A.3.
Since the LMIs in (14) and (15) involve the product terms of K and J, they cannot be

handled directly by means of the LMI numerical toolkit. To decouple such product terms,
let us define

W1 = diag[J−T , J−T , J−T ], W2 = diag[J−T , J−T , J−T , I, I]
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Then, we pre- and post-multiply Equations (22) and (23) with W1, WT
1 and W2, WT

2 ,
respectively. Additionally, we introduce the notations as follows.

P1 = J−T P1 J−1, R1 = J−T R1 J−1, S1 = J−TS1 J−1

P2 = J−T P2 J−1, Q2 = J−TQ2 J−1, Z = J−TZJ−1

X = J−TXJ−1, V = KJ−1, J = J−1

Using these notations, we can claim the following theorem.

Theorem 4. For any time delay 0 < τ < τm, there exists a controller (4) with gain disturbance
∆K = RU(t)TK constrained by (5) such that the closed-loop system (6) is asymptotically stabilized
and satisfies the FF H∞ performance, if there exist matrices P1 = P1

T > 0, R1 = R1
T
> 0,

S1 = S1
T
> 0, P2 = P2

T
> 0, Q2 = Q2

T
> 0, X = XT

> 0, Z = ZT
> 0 and a general matrix

J, V such that the following LMIs holds true.

Θ3 = ΘT
3 =:


φ11 φ12 φ13 φ14 0
∗ φ22 φ23 φ24 0
∗ ∗ φ33 0 φ35
∗ ∗ ∗ −µI 0
∗ ∗ ∗ ∗ −µI

 < 0 (16)

where


φ11 = τmS1 − αHe(J), φ12 = P1 − αJT

+ αAJ
φ13 = αB2V, φ14 = µαB2R
φ22 = R1 − τ−1

m S1 + αHe(AJ), φ23 = αB2V + τ−1
m S1, φ24 = µαB2R

φ33 = −R1 − τ−1
m S1, φ35 = VTTT

Θ4 = ΘT
4 =:



Ψ11 Ψ12 0 0 0 0 0
∗ Ψ22 Ψ23 B1 JTCT µB2R 0
∗ ∗ Ψ33 0 VT DT 0 VTTT

∗ ∗ ∗ −γ2 I 0 0 0
∗ ∗ ∗ ∗ −I µDR 0
∗ ∗ ∗ ∗ ∗ −µI 0
∗ ∗ ∗ ∗ ∗ ∗ −µI


< 0 (17)

where


Ψ11 = −Q2 + τmZ, Ψ12 = P2 + jωcQ2 − JT

Ψ22 = −ω1ω2Q2 + He(AJ) + X− τ−1
m Z, Ψ23 = B2V + τ−1

m Z
Ψ33 = −X− τ−1

m Z
.

Moreover, the control gain K can be given by K = V J−1.
The FF H∞ control for the DFIG flow chart is shown in Figure 3. control for DFIG flow

chart.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 21 
 

Then, we pre- and post-multiply Equations (22) and (23) with 1W , 1
TW  and 2W , 

2
TW , respectively. Additionally, we introduce the notations as follows. 

1 1 1
1 1 1 1 1 1

1 1 1
2 2 2 2

1 1 1

, ,
, ,
, ,

T T T

T T T

T

P J P J R J R J S J S J
P J P J Q J Q J Z J ZJ
X J XJ V KJ J J

− − − − − −

− − − − − −

− − − −

 = = =
 = = =
 = = =

 

Using these notations, we can claim the following theorem. 

Theorem 4. For any time delay 0 mτ τ< < , there exists a controller (4) with gain disturbance 
( )K RU t TKΔ = constrained by (5) such that the closed-loop system (6) is asymptotically stabilized 

and satisfies the FF H ∞ performance, if there exist matrices 11 0
T

P P= > , 1 1 0
T

R R= > , 

1 1 0
T

S S= > , 2 2 0
T

P P= > , 2 2 0
T

Q Q= > , 0
T

X X= > , 0
T

Z Z= >  and a general matrix 

J , V such that the following LMIs holds true. 

11 12 13 14

22 23 24

3 3 33 35

0
* 0

: 0* * 0
* * * 0
* * * *

T

I
I

φ φ φ φ
φ φ φ

φ φ
μ

μ

 
 
 
 Θ = Θ = <
 

− 
 − 

 (16) 

where 

11 1 12 1

13 2 14 2
1 1

22 1 1 23 2 1 24 2
1

33 1 1 35

He( ),
,

He( ), ,
,

T
m

m m
T T

m

S J P J AJ
B V B R
R S AJ B V S B R
R S V T

φ τ α φ α α
φ α φ μα
φ τ α φ α τ φ μα
φ τ φ

− −

−

 = − = − +
 = =
 = − + = + =
 = − − =

  

11 12

22 23 1 2

33
2

4 4

0 0 0 0 0
* 0
* * 0 0

: 0* * * 0 0 0
* * * * 0
* * * * * 0
* * * * * *

T T

T T T T

T

B J C B R
V D V T

I
I DR

I
I

μ

γ
μ
μ

μ

 Ψ Ψ
 Ψ Ψ 
 Ψ
 

Θ = Θ = <− 
 −
 

− 
 − 

 (17) 

where 
11 2 12 2 2

1 1
22 1 2 2 23 2

1
33

,
He( ) ,

T
m c

m m

m

Q Z P j Q J
Q AJ X Z B V Z

X Z

τ ω
ω ω τ τ

τ

− −

−

Ψ = − + Ψ = + −
Ψ = − + + − Ψ = +
Ψ = − −

.  

Moreover, the control gain K  can be given by 
1K VJ −= . 

The FF H ∞ control for the DFIG flow chart is shown in Figure 3. 

 

Figure 3. The FF H∞ control for DFIG flow chart.



Sustainability 2023, 15, 4520 10 of 19

4. Numerical Simulations

In this section, we illustrate effectiveness of the suggested FF H∞ control strategies.

4.1. Descriptions about DFIG and Control Design

The modeling parameters of the 5 MW wind turbine DFIGs are: H = 6 sec,Lm =
0.4 p.u., Lrr = 0.55 p.u., Lss = 0.17 p.u., Rr = 0.5 p.u., ids0 = 1.8 p.u.,iqs0 = 1.7 p.u.,
Eds0 = 2.8 p.u., Eqs0 = 2.7 p.u., ωr0 = 3.14 p.u.. The linearized DFIG state–space equation
matrices in the sense of (9) is given by

A =

 −2 −0.15 −0.14
−2.7 −1 −2.14
2.8 2.14 −1

, B1 =

 0 0
0 0.3
−0.3 0

,

B2 =

 0 0
0 −0.7

0.7 0

, C =

 1 0 0
0 1.8 1.7
0 −1.7 1.8

, D = 0

The finite frequency domain interval of the current harmonic interference is first
estimated as 2 kHz < ωd < 8 kHz. We assume that τm = 100 ms. Given α = 1, γ = 1,
µ = 0.3, R = 1, U = 1, T = 0.005, we solve the corresponding LMIs (22) and (23) in
Theorem 4. The FF controller K is fixed as

K =

[
−1.859 −0.570 −2.250
−1.368 1.986 −1.392

]
The frequency characteristics for the maximum singular value of Gpy(s, K) is plotted

in Figure 4. We see that the max value of ‖Gpy(jω, K)‖ is 0.283, which is strictly less than
γ = 1.
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Now we consider the cases subject to current harmonic interference. More specifically,
the harmonic interference is in the form of p(t) = 0.1 sin(2π f t)( f = 3 kHz). The DFIG rotor
angular velocity, the stator active and reactive power responses in the open-loop system
(by dotted lines) and those in the closed-loop system (by solid lines) are plotted in Figure 5.
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Figure 5. The response curves of the DFIG ∆ωr, ∆Ps, ∆Qs.

In Figure 5, we see that the oscillation amplitude of the closed-loop responses under
the FF H∞ control is smaller, and the response convergence is faster than that of the open-
loop responses. It shows that the FF H∞ controller reduces the transient time period while
it stabilizes the closed-loop system.

4.2. Cases under Various Time Delays

To reveal how the time delay upper bound τm is related to the FF H∞ performance, we
made a comparison computation when τm ∈ {100, 500, 1000, 1500}ms, respectively. The
H∞ controller parametrization under different τms are collected in Table 1. The response
curves of the DFIG rotor angular velocity, stator active and reactive powers are plotted in
Figure 6, where w.r.t. is the abbreviation for with respect to. By Figure 6, one can see that
the larger the delay upper bound is, the worse (or the bigger) the resulting H∞ performance
index is.

Table 1. The Gain Matrix K under different τms.

Delay/ms Feedback Gain Matrix K Feasibility

100 K =

[
−1.859 −0.570 −2.250
−1.368 1.986 −1.392

] √

500 K =

[
−0.199 −0.075 −0.280
−0.808 0.586 −0.265

] √

1000 K =

[
−0.243 −0.3 0.330
−0.741 −0.199 −0.272

] √

1500 K =

[
−0.619 −0.542 0.212
−0.702 −0.217 −0.503

] √

4.3. Cases under Various Gain Disturbances

To illustrate how the gain perturbation ∆K affects the control performance, we selected
R = 1, U = 1, and the weighting factor T ∈ {0.005, 0.05, 0.5}, respectively. Substituting
R, U, T into the Equation (5), we obtained the corresponding ∆K ∈ {0.005K, 0.05K, 0.5K}.
Then, we compared the control performances under different ∆K. The H∞ controller gain
matrix K are listed in Table 2. The response curves of DFIG rotor angular velocity, stator
active and reactive powers are plotted in Figure 7. By Figure 7, it is easy to deduce that as
the control gain perturbation ∆K grows, the corresponding H∞ performance deteriorates
obviously.
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Figure 6. The response curves of the DFIG ∆ωr, ∆Ps, ∆Qs w.r.t. τm.

Table 2. The Gain Matrix K under different ∆K.

∆K Feedback Gain Matrix K Feasibility

0.005 K K =

[
−1.859 −0.57 −2.25
−1.368 1.986 −1.392

] √

0.05 K K =

[
−1.816 −0.533 −2.197
1.312 1.949 −1.342

] √

0.5 K K =

[
−0.152 −0.047 −0.145
−0.025 0.12 −0.071

] √

4.4. Cases for Various Finite Frequency Domain Intervals

To reveal the H∞ control performance under different current harmonic frequency
interval Ωds, we evaluate several when Ωd ∈ {[50, 150]Hz, [250, 550]Hz, [2000, 8000]Hz}.
The corresponding H∞ controller parametrizations for different Ωd are listed in Table 3
The response curves of DFIG rotor angular velocity, stator active and reactive powers
are plotted in Figure 8. From Figure 8, we can see that the H∞ control can well suppress
the current harmonics interference in all three cases. This verifies the effectiveness and
robustness of the suggested controller.

4.5. Cases Comparison under FF and EF H∞ Control

Finally, we compared the H∞ control performances in the finite frequency (FF) sense
with those in the entire-frequency (EF) sense. In Figure 9, the dotted lines and the solid
lines, respectively, represent the response curves of the DFIG power systems under the FF
H∞ and EF H∞ control. Clearly, the response curves related to the FF H∞ controller are
smoother, while the overshoots are less, and thus the control performance under the FF H∞
control is significantly enhanced.
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Table 3. The Gain Matrix K under different Ωds.

Ωd/Hz Feedback Gain Matrix K Feasibility

50 < Ωd < 150 K =

[
−2.27 −0.884 −2.137
−1.657 1.688 −1.676

] √

250 < Ωd < 550 K =

[
−1.908 −0.575 −2.5714
−1.569 2.523 −1.508

] √

2000 < Ωd < 8000 K =

[
−1.859 −0.570 −2.25
−1.368 1.986 −1.392

] √

4.6. Cases Comparison under FF and Other H∞ Control Methods

Finally, for comparison, the FF H∞ control method in this paper and the general
H∞ control method in the literature [27] are applied in this example where parameters
are chosen as τm = 100ms, ∆K = 0.005K. It is evident from Figure 10 that the control
performance under the FF H∞ control proposed in this paper is significantly improved
compared to the ones in the literature [27].

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 21 
 

   

   

Figure 8. The response curves of the DFIG , ,r s sP QωΔ Δ Δ  w.r.t. dΩ . 

4.5. Cases Comparison under FF and EF H ∞ Control 

Finally, we compared the H∞ control performances in the finite frequency (FF) sense 
with those in the entire-frequency (EF) sense. In Figure 9, the dotted lines and the solid 
lines, respectively, represent the response curves of the DFIG power systems under the 
FF H∞ and EF H∞ control. Clearly, the response curves related to the FF H∞ controller are 
smoother, while the overshoots are less, and thus the control performance under the FF 
H∞ control is significantly enhanced. 

   

Figure 8. The response curves of the DFIG ∆ωr, ∆Ps, ∆Qs w.r.t. Ωd.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 21 
 

   

Figure 9. The response curves of the DFIG , ,r s sP QωΔ Δ Δ  under FF and EF. 

4.6. Cases Comparison under FF and Other H ∞  Control Methods 

Finally, for comparison, the FF H ∞ control method in this paper and the general 
H ∞  control method in the literature [27] are applied in this example where parameters 
are chosen as 100msmτ = , 0.005K KΔ = . It is evident from Figure 10 that the control per-
formance under the FF H ∞ control proposed in this paper is significantly improved com-
pared to the ones in the literature [27]. 

   

(a) (b) (c) 

   

Figure 10. The response of the DFIG , ,r s sP QωΔ Δ Δ  under two methods. 

5. Discussions 
In this paper, a state-feedback control scheme is proposed, which caters for the FF 

control problem for the DFIG system with the time delay, current harmonics and gain 
disturbances. This method is of great significance in improving the robustness of wind 
power systems. 

Figure 9. The response curves of the DFIG ∆ωr, ∆Ps, ∆Qs under FF and EF.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 21 
 

   

Figure 9. The response curves of the DFIG , ,r s sP QωΔ Δ Δ  under FF and EF. 

4.6. Cases Comparison under FF and Other H ∞  Control Methods 

Finally, for comparison, the FF H ∞ control method in this paper and the general 
H ∞  control method in the literature [27] are applied in this example where parameters 
are chosen as 100msmτ = , 0.005K KΔ = . It is evident from Figure 10 that the control per-
formance under the FF H ∞ control proposed in this paper is significantly improved com-
pared to the ones in the literature [27]. 

   

(a) (b) (c) 

   

Figure 10. The response of the DFIG , ,r s sP QωΔ Δ Δ  under two methods. 

5. Discussions 
In this paper, a state-feedback control scheme is proposed, which caters for the FF 

control problem for the DFIG system with the time delay, current harmonics and gain 
disturbances. This method is of great significance in improving the robustness of wind 
power systems. 

Figure 10. The response of the DFIG ∆ωr, ∆Ps, ∆Qs under two methods.



Sustainability 2023, 15, 4520 14 of 19

5. Discussions

In this paper, a state-feedback control scheme is proposed, which caters for the FF
control problem for the DFIG system with the time delay, current harmonics and gain
disturbances. This method is of great significance in improving the robustness of wind
power systems.

The third order DFIG turbine model adopts a one-mass drive and ignores the stator
transient, so some flux components are not responsible for the turbine’s decaying and
oscillating modes. This model is more suitable for real DFIG systems. Then the state–space
model for DFIGs was obtained using Taylor’s formula.

In large power systems, electricity may oscillate in a short period of time due to
time delays, which reflects badly on turbines, power equipment and the power grid. The
harmonic interferences and gain disturbances in the power system can reduce the power
quality, leading to lower generation efficiency and higher generation costs for wind farms.
It is necessary to study the time delay control of large-scale wind power systems under
current harmonic disturbances and gain disturbances.

For the DFIG state–space model with input delay under current harmonics and gain
disturbances model, an FF H∞ state-feedback controller was designed from the frequency
domain perspective, which makes the DFIG stable and robust against harmonic interfer-
ences and gain disturbances. Using the generalized KYP lemma and Lyapunov theory,
the FF performance was evaluated using linear matrix inequalities, and the state feedback
parametrization was addressed based on this. This method improves the utilization rate of
wind energy and is a feasible and effective control method in wind power systems.

In summary, the method proposed in this paper is technically and economically
advantageous in terms of power generation performance, system simplification and cost-
effectiveness. A new control technology and system structure were applied to analyze
power systems and improve the power quality.

Potential applications of the method are as follows.

• At present, the control technology of wind power technology is relatively mature. The
FF H∞ control design method in this paper provides a new frequency domain design
idea for the suppression of disturbances in various uncertain cases of wind power
systems, which can improve the quality of power systems.

• With the development of distributed wind power systems in wind farms, the dis-
tributed wind turbines based on FF H∞ control for doubly fed induction generators
with input delay and the gain disturbance control strategy proposed in this paper
could be used in wind farms, which can realize the efficient use of wind energy.

6. Conclusions

In view of DFIG wind turbine systems, the FF H∞ control method was proposed
for systems with input delay under controller gain disturbance and current harmonic
interference. By employing the GKYP lemma and Lyapunov theory, the FF H∞ control
problem can be transformed into an LMI feasible solution problem. Interesting results are
claimed as in Theorems 1–4. The main contributions and novelty of the proposed methods
in this paper can be summarized by the following aspects:

1. A control strategy in terms of the frequency band is formulated for the DFIG by taking
time delay and gain disturbance into account, and it has not been fully considered in
previous studies on the control of the DFIG.

2. Based on the GKYP lemma and the Lyapunov theory, sufficient conditions are for-
mulated for the DFIG with input delay to satisfy the desired specification in the
frequency band. Then, the frequency design problem of DFIGs is transformed into a
time domain LMI problem, which significantly facilitated our solution process.

3. A sufficient condition is presented to search for the optimal FF controller for the DFIG.
Furthermore, the output of active and reactive power was stable, which improved the
stability and reliability of the system. This design method provided new ideas for the
development and application of DFIG control in the future.
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As possible extensions of the FF LMI technique in DFIG engineering, the following
control problems are significant and interesting, which will be addressed in our subsequent
studies.

• The model for DFIGs in this paper is 3-dimensional. Next, higher order systems with
higher dimensional DFIG systems can be considered [28,29].

• Sliding mode control: u(t) = f (t, x(t), x(t− τ)) over a sliding surface S(t, x(t), x(t−
τ)) can be applied to achieve finite-time convergence.

• Apply the results for networked DFIGs via multi-agent consensus [30–32].
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Appendix A

Appendix A.1

Proof of Theorem 1. By simple algebras, the inequality (12) is written as

Θ1 =

 τmS1 P1 0
∗ 0 0
∗ ∗ 0

+

 0 0 0
∗ R1 − τ−1

m S1 τ−1
m S1

∗ ∗ −R1 − τ−1
m S1


+

 −αHe(J) −αJ + αJT αJT B2K
∗ αHe(AT J) αJT B2K
∗ ∗ 0

 < 0

Furthermore, let us define the following notations:
G1 =

[
I 0 0
0 I 0

]
, M1 =

 0 0 0
∗ R1 − τ−1

m S1 τ−1
m S1

∗ ∗ −R1 − τ−1
m S1


41 =

[
−I A B2K

]
, ∇1 =

[
I I 0

]
Then, the inequality (12) can be transformed into the following relationship.

GT
1 (Φ⊗ P1 + Ψ0 ⊗ τS1)G1 + M1 + αHe(4T

1 J∇1) < 0 (A1)

where Φ and Ψ are defined in Lemma 1.
By Lemma 2, the inequality (A1) holds if and only if the following inequalities are

true. {
L1GT(Φ⊗ P1 + Ψ0 ⊗ τmS1)G1LT

1 + L1M1LT
1 < 0

D1GT
1 (Φ⊗ P1 + Ψ0 ⊗ τmS1)G1DT

1 + D1M1DT
1 < 0

(A2)

where

D1 =

A B2K
I 0
0 I

, L1 =

[
0 0 0
0 0 I

]
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Furthermore, the second inequality of (A2) can be transformed into

DT
1 GT

1 (Φ⊗ P1 + Ψ0 ⊗ τmS1)G1D1 + DT
1 M1D1

=

[
A B2K
I 0

]T

(Φ⊗ P1 + Ψ0 ⊗ τmS1)

[
A B2K
I 0

]
+

[
R1 − τ−1

m S1 τ−1
m S1

∗ −R1 − τ−1
m S1

]
< 0

(A3)

Substituting Φ,Ψ0 into the above equation, we obtain[
He(AT P1) + R1 + τm ATS1 A− τ−1

m S1 P1B2K + τm ATS1B2K + τ−1
m S1

∗ −R1 + τmKT BT
2 S1B2K− τ−1

m S1

]
< 0 (A4)

It follows that the Equation (A4) is equivalent to the Equation (12).
Next we construct the Lyapunov–Krasovskii functional V(t) for stability analysis of

the system (6) when no current harmonic interference p(t) and gain disturbance ∆K = 0
are assumed.

V(t) = V1(t) + V2(t) + V3(t)

where {
V1(t) = xT(t)P1x(t), V2(t) =

∫ t
t−τ xT(ξ)R1x(ξ)dξ

V3(t) =
∫ 0
−τ

∫ t
t+β

.
xT

(ξ)S1
.
x(ξ)dξdβ

After taking the time derivative about V(t), we obtain that

.
V(t) =

.
x(t)T P1(t)x(t) + xT(t)P1

.
x(t) + xT(t)R1x(t)− xT(t− τ)R1x(t− τ)

+ τ
.
xT

(t)S1
.
x(t)−

∫ t
t−τ

.
xT

(β)S1
.
x(β)dβ

(A5)

By Lemma 4, the last term of Equation (A5) can be scaled up to

−
∫ t

t−τ

.
xT

(β)S1
.
x(β)dβ ≤ −τ−1(x(t)− x(t− τ))TS1(x(t)− x(t− τ)) (A6)

Substituting the Equation (A6) and
.
x(t) = Ax(t) + B2Kx(t − τ) into the Equation

(A5), we have

.
V(t) ≤ .

x(t)T P1(t)x(t) + xT(t)P1
.
x(t) + xT(t)R1x(t)

− xT(t− τ)R1x(t− τ) + τm
.
xT

(t)S1
.
x(t)

− τ−1
m (x(t)− x(t− τ))TS1(x(t)− x(t− τ))

= ζTΣζ

where the vector ζ and the matrix Σ = ΣT are defined by
ζ =

[
x(t)

x(t− τ)

]
Σ =

[
He(AT P1) + R1 + τm ATS1 A− τ−1

m S1 P1B2K + τm ATS1B2K + τ−1
m S1

∗ −R1 + τmKT BT
2 S1B2K− τ−1

m S1

]
Together with Schur lemma, if Σ = ΣT < 0, the closed-loop DFIG system is asymptoti-

cally stable. Since the inequality Σ = ΣT < 0 is equivalent to that in (A4). Therefore, under
the inequality (12), the closed-loop DFIG system is asymptotically stable. This completes
the proof. �
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Appendix A.2

Proof of Theorem 2. Define the following notations:

G2 =

[
I 0 0 0
0 I 0 0

]
, F2 =

[
0 C DK 0
0 0 0 I

]

M2 =


0 0 0 0
∗ X− τ−1

m Z τ−1
m Z 0

∗ ∗ −X− τ−1
m Z 0

∗ ∗ ∗ 0


∆2 =

[
−I A B2K B1

]
, ∇1 =

[
0 I 0 0

]
Then, the inequality Θ2 < 0 can be transformed into the following relationship.

GT
2 (Φ⊗ P2 + Ψ⊗Q2 + Ψ0 ⊗ τS1)G2 + FT

2 ΠF2 + M2 + He(∆T
2 J∇2) < 0. (A7)

By Lemma 2, the inequality (A7) holds if and only if the following inequalities are
true.{

LT
2 GT

2 (Φ⊗ P2 + Ψ⊗Q2 + Ψ0 ⊗ τmS1)G2LT
2 + LT

2 FT
2 ΠF2L2 + LT

2 M2L2 < 0
DT

2 GT
2 (Φ⊗ P2 + Ψ⊗Q2 + Ψ0 ⊗ τmS1)G2DT

2 + DT
2 FT

2 ΠF2D2 + DT
2 M2D2 < 0

(A8)

where

D2 =


A B2K B1
I 0 0
0 I 0
0 0 I


T

, L1 =

[
I 0 0 0
0 I I 0

]

Furthermore, the second inequality of (A8) can be transformed into[
A B2K B1
I 0 0

]T

(Φ⊗ P + Ψ⊗Q + Ψ0 ⊗ τmZ)
[

A B2K B1
I 0 0

]
+

[
C DK 0
0 0 I

]T

Π
[

C DK 0
0 0 I

]
+

 X− τ−1
m Z τ−1

m Z 0
τ−1

m Z −X− τ−1
m Z 0

0 0 0

 < 0

which is nothing but the inequality (9). Eventually, by Lemma 1, the inequality Θ2 < 0
implies that GH

py(jω)Gpy(jω, K) < γ2 I. This gives the inequality ‖Gpy(jω, K)‖Ωd
∞ < γ. This

completes the proof. �

Appendix A.3

Proof of Theorem 3. By replacing K with K + RU(t)TK in the inequalities (12) and (13),
the inequalities (12) and (13), respectively, can be modified as{

Θ1 + R1U(t)T1 + TT
1 UT(t)RT

1 < 0
Θ2 + R2U(t)T2 + TT

2 UT(t)RT
2 < 0

(A9)

where 

R1 =

 µαJT B2R
µαJT B2R

0

, T1 =
[

0 0 TK
]

R2 =


0

µJT B2R
0
0

µDR

, T2 =
[

0 0 TK 0 0
]
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According to Lemma 4, the two inequalities of (A9) will be satisfied if there is a scalar
µ > 0 that makes the inequalities (14) and (15) be true. Bearing the facts in mind, Theorems
1 and 2 lead us to the desired results as appropriate. This completes the proof. �
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