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Abstract: The travelling salesman problem (TSP) is one of combinatorial optimization problems
of huge importance to practical applications. However, the TSP in its “pure” form may lack some
essential issues for a decision maker—e.g., time-dependent travelling conditions. Among those
shortcomings, there is also a lack of possibility of not visiting some nodes in the network—e.g., thanks
to the existence of some more cost-efficient means of transportation. In this article, an extension
of the TSP in which some nodes can be skipped at the cost of penalties for skipping those nodes
is presented under a new name and in a new mathematical formulation. Such an extension can be
applied as a model for transportation cost reduction due to the possibility of outsourcing deliveries
to some nodes in a TSP route. An integer linear programming formulation of such a problem based
on the Gavish–Graves-flow-based TSP formulation is introduced. This formulation makes it possible
to solve the considered problem by using any integer linear programming optimization software.
Numerical examples and opportunities for further research are presented.

Keywords: travelling salesman problem; integer linear programming; penalties

1. Introduction

The flow of goods is one of pillars of the modern economy [1–3]. In today’s world,
the role of transport is extremely important, and effective supply chain management is
more and more often recognized as a key factor in gaining a competitive advantage on the
market [4,5]. The transport needs of enterprises result from many different reasons. These
are mainly geographical differences in the locations of production plants or sales points,
resulting from production or product specialization, economies of scale, or the political and
social situation [6,7]. The territorial gap between the seller and the buyer can only be filled
efficiently thanks to appropriate transport organization, so that the demand for goods can
be met.

Costs play a key role in shaping the transport policy, mainly due to the fact that they
constitute a significant share of the company’s total logistic costs [8,9] and thus have a
direct impact on its efficiency [10,11]. Moreover, the paradigm of sustainable transport de-
velopment additionally places emphasis on issues related to environmental protection [12],
exhaust emissions [13], road safety [14–16], sustainable use of natural resources [17], etc.
These factors also affect transport costs because of possible environmental and material
losses [18].

Such a significant share of transport costs in the logistics costs of enterprises forces the
optimization of this area, and the search for solutions that may, on the one hand, reduce
the financial burden, and on the other hand, maintain the desired quality of transport
services [19–21]. Their value is influenced by many factors, not all of which are modifiable.
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Fixed costs are independent of the volume of the shipping service. They include the costs
of insurance, licenses and permits, leasing and some taxes [22,23]. On the other hand, the
value of the variable costs is directly related to the volume of the transport service and
generally increases as the distance travelled increases. The variable costs include the costs
of fuel, energy, tires, repairs, overhauls, inspections, spare parts and road or rail tolls [24,25].
Therefore, they are influenced by the distance travelled (between the locations of loading
and unloading), the length and type of transport route, the type of means of transport
used and the duration of the transport service. These are the factors that the company can
modify, and the effectiveness of these treatments may be of key importance in shaping the
efficient logistics strategy [22–25].

The search for the optimal route is one of the key problems of logistic management
in every enterprise [26,27]. Its difficulty is related to the necessity of taking into account
many different criteria, often ones that are mutually contradictory, in order to find the best
solution for the enterprise, including satisfaction of its customers. Finding the right solution
requires a thorough analysis of factors related to transport costs, transport limitations and
travel time, but also customer requirements [28]. The correct selection of the route gives the
company the opportunity to save time and reduce costs, and also to ensure timely delivery,
which should result finally in customer satisfaction.

Therefore, the search for the best transport routes is one of the basic goals of logistics
activities. Routing methods are systematically developed and improved. They include, for
example, the classical Hitchcock transportation problem, the travelling salesman problem,
the vehicle routing problem, etc. However, whereas many problems of that kind can
be formulated relatively simply, they may be very hard to solve, since they may even
belong to the class of NP-hard problems. Due to the computational complexity of the
abovementioned problems, usually some optimization methods must be used in order to
determine optimal solutions. Among the optimization techniques used, we distinguish
exact algorithms that calculate an exact, optimal solution for a given instance of a problem,
and approximation algorithms that may calculate an exact solution but may also calculate
an approximate, suboptimal solution with a given accuracy. Approximation methods can
be divided into heuristic and metaheuristic ones [29,30]. Heuristics is a specialized method
of solving a specific problem that finds good (i.e., not far from optimal ones) solutions
with an acceptable computational effort, but without the guarantee of finding an optimal
solution. Metaheuristics is a general method that serves as a framework for constructing a
heuristic that solves any problem that can be described by certain concepts defined by this
method. Such methods are not used to solve specific problems, but only provide a way to
create an appropriate heuristic algorithm [31,32].

Determining the routes for delivery (or pickup) of some goods is generally always
possible, if enough necessary resources (vehicles, staff, time for completing the service)
are available. However, if the set of delivery points is somehow “unusual”—for example,
if one or a few particular delivery locations are relatively very distant from the most of
the other delivery locations—then the optimization in terms of total costs leads to the
conclusion that skipping such locations may result in a significant decrease in the cost.
However, due to contractual liabilities, usually, no location can be skipped. If one could
be, it usually would mean that either the customer must be rewarded for not receiving the
contracted service, or the supply to this location should be carried out using other transport
options (e.g., outsourcing the service or using an alternative, more economical means
of transport) when constructing the entire route. Any of the abovementioned options is
obviously connected with some cost (the reward for not performing the contracted service
or the cost of outsourcing the service), which can be commonly called a penalty. If the
value of the penalty associated with skipping some location is low enough, it may be
profitable to skip that location. As has been already mentioned, the opportunity to skip
some locations initially scheduled to be visited obviously will be the most advantageous
when some very-distant, isolated locations simple cost savings, planning shorter routes can
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result in further advantages, such as less usage of vehicles or shorter work hours for drivers.
The latter, in turn, could help in providing better safety and resilience to unexpected delays.

The problem considered in this article is determining a closed route (i.e., the route for
which the start locations and the end locations are the same). Moreover, locations along the
route can be skipped if positive penalties are charged for skipping. It is an extension of the
traveling salesman problem (TSP)—a problem of calculating the shortest cycle connecting
all the nodes in a graph (the shortest Hamiltonian cycle), where “node” is a graph theory
term which stands for “delivery location”. From a practical point of view, Hamiltonian
cycles are routes for trips in which a person starts from some chosen point, e.g., a city, visits
some other cities, each once only, and finally returns to the first city.

The history of the TSP as an optimization problem, which is important for its practical
logistic application, dates back to 1930’s, when it was formulated under the name the
“messenger problem” [33]. The name “traveling salesman problem” appeared for the
first time in 1949 [34]. In the 1950s, linear programming started to be used to solve the
TSP [35–37]. Other approaches to solving the TSP which appeared already in the early years
of its investigation were heuristic algorithms [38,39] and dynamic programming [40–43].

During the development of studies on TSP, it turned out that computational efficiency
was not the only important issue for practical applications. Real-world route planning
must often include such factors as the variability of parameters over time (non-constant
cost/travelling time parameters, the limited availability of nodes, forced sequences of
visiting some nodes), which resulted in creating such extensions of the TSP as the time-
dependent travelling salesman problem (TDTSP) [44–47] and the travelling salesman
problem with time windows (TSPTW) [48–51]. Necessities related to real-world application
even led to a “relaxation” of probably the most distinguishing and apparently unchangeable
assumption of the TSP, namely, visiting each node in the network exactly once. Such a
“relaxation” can include visiting some nodes possibly more than once (TSP with multiple
visits—TSPM) [52] or not visiting some nodes at all, which is a case investigated in this
article, and it is described in more detailed later on. Another reason for extending the TSP is
related to cases for which there are necessities of distinguishing some groups of nodes and
defining specific rules of visiting them. Examples of such extensions are the generalized
travelling salesman problem (GTSP)—calculating the shortest cycle which visits one node
only in each of many disjoint groups of nodes [53]; and the clustered travelling salesman
problem (CTSP)—calculating the shortest cycle in which all nodes of a group (cluster)
must be visited before moving to another group (cluster) [54]. A “fusion” of the above
problems is the clustered generalized travelling salesman problem (CGTSP), in which
groups—clusters of nodes—are divided into subclusters, and exactly one node in each
subcluster must be visited before moving to another cluster. The CGSTP is an example
that TSP extensions appear with development of new technologies because its practical
applications are optimizing automated storage and retrieval [55]. The assumption of the
availability of one salesman only can also be dropped what results in formulating a multiple
traveling salesman problem (m-TSP) [56,57]. It turns out that m-TSP can be applied to an
optimization problem which is not a route planning but a production planning problem,
namely, unrelated parallel machine scheduling problem with machine and job sequence
setup times (UPMS) [58].

An example of investigating the node skipping in TSP came from a real-world problem
which appeared in a M.Sc. thesis [59] supervised by one of the authors (P. Kowalik). The
author of the thesis considered route planning for a wholesale company based in Lublin,
Poland which supplied professional cleaning chemicals and appliances. Some deliveries
were contracted to multiple destinations in adjacent regions (voivodships). The delivery
options were to use the company’s own van with fuel cost estimated to be 0.40 PLN/km or
to hire a courier company which could deliver a normalized package of up to 31.5 kg at a
price of 19.52 PLN to any address in Poland (PLN stands for Polish zloty, 2009 prices). The
above data mean that delivering one package to a destination via a courier company instead
of using the company’s van was cheaper if the total length of the route was shortened by at
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least 48.8 km. This “threshold” distance was valid if the fuel cost only was considered and
could be lower if other costs were also taken into account. It turned out that other costs
may also matter. In the considered case, some TSP routes were so long that they could not
be completed in one day, which resulted in the extra cost of a hotel stay for the driver. On
the other hand, eliminating/skipping one or a few nodes at the cost of courier deliveries
shortened the driven route and made it possible to avoid the hotel costs and to cut down
the total cost significantly (much more than the fuel cost itself). Planning the routes was
not, however, based on any formal optimization model handling skipping the nodes (and
no specialized software supporting such model was used either). Instead, it was performed
by testing various route variants using TSP routing software. More precisely, removing
and adding selected nodes was performed “manually” by a manager who was studying
the layout of the calculated route on the map of the area.

The abovementioned case became the inspiration for creating its mathematical model
in a formal way. The research of the investigation of the subject showed that the extension
of the TSP considered in this article has been known since the 1980s. More precisely, we
consider a problem formulated in 1987 in [60] under the name, the generalized travelling
salesman problem (GTSP). However, as it has been mentioned earlier, in the literature on
TSP extensions, the same name is used for a different modification of the TSP—calculating
the shortest cycle which visits one node only in each of many disjoint groups of nodes [53].
Indeed, the GTSP, as defined in [53], is also a modification of the standard TSP in which
some nodes some are skipped, but where there is special rule of visiting and skipping
nodes described above and no penalties are imposed on skipping the nodes.

The considered problem was also formulated in 1993 in [61] as a variant of so-called
prize collecting traveling salesman problem (PCTSP). The PCTSP is an extension of the TSP
defined in [62], in which there are not only penalties for skipping nodes, but also prizes
for visiting the remaining nodes, and there is an additional constraint: “the total prize
collected on all the visited nodes must be not less than the predefined level”. In [61] the
prize collecting component of the PCTSP was removed. The name “PCTSP” applied to the
considered problem is also incorrect, since this problem does not involve prize collecting
in any sense. The existing names introduced in [60,61] are misleading, and the above
naming inconsistences occurring in the literature are the reason for introducing a new
name, the traveling salesman problem with penalties on nodes (TSPPN), for the problem
under consideration.

A novelty is its formulation as an integer linear programming (ILP) problem which
is an extension of one of ILP formulations of the TSP. Such a formulation allows solving
the TSPPN by using standard ILP optimization software, which provides an exact optimal
solution. Obviously, when solving large instances of such complex problems (larger than
the one considered in this article), the duration of computations may become unacceptably
long if an exact algorithm is used. In such cases, the condition that the algorithm should
provide an exact optimal solution can be abandoned in favor of a heuristic optimization
algorithm, which can often reduce the computation time with a slight loss of optimality of
the approximate solution. This is why we do not claim that the presented model is the best
one because of its computational properties, but we just add it to the palette of the solving
methods for the considered optimization problem.

Let us introduce some necessary notations. Formally speaking, let G = (V, E) be a
complete graph with an n-element vertex or node set V and edge set E. A positive number
cij, i 6= j, i = 1, 2, . . . , n, j = 1, 2, . . . , n called a weight (which can denote the distance
or, alternatively, the cost/time of trip between the nodes) is associated with each edge
connecting node i with j. As travelling between any pair of nodes generally can occur
in either of the two possible directions, cij does not need to be equal to cji (e.g., because
of different time of trip downhill and uphill). If cij = cji for all the edges in the graph,
the problem is called the symmetric travelling salesman problem (STSP), and if not, the
problem is called the asymmetric travelling salesman problem (ATSP).
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The considered generalization assumes that the necessity of visiting each node in the
graph exactly once is changed to possibility of visiting each node at most once (or, which
is equivalent, the possibility of skipping some nodes). Moreover, penalties imposed for
skipping nodes, or in short, penalties on nodes, exist. They are positive numbers pi—fixed
costs specific for each node i, charged if the node is skipped.

Obviously, the possibility of skipping nodes without penalties would lead to a “zero
solution”. Namely, in case of minimization of the standard TSP objective function formu-
lated as the sum of weights of the edges connecting the nodes visited in the cycle, skipping
all the nodes results in making no trip at all with the total weight equal to zero. This is not
true, however, if penalties on nodes exist. The definition of the penalties as the costs implies
that, for consistence of units, all the weights of the edges in the graph must be expressed as
the costs of travelling through the edges and not the distances or trip durations. If a node is
skipped, then the cost of travelling to and from that node is zero, but the penalty “attached”
to the node is added to the total cost of the trip instead. The objective function is the sum
of weights of all the edges connecting the visited nodes and of penalties “attached” to the
skipped nodes. If the penalties are relatively low compared with the costs of travelling
through the edges, it may be cheaper to skip some, or in extreme cases, even all the nodes
instead of visiting them.

A practical application of the considered TSPPN can be straightforward, namely,
including in TSP route planning for the total value of penalties resulting from not fulfilling
contractual obligations which require visiting all the nodes in the graph. Another example
of an application can be delivery outsourcing. If a TSP trip is used to provide deliveries of
some goods, then there may exist a possibility of using an external service (e.g., a courier
company) for deliveries to some nodes instead of using one’s own means of transportation.
If a delivery to some node is performed by the external service, then it is no longer necessary
to visit that node. The cost of delivery to the node is then the penalty for skipping the node.

The definition presented above is simple and easy to understand. However, as in
the case of the standard TSP, it does not suggest any idea of finding an optimal except
for a “brute force” approach, i.e., checking the value of the objective function for all the
feasible solutions. Namely, it means checking the cost for all the cycles with all the possible
combinations of skipped nodes. The previous statement is equivalent to solving by “brute
force” a series of the TSPs: with no skipped node, with each node skipped, with all pairs
of the nodes skipped and so on. Such an approach is useless, however, when applied to
real-world problems of with even a few nodes, only because the “brute force” approach
is very inefficient even in the case of a single TSP. The TSPPN formulated in [60] as an
optimization model was transformed into a standard TSP problem by adding n fictional
nodes and edges. In [61], the TSSPN was solved by using a special algorithm, valid only
for the case when the weights of all the edges satisfy the triangle inequality.

This article presents a different approach using integer linear programming (ILP). It is
based on one of the so-called flow-based LP formulations of the TSP and named after its
creators: the Gavish–Graves formulation [63]. The presented formulation of the TSPPN
makes it possible to obtain optimal solutions by using basically any ILP optimization
software (ILP solvers). Numerical examples of the TSPPN are also presented, and results of
the calculations are discussed.

2. Integer Linear Programming Formulations of the TSP

Integer linear programming formulations of the TSP share some common features.
They include binary variables representing making a trip between each pair of nodes; the
objective function which is minimized and represents the total distance, cost or duration
of a trip through all the nodes; and constraints which are all the sums of the double-
indexed binary variables grouped by the number of the first node and the second node
equal to one [64]. Those common features are basically identical to a binary assignment
problem. The mathematical model of the binary assignment problem is not sufficient to
solve each TSP, however, because it can result in obtaining a collection of separate subcycles
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or subtours instead of a single Hamiltonian cycle as an optimal solution. That is why some
more constraints, so-called subtour elimination constraints (SECs), are necessary to create
a linear programming model whose optimal solution is a Hamiltonian cycle. SECs also
usually require some extra auxiliary variable, except for the oldest linear programming
formulation of the TSP, so called Dantzig–Fulkerson–Johnson (DFJ) formulation [35]. This
formulation is the only known linear programming formulation of the TSP which uses
binary variables reflecting the usage of edges only and does not require auxiliary variables.
However, the main disadvantage of this formulation is the number of constraints, which
increases exponentially along with the number of nodes. This is why other formulations
were created. They do not need as many constraints as the DFJ formulation does, but they
require auxiliary variables instead. A review of such formulations can be found in [64].
They include [35] a sequential formulation by Miller, Tucker and Zemlin [65]; flow-based
formulations [63,66–68]; and time-dependent formulations [46,69]. A modification of [65]
(not listed) was presented in [70]. In this article, we consider one of linear programming
formulations of the TSP—the Gavish–Graves formulation [63]. It is also called a flow-based
formulation because auxiliary variables used in SECs correspond to flows of some fictional
commodity through the graph.

The Gavish–Graves formulation of the TSP is the following.
Let us consider a graph with n nodes. Satisfying the triangle inequality by the weights

of edges is not required. The used notation assumes that the trip through the graph starts
and ends at node 1 (the base node). Obviously, it is a purely technical assumption because
nodes can be arbitrarily renumbered without affecting optimal solutions.

Variables:

• xij, i = 1, . . . , n; j = 1, . . . , n—binary: equals 1 if a trip from node i to node j is done
and 0 if not;

• yij, i = 1, . . . , n; j = 1, . . . , n—amount of fictional commodity transported from node i
to node j.

Parameters:

• cij, i = 1, . . . , n; j = 1, . . . , n—cost of a trip from node i to node j.

Objective function—the total cost of a trip through all the visited nodes:

c11x11 + c12x12 + . . . + c1nx1n+
c21x21 + c22x22 + . . . + c2nx2n+

...
cn1xn1 + cn2xn2 + . . . + cnnxnn → min

(1)

subject to the constraints
x11 + x12 + . . . + x1n = 1
x21 + x22 + . . . + x2n = 1
...xn1 + xn2 + . . . + xnn = 1

(2)

x11 + x21 + . . . + xn1 = 1
x12 + x22 + . . . + xn2 = 1

...
x1n + x2n + . . . + xnn = 1

(3)

yij ≥ 0, i = 1, . . . , n; j = 1, . . . , n (4)

yij ≤ (n− 1)xij, i = 1, . . . , n; j = 1, . . . , n (5)
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y11 + y21 + . . . + yn1 − (y11 + y12 + . . . + y1n) = n− 1
y12 + y22 + . . . + yn2 − (y21 + y22 + . . . + y2n) = −1
y13 + y23 + . . . + yn3 − (y31 + y32 + . . . + y3n) = −1

...
y1n + y2n + . . . + ynn − (yn1 + yn2 + . . . + ynn) = −1

(6)

(2) and (3) are standard TSP constraints which guarantee visiting each node exactly
once. (4) (5) and (6) are flow-based subtour elimination constraints.

A short explanation of how the above SECs act is the following. In each node (except
the base node), one unit of a fictional commodity is added to the total flow, and finally,
n − 1 units are “collected” in the base node. Flows leaving the nodes are expressed as
negative numbers and flows entering the nodes as positive numbers. Constraints (4), (5)
and (6) make all the values of xij which do not represent Hamiltonian cycles infeasible.

SECs in the Gavish–Graves formulation play an additional role. Namely, they guaran-
tee zero optimal values for the variables xkk, k = 1, 2, . . . , n corresponding to non-existing
“edges” connecting each node to itself, known in graph theory as loops.

A more detailed explanation of subtour elimination in the Gavish–Graves formulation
with an example is presented in Appendix A.

The formulation has n2 binary variables, n2 continuous variables, n2 + 3n linear
constraints and n2 nonnegatitvity constraints on continuous variables. Out of the above, n
binary variables xkk, n continuous variables ykk and n linear constraints ykk ≤ (n− 1)xkk
can be removed from the model, as they correspond to loops on all the nodes, but removing
them may be inconvenient because of a feature of the optimization software (see Appendix B
for details).

The above formulation was used as a “base” for an analogical flow-based ILP formula-
tion of the TSPPN.

3. A Flow-Based ILP Formulation of the TSPPN

The TSPPN differs from the TSP in two features: possibility of skipping nodes and
existence of penalties for skipping nodes. As skipping nodes in the TSP is a matter of
decision of a decision-maker, this means that it is necessary to introduce new variables
indicating whether the nodes are skipped or not and new parameters equal to penalties for
skipping the nodes. Obviously, those variables are binary. We assume that node 1 (base
node) is never skipped. All the variables and parameters of the Gavish–Graves formulation
of the TSP remain valid, but new variables and parameters related to nodes are also added.
The new variables are:

• zk, k = 2, . . . , n—binary: 1 if node k is skipped, 0, if not (i.e., if it is visited).

The new parameters are:

• pik, k = 2, . . . , n—penalty for skipping node k.

Moreover, c11 = 0 (the reason for this value is explained in Appendix A).
The optimization problem is formulated as follows.
Objective function—the total cost of a trip through all the visited nodes and of the

penalties associated with all the skipped nodes:

c11x11 + c12x12 + . . . + c1nx1n+
c21x21 + c22x22 + . . . + c2nx2n+

...
cn1xn1 + cn2xn2 + . . . + cnnxnn+
p2z2 + p3z3 + . . . + pnzn → min

(7)
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subject to the constraints

x11 + x12 + . . . + x1n = 1
x21 + x22 + . . . + x2n = 1− z2

...
xn1 + xn2 + . . . + xnn = 1− zn

(8)

x11 + x21 + . . . + xn1 = 1
x12 + x22 + . . . + xn2 = 1− z2

...
x1n + x2n + . . . + xnn = 1− zn

(9)

yij ≥ 0, i = 1, . . . , n; j = 1, . . . , n (10)

yij ≤ (n− 1)xij, i = 1, . . . , n; j = 1, . . . , n (11)

y11 + y21 + . . . + yn1 − (y11 + y12 + . . . + y1n) + z2 + . . . + zn = n− 1
y12 + y22 + . . . + yn2 − (y21 + y22 + . . . + y2n) = z2 − 1
y13 + y23 + . . . + yn3 − (y31 + y32 + . . . + y3n) = z3 − 1

...
y1n + y2n + . . . + ynn − (yn1 + yn2 + . . . + ynn) = zn − 1

(12)

(8) and (9) are reformulated standard TSP constraints (2) and (3), respectively, which
guarantee visiting each node at most once (node 1 exactly one). (10), (11) and (12) are
flow-based subtour elimination constraints which guarantee that feasible, and in what
follows, optimal solutions are single (but, if at least one node is skipped, not necessarily
Hamiltonian) cycles. (10) and (11) are identical to (4) and (5), respectively. Constraints
(12) are reformulated versions of (6), in the way which excludes the flow of the fictional
commodity through skipped nodes.

A more detailed explanation of subtour elimination and skipping the nodes in the
Gavish–Graves-based formulation is presented in Appendix A.

If it is needed, some optional extensions of the model of TSSPPN can be easily intro-
duced. They are connected with possible restrictions on the number of skipped nodes.

Optional parameters are:

• Smin, 0 ≤ Smin ≤ n− 2—minimal number of skipped nodes.
• Smax, 1 ≤ Smax ≤ n− 1, Smin ≤ Smax—maximal number of skipped nodes.

Optional constraints are:

Smin ≤ z2 + . . . + zn ≤ Smax (13)

Obviously, if not specified explicitly, the default values are

Smin = 0, Smax = n− 1. If Smin = Smax = S, then z2 + . . . + zn = S. (14)

The formulation has n2 + n − 1 binary variables, n2 continuous variables, n2 + 3n
linear constraints and n2 nonnegativity constraints on continuous variables. Just like in
case of the Gavish–Graves formulation of the TSP, n binary variables xkk, n continuous
variables ykk and n linear constraints ykk ≤ (n− 1)xkk can be removed from the model, as
they correspond to loops on all the nodes, but removing them may be inconvenient because
of feature of the optimization software (see Appendix B for details).

Introducing binary variables z2, z3, . . . , zn do not increase the number of constraints
because those variables are used in modification of formulas in the existing constraints.
The only exception is if there are optional limits of the numbers of skipped nodes. In this
case, one (14) or two linear constraints (13) are added.
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Introducing the explicit parameters Smin and Smax (just as a single value Smin or Smax
or S = Smin = Smax; or as a pair of values Smin, Smax, Smin < Smax) and the constraints
related to them (either (13) or (14)) is motivated by adding more flexibility to route planning.
More precisely, the reason for the above optional extension of the mathematical model is
to enable analysis of scenarios depending on a specific number S of skipped nodes. Such
scenarios take into account skipping more nodes than results from the minimization of the
total cost of the trip plus the penalties. Even if the total cost is not minimal for a specific
number S of skipped nodes, there may exist essential advantages resulting from the trip
time and distance reduction. These could be extra cost reductions, such as avoiding the
hotel cost for the driver due to the trip-time reduction (as mentioned in [59]), but also
reducing the driver’s tiredness. Reducing the trip distance decreases not only the fuel cost,
but also other exploitation costs resulting from the usage of tires, brake pads, engine oil, etc.
As it can be hard to include the abovementioned factors in the objective function expressed
in currency units, an alternative for the manager is to study the scenarios depending on
the number of skipped nodes. Next, a decision can be made on whether a suboptimal
solution (in the sense of the cost minimization) is worth choosing anyway because it can
give additional advantages resulting from the trip time and distance reductions. The
parameters Smin, Smax, Smin < Smax (or only one of them) are essential if there are some
technical or organizational restrictions on the number of skipped nodes.

4. Numerical Examples

The problems were solved by using Microsoft Excel 2019 with an optimization add-in,
OpenSolver 2.9.3, using the COIN-OR linear optimization engine [71]. The software ran
on an HP G6 250 laptop with Intel Core i3-6006U 2 GHz CPU, 8 GB RAM, 1 TB HDD and
Windows 10 Home 64 bit. Details of the implementation are presented in Appendix B with
the data used to solve the first of the example problems.

The choice of the optimization software was motivated by its availability and price.
Obviously, Microsoft Excel is not free, but OpenSolver replaces the built-in Solver at no cost.
Moreover, OpenSolver offers not only declared, but also actually much better computational
efficiency than the built-in Solver, including no predefined, very-low limits on the numbers
of variables and constraints.

The data used in example problems partially came from of a well-known TSPLib
library of instances of the TSP. The word “partially” pertains to distance matrices from
TSBLib, which were used as cost matrices containing parameters cij.

The data for the first problem, i.e., the matrix of the edge weights, were downloaded
from [72] (it is named br17.atsp). It is an asymmetrical TSP with 17 nodes. The original
problem was modified because it contained 36 edges with zero weights. Since zero distances,
costs or time usually make no sense in real-world applications, zero-weight edges were
replaced with 36 excluded edges, i.e., because it was assumed that connections between
18 pairs of nodes (in both directions, hence 36 edges) just do not exist. Excluding the
36 abovementioned edges was achieved by assigning to them fictional, relatively very large
weights (equal to 1000, whereas weights of the existing edges varied from 3 to 74), which
provided their absence in the optimal solution. The penalties associated with nodes 2 to
17 were arbitrarily chosen by the authors. Two sets of penalties were tested. They are
presented in Table 1. The cost matrix can be found in Figure A4 in Appendix B (a screenshot
of the spreadsheet).

The original problem, br17.atsp, from TSPLib, was solved along with a problem with
two sets of penalties. Results are collected in Table 2.
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Table 1. Two sets of penalties used for solving the problem b17.atsp as a TSPPN.

Node Penalties
Set 1

Penalties
Set 2

2 5 7.5
3 6 9
4 4 6
5 5 7.5
6 7 10.5
7 6 9
8 4 6
9 5 7.5
10 5 7.5
11 6 9
12 3 4.5
13 7 10.5
14 4 6
15 6 9
16 6 8
17 4 5

Total 83 122.5

Table 2. Solutions of the original TSP br17.atsp and its extension to TSPPN with two sets of penalties
presented as sequences of visited nodes.

Original
TSP

TSSPN
Penalty Set 1

TSSPN
Penalty Set 2

2 10 10
3 12 3

11 2 11
14 14 8
10 11 7
12 3 4
13 13 15
9 1 5

16 6
8 9
6 12
4 13

15 14
5 2
7 1

17
1

Skipped nodes 0 9 2
Trip cost 87 24 71
Penalties 0 47 13

Total 87 71 84

The minimal cost of a Hamiltonian cycle for the “standard” TSP br17.atsp is 87. In
penalty set 1, the sum of penalties is smaller—83, which would suggest at a first glance that
the best solution is to skip all the nodes and pay the penalties. Obviously, in a case where
the sum of penalties is smaller than the cost of the Hamiltonian cycle, it is better in terms of
cost to skip the nodes. However, as the obtained solution shows, this does not mean that
skipping all the nodes is optimal. The optimal solution for penalty set 1 requires skipping
nine nodes and visiting the remaining eight in the sequence shown in Table 2. The minimal
total cost is 71, which is composed of the total of the weights of the used edges, equal to
24, and the sum of penalties associated with the skipped nodes, equal to 47. The total cost
reduction compared with the cheapest Hamiltonian cycle is 16 (18.39%).
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Visualizations of the solution of the “standard” TSP br17.atsp and its extension to the
TSPPN with penalty set 2 are presented in Figures 1 and 2.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 28 
 

 

Figure 1. Visualization of the solution of the “standard” TSP br17.atsp presented in Table 2. 

 

Figure 2. Visualization of the solution of the TSPPN based on br17.atsp with penalty set 1 (pre-

sented in Table 2). 

Penalty set 2 contains elements which are 50% larger than those of penalty set 29 

(with exceptions for nodes 16 and 17). The sum of penalties is now 122.5. One can expect 

that larger penalties result in larger contributions of the cost of the trip through the net-

work compared with the penalties paid. Since the sum of penalties is larger than the 

minimal cost of the Hamiltonian cycle, it is not obvious that skipping any nodes will re-

sult in a total cost reduction. The optimal solution for penalty set 2 requires skipping 2 

nodes and visiting the remaining 15 in the sequence shown in Table 2. The minimal total 

cost is 84, which is composed of the total of the weights of used edges, equal to 71, and 

the sum of penalties associated with the skipped nodes, equal to 13. The total cost reduc-

tion compared with the cheapest Hamiltonian cycle is three (3.45%). 

Table 3 shows how the minimal total cost changes for all the possible pairs of 

skipped and visited nodes. The calculations were performed for both the penalty sets ac-

cording to the TSPPN model (7) to (12) with an extra constraint (14), where 𝑆 =

0,1,2, … ,16. 

  

 

15 

13 

3 
1 

2 

11 

12 

14 

10 

17 

16 

9 

8 

6 

4 5 

7 

 

13 

3 
1 

2 

11 

12 

15 

17 

16 

9 

8 

4 5 

6 7 

14 

10 

Figure 1. Visualization of the solution of the “standard” TSP br17.atsp presented in Table 2.
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Figure 2. Visualization of the solution of the TSPPN based on br17.atsp with penalty set 1 (presented
in Table 2).

Penalty set 2 contains elements which are 50% larger than those of penalty set 29 (with
exceptions for nodes 16 and 17). The sum of penalties is now 122.5. One can expect that
larger penalties result in larger contributions of the cost of the trip through the network
compared with the penalties paid. Since the sum of penalties is larger than the minimal
cost of the Hamiltonian cycle, it is not obvious that skipping any nodes will result in a
total cost reduction. The optimal solution for penalty set 2 requires skipping 2 nodes and
visiting the remaining 15 in the sequence shown in Table 2. The minimal total cost is 84,
which is composed of the total of the weights of used edges, equal to 71, and the sum of
penalties associated with the skipped nodes, equal to 13. The total cost reduction compared
with the cheapest Hamiltonian cycle is three (3.45%).
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Table 3 shows how the minimal total cost changes for all the possible pairs of skipped
and visited nodes. The calculations were performed for both the penalty sets according to
the TSPPN model (7) to (12) with an extra constraint (14), where S = 0, 1, 2, . . . , 16.

Table 3. The minimal total costs of trip and penalties for all combinations of visited and
skipped nodes.

Skipped
Nodes

(S)

Visited
Nodes
(n − S)

Penalty Set 1 Penalty Set 2

Trip Penalties Total Trip Penalties Total

0 17 87 0 87 87 0 87

1 16 78 6 84 78 8 86

2 15 71 10 81 71 13 84

3 14 66 14 80 66 19 85

4 13 59 20 79 63 23.5 86.5

5 12 54 24 78 54 34 88

6 11 49 29 78 51 38.5 89.5

7 10 38 38 76 46 46 92

8 9 31 42 73 31 61 92

9 8 24 47 71 24 68.5 92.5

10 7 23 52 75 25 73 98

11 6 18 55 73 18 80.5 98.5

12 5 17 60 77 17 88 105

13 4 12 64 76 12 94 106

14 3 11 70 81 11 103 114

15 2 6 76 82 6 112 118

16 1 0 83 83 0 122.5 122.5

Data collected in Table 3 provide some more insights into the TSPPN. As the number
of skipped nodes S increases, the total value of penalties imposed on those nodes also
increases. On the other hand, the total trip cost generally decreases; however, exceptions
may happen. An example of such an exception is skipping 10 nodes compared with
skipping 9 nodes for penalty set 2. When 10 nodes are skipped, the trip cost of visiting
seven nodes is larger (25) than the trip cost of visiting eight nodes (24) while skipping
nine nodes.

However, more valuable conclusions can be drawn from the relationship between the
number of skipped nodes and the total cost. If there exists a positive number of skipped
nodes, for which the total cost of trip and penalties is smaller than the lowest cost of a
Hamiltonian cycle, then along with increasing S, the total cost should decrease to the
minimum and then increase. In fact, for penalty set 1, as S changes from 5 to 6, the total cost
remains unchanged (78), as is the case with S changing from 7 to 8 for penalty set 2 (cost 92).
However, even weak monotonicity with respect to S does not need to hold. For penalty
set 1, as S changes from 10 to 11 and from 12 to 13, the total cost decreases from 75 to 73
and from 77 to 76, respectively. Such results may suggest rethinking of the optimality
of the model from the point of view of possible applications. Let us return to a practical
problem which was the inspiration for creating this article, i.e., optimization of delivery
costs as a “mix” of deliveries of goods performed by the company’s own transport and
outsourcing. The main source of cost reductions was not connected with the fuel cost but
with the shorter trip time. The cost reduction consisted in avoiding the cost of the hotel for
the driver thanks to decreasing the trip time. However, even without such opportunities,
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such as saving the relatively large cost of a hotel stay, there are other reasons for decreasing
the trip time. The shorter the planned trip time is, the lesser is the risk of accidents due
to the driver’s tiredness and the larger is the immunity to delays caused by unexpected
disturbances in traffic conditions. Thus, remembering that the considered problem uses
fictional data, we can suppose that if enough time is saved thanks to that, the solution for
penalty set 1 with the cost 73 for S = 11 or even with the cost 76 for S = 13 could be better
than the strictly cost-effective solution with the cost 71 for S = 9. However, there may be no
obvious way of recalculating the time-for-money parameters, especially when considering
the risk resulting from accidental events disturbing the traffic. The above conclusions are
worth developing, but such considerations are outside the scope of this article.

Analysis of how values of penalties affect an optimal solution of the TSPPN is difficult
in the general case, as the penalty imposed on each node can be a number independent
of n − 2 remaining ones. However, some general properties can be noticed if all the
penalties have the same value: p > 0. In this case, p can be considered as a parameter with
respect to which a solution is found. Tests were performed on three problems from TSPLib:
the already investigated br17.atsp (17 nodes, asymmetrical [72]), bayg29.tsp (29 nodes,
symmetrical [73]) and ftv44.atsp (45 nodes, asymmetrical [74]). TSPPN was solved for
data for each of the three problems for various values of p. For br17, p = 1, 2, . . . , 10. For
bayg29.tsp and ftv44.atsp, values of p were selected in the following way. First, the largest
integer value of p for which all the nodes are skipped and the smallest integer value of p
for which no node is skipped were calculated. This was performed by trial-and-error until
correct values were found. Next, the TSPPNs were solved with p being multiples of five
between the two abovementioned extreme values. The results are presented in Tables 4–6.
The columns contain values of p, and for a given p, numbers of skipped nodes, the trip
cost, the value of penalties, the total cost and the percentage of saved expenses (as “%
saved”). The values in the last column are just percentages referring to differences between
the minimal cost of a Hamiltonian cycle (the closed path without skipping the nodes) and
the total cost for a given p divided by the minimal cost of a Hamiltonian cycle.

Table 4. The minimal total costs of trip and penalties for various values of p (edge weights from
problem br17.atsp).

p Skipped
Nodes Trip Cost Penalties Total Cost % Saved

1 16 0 16 16 81.61%
2 16 0 32 32 63.22%
3 16 0 48 48 44.83%
4 9 24 36 60 31.03%
5 9 24 45 69 20.69%
6 9 24 54 78 10.34%
7 2 71 14 85 2.30%
8 1 78 8 86 1.15%
9 1 78 9 87 0.00%
10 0 87 0 87 0.00%

It turned out that the same number of nodes in an optimal solution is skipped for
various values of p. Obviously, the total cost is increasing function of p until the value of p
for which skipping even one node is not optimal is reached. In the problem, ftv44-specific
alternative solutions exist—the same minimal total cost 1613 is attained for p = 74, where
two nodes are skipped, and p = 75, where no node is skipped.
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Table 5. The minimal total costs of trip and penalties for various values of p (edge weights from
problem bayg29.tsp).

p Skipped
Nodes Trip Penalties Total % Saved

48 28 0 1344 1344 17.39%
49 14 673 686 1359 16.47%
50 13 722 650 1372 15.67%
55 9 934 495 1429 12.17%
60 9 934 540 1473 9.47%
65 5 1183 325 1508 7.31%
70 4 1250 280 1530 5.96%
75 4 1250 300 1550 4.73%
80 4 1250 320 1570 3.50%
85 2 1413 170 1583 2.70%
90 2 1413 180 1593 2.09%
95 2 1413 190 1603 1.48%

100 2 1413 200 1613 0.86%
105 2 1413 210 1623 0.25%
107 2 1413 214 1627 0.00%
108 0 1627 0 1627 0.00%

Table 6. The minimal total costs of trip and penalties for various values of p (edge weights from
problem ftv44.atsp).

p Skipped
Nodes Trip Penalties Total % Saved

23 44 0 1012 1012 37.26%
24 37 167 888 1055 34.59%
25 37 167 925 1092 32.30%
30 24 513 720 1233 23.56%
35 16 781 560 1341 16.86%
40 12 931 480 1411 12.52%
45 8 1102 360 1462 9.36%
50 8 1102 400 1502 6.88%
55 6 1208 330 1538 4.65%
60 5 1265 300 1565 2.98%
65 5 1265 325 1590 1.43%
70 2 1465 140 1605 0.50%
74 2 1465 148 1613 0.00%
75 0 1613 0 1613 0.00%

5. Conclusions

Mathematical optimization problems which result from the necessity of optimizing
real-world decision problems can be quite easy to formulate, just like the one considered
in this article. Nevertheless, the simplicity of a formulation does not need to mean that a
simple way of finding an optimal solution exists, and this applies to the problem under
consideration. The problem considered in this article comes from a question posed in [59],
which could be expressed as: Is it reasonable from the financial point of view for a wholesale
trade company to replace some deliveries to remote customers performed by one’s own
transport with outsourcing transport services? The attempt how to make such a decision
correctly led to a formulation of an extension of the travelling salesman problem with the
possibility of skipping some nodes in the network and paying some price for it.

The main result of this article is a formulation of the TSPPN which can be solved, from
a purely technical point of view, by any optimization software which solves integer linear
programming problems. The computational efficiency of solving a particular problem
may obviously depend on the problem’s size, the values of the parameters, the hardware
configuration and the quality of the software used. However, it may happen that the default
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user interface of general purpose optimization software will not be convenient for end
users—logistics practitioners—and will require some improvements.

The presented formulation of the TSPPN seems to be promising as a starting point for
more sophisticated extensions of the TSP. The research performed in [59] and numerical
simulations performed for this article show that similar values of the total cost (the trip cost
plus the penalties) may result for different numbers of skipped nodes. However, the more
nodes skipped, the shorter the trip time. A shorter trip time is a factor which improves
driving safety and provides immunity to unexpected delays. Reducing the number of
visited nodes means that the trip distance also decreases. As has already been mentioned,
a shorter driving distance affects not only the fuel cost, but also other exploitation costs
resulting from the usage of tires, brake pads, engine oil, etc. These results suggest that
in practical applications, it may be preferred to outsource more deliveries than what is
suggested by simple cost minimization. A possible way to take into account effects of the
decreases in the trip time and distance resulting from skipping the nodes is a scenario
analysis performed for various possible numbers of skipped nodes by using optional
constraints (13) or (14), and possibly in part by an arbitrary decision of the manager. The
above goal can also be achieved by reformulation of TSSPN towards implementing time-
and distance-related constraints or modifications to the objective function. Other possible
extensions of the TSPPN may be introducing predefined sequence(s) of visiting some
nodes or considering pickup/delivery specific amounts of some real commodity under
capacity restrictions.
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Appendix A

The appendix contains examples of two feasible solutions: one of the Gavish–Graves
formulation of the TSP and the other of its extension to a variant of the one named in this
article as TSPPN. The example is used to explain how the Gavish–Graves formulation is
adopted to TSPPN works.

Let us consider two feasible solutions of the TSPPN with 7 nodes (one without skip-
ping node, and another with one node skipped). For simplicity of notation, only those
parameters cij which are involved in the feasible solutions will be used with their values
expressed explicitly as numbers. From now on, the feasible solution without skipping
nodes (sequence of nodes 1,6,7,2,3,4,5,1) will be called “feasible solution 1” (FS1 in short),
and the feasible solution with node 6 skipped (sequence of nodes 1,7,2,3,4,5,1) will be
called “feasible solution 2” (FS2 in short). As FS1 is in fact also a feasible solution of a
standard TSP, all the considerations pertaining to it refer to the formulas of the standard
TSP model—i.e., (1) to (6), and not (7) to (12) of the TSPPN. All the numerical data of both
feasible solutions are presented in Tables A1 and A2. The two feasible solutions are also
visualized in Figure A1.
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Table A1. Examples of feasible solutions without skipping nodes and with node 6 skipped,
respectively—data for nodes.

Node No. Penalties
pi

Feasible Solution 1
zi

Feasible Solution 2
zi

2 10 0 0
3 8 0 0
4 10 0 0
5 11 0 0
6 9 0 1
7 8 0 0

Table A2. Examples of feasible solutions without skipping nodes and with node 6 skipped,
respectively—data for edges.

Edges Edge Weights Feasible Solution 1 Feasible Solution 2
(i,j) cij xij yij xij yij

(1,6) 13 1 0 0 0
(6,7) 14 1 1 0 0
(1,7) 12 0 0 1 0
(7,2) 10 1 2 1 1
(2,3) 11 1 3 1 2
(3,4) 15 1 4 1 3
(4,5) 12 1 5 1 4
(5,1) 10 1 6 1 5

All the values of xij and yij not specified in Table A2 are equal to zero.
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Figure A1. Visualization of two feasible solutions of the TSPPN with 7 nodes. (a) A Hamiltonian
cycle connecting all 7 nodes—FS1. (b) A non-Hamiltonian cycle which does not contain (skips) node
6—FS2.

Circles with numbers inside represent nodes, and lines connecting circles represent
edges. Thin arrows represent connections from node 1 to the next node in the cycle (node 6
in FS1 and node 7 in FS2, respectively), for which the flow y1j of a virtual commodity is
zero. Thick arrows represent remaining fragments of the cycles, for which the flow yij of
the virtual commodity is positive. The grey background in node 6 in Figure A2b represents
a skipped node.
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Let us start with analyzing FS1, which is considered just as a feasible solution of a
standard TSP in the Gavish–Graves formulation.

Below all the values of FS1 are presented as matrices.

[
xij
]
=



0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0


,
[
yij
]
=



0 0 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 5 0 0
6 0 0 0 0 0 0
0 0 0 0 0 0 1
0 2 0 0 0 0 0


,

The value of the objective function (1) is 85. It is a sum of products of the weights of
edges and the corresponding xij binary variables. Alternatively, it can be described as a
sum of the weights of used edges:

c16 + c67 + c72 + c23 + c34 + c45 + c51 = 13 + 14 + 10 + 11 + 15 + 12 + 10 = 85.

The binary matrix
[
xij
]

is a numerical representation of the Hamiltonian cycle (1,6,7,2,3,4,5,1).
Each element, xij = 1, represents a used (travelled) edge of the network—a connection
from node i to node j. Essential features of this matrix are the following.

1. The matrix contains exactly one non-zero element in each row and one in each column.
2. All the elements on the main diagonal, i.e., xii, are zeroes.
3. Due to item 1, sums of all the elements of each row and each column are equal to one.

Elements of
[
xij
]
, and in general, of all the matrices representing Hamiltonian cycles,

satisfy the constraints (2) and (3), which are sums (equal to 1) of binary variables grouped
by the first (number of the row) and the second (number of the column) index, respectively.
The constraints (2) and (3) occur in all the linear programming formulations of the TSP.
However, binary matrices satisfying constraints (2) and (3) can represent not only all the
Hamiltonian cycles but also “collections” of separate subcycles/subtours and connections
from a node to itself (xii = 1), called loops. It is easy to eliminate loops from being a part of
an optimal solution. It can be achieved be either by assigning fictional “big M” values to
cii instead of zeroes or by excluding xii from the model. Eliminating the subtours is much
harder. The method considered in this article is known as the Gavish–Graves formulation,
and it is based on the simulated flow of a fictional commodity. This formulation eliminates
loops, too.

An example of a matrix whose elements represent two separate cycles but still satisfy
(2) and (3) is presented. Let us slightly modify input data of FS1 (it is named “ x-feasible
solution 1”, or FS1x for short, for its feasibility with respect to constraints containing xij
variables only). Let the non-zero values of xij be

x16 = x67 = x72 = x21 = x34 = x45 = x53 = 1.

The elements of the matrix of values of xij

[
xij
]∗

=



0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0


obviously satisfy (2) and (3). A visualization of FS1x is presented in Figure A2.
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Figure A2. A visualization of FS1x—two separate subtours.

It is obvious that FS1x is not acceptable as a TSP solution because it does not correspond
to any Hamiltonian cycle, but to two disjoint subcycles/subtours (1,6,7,2,1) and (3,4,5,3).
The main issue associated with non-Hamiltonian matrices satisfying (2) and (3) is that the
values of the objective function corresponding to some of them may be lower than those for
Hamiltonian cycles. If we explicitly specify two more parameters of the objective function,
namely, c21 = 4 and c53 = 16, then the value of the objective function for FS1x is 84. Thus,
if the problem were solved with constraints (2) and (3) only, FS1x would be preferred to
feasible solution 1, for which the value of the objective function is 85.

Now we are going to analyze flow-related constraints (6). In short, they also represent
Hamiltonian cycles. For feasible solution 1, they are the following:

y11 + y21 + . . . + y71 − (y11 + y12 + . . . + y17) = 7− 1 = 6
y12 + y22 + . . . + y72 − (y21 + y22 + . . . + y27) = −1
y13 + y23 + . . . + y73 − (y31 + y32 + . . . + y37) = −1
y14 + y24 + . . . + y74 − (y41 + y42 + . . . + y47) = −1
y15 + y25 + . . . + y75 − (y51 + y52 + . . . + y57) = −1
y16 + y26 + . . . + y76 − (y61 + y62 + . . . + y67) = −1
y17 + y27 + . . . + y77 − (y71 + y72 + . . . + y77) = −1

(A1)

Let us list the values of yij specified in the 4th column of Table A2 (i.e., corresponding
to edges with xij = 1) in accordance with the sequence of nodes in FS1:

y16 = 0, y67 = 1, y72 = 2, y23 = 3, y34 = 4, y45 = 5, y51 = 6. (A2)

Equation (A1) shows balance constraints for the flow of some fictional commodity.
Each node except node 1 is a source with a capacity of one unit of the commodity. Outflows
from nodes are denoted by negative values and inflows to nodes by positive values. If we
replace yij in (A1) by the values (A2) (where all other yij = 0), we have

y51 − y16 = 6− 0 = 6
y72 − y23 = 2− 3 = −1
y23 − y34 = 3− 4 = −1
y34 − y45 = 4− 5 = −1
y45 − y51 = 5− 6 = −1
y16 − y67 = 0− 1 = −1
y67 − y72 = 1− 2 = −1.



Sustainability 2023, 15, 4330 19 of 28

The meaning of the above equations is the following.

• No unit of a fictional commodity flows to node 6. One unit of a fictional commodity
flows from node 6 to node 7. The difference between inflow and outflow for node 6
is −1.

• Node 7 is also a source for another unit of commodity. Thus, 2 units (one which flows
from node 6 and one for which node 7 is a source) flowed from node 7 to node 2. The
difference between inflow and outflow for node 7 was −1.

• Node 2 is another source of one unit of the commodity. Thus, a total of three units flow
from node 2 to node 3. The difference between inflow and outflow for node 2 is −1.

• Analogical operations were performed for nodes 3 and 4.
• Finally, 5 units flow from node 4 to node 5. Node 5 is another source of one unit of the

commodity. Thus, 6 units flow from node 5 to node 1. The difference between inflow
and outflow for node 5 is −1.

• Six units flow from node 5 to node 1. No commodity flows from node 1, but for
consistency of formulas, we can express explicitly y16 = 0. The difference between
inflow and outflow for node 1 is 6 (which is n− 1 where n = 7).

The sequence of flows considered above (0,1.2, . . . 6) (in general case, any sequence
of values of flows 0,1.2, . . . , n− 1 starting with outflow equal to 1 from any node other
than 1, and ending with inflow equal to n− 1 to node 1) represents a Hamiltonian cycle of
corresponding nodes and satisfies (6).

The subtour elimination is achieved by simultaneous usage of (2), (3) and (6), “joined”
by (5) and completed by (4)—the flow nonnegativity constraints. By (2) and (3), exactly n
out of n2 xij variables are equal to one. By (5) and (6), at most n values of yij can be positive
(and not larger than n− 1), and the remaining yij are equal to zero.

In the example, FS1 is

x16 = x67 = x72 = x23 = x34 = x45 = x51 = 1, all other xij = 0

Then, the inequalities yij ≥ 0 and yij ≤ (n− 1)xij (in this example yij ≤ 6xij) imply
that at most 7 values of yij (with the same indices as xij = 1 listed above) can be positive
and not larger than 6:

0 ≤ y16 = y67 = y72 = y23 = y34 = y45 = y51 ≤ 6.

The constraints (6) “force” feasible values of yij for corresponding xij = 1. Obviously,
y51 ≤ 6. Let us assume that y51 = 6. Then, by (6)

y45 − y51 = −1 =⇒ y45 = 5
y34 − y45 = −1 =⇒ y34 = 4
y23 − y34 = −1 =⇒ y23 = 3
y72 − y23 = −1 =⇒ y72 = 2
y67 − y72 = −1 =⇒ y67 = 1
y16 − y67 = −1 =⇒ y16 = 0

Thus, the assumption y51 = 6 results in calculating feasible values of yij identical to
those in (16). Moreover, it turns out that there can be 6 (i.e., n− 1) positive feasible values
of yij only. However, by (5) it is also possible that y51 < 6. Is inflow to node 1 of less than 6
(in general, less than n− 1) also feasible? Let, for example, y51 = 5.5. Then, by (6)

y45 − y51 = −1 =⇒ y45 = 4.5
y34 − y45 = −1 =⇒ y34 = 3.5
y23 − y34 = −1 =⇒ y23 = 2.5
y72 − y23 = −1 =⇒ y72 = 1.5
y67 − y72 = −1 =⇒ y67 = 0.5

y16 − y67 = −1 =⇒ y16 = −0.5.



Sustainability 2023, 15, 4330 20 of 28

Obviously, because y16 ≥ 0, y51 = 5.5 (and any 0 ≤ y51 < 6) cannot be feasible.
Finally, it can be concluded that constraints (4), (5) and (6) calculated for a given binary
representation xij = 1 of a Hamiltonian cycle are equivalent to the numbers 0, 1, . . . , n− 1,
which are the values of yij with the same indices as xij, xij = 1.

What will be the values of yij if xij = 1 are not a binary representation of a Hamiltonian
cycle (they just satisfy (2) and (3)). Let us try to calculate the values of yij for FS1x. More
precisely, for

x16 = x67 = x72 = x21 = x34 = x45 = x53 = 1

we need to calculate the following values of yij satisfying (6)

0 ≤ y16 = y67 = y72 = y21 = y34 = y45 = y53 ≤ 6.

Let us start with y21 = 6. Then, by (6)

y72 − y21 = −1 =⇒ y72 = 5
y67 − y72 = −1 =⇒ y62 = 4
y16 − y67 = −1 =⇒ y16 = 3.

However, if y21 = 6 and y16 = 3, then the constraint for the flow balance for node
1, i.e., y21 − y16 = 6, cannot be satisfied. This example shows that if there is a subcy-
cle/subtour represented by some xij = 1, then there are no values of yij, which could be
feasible with respect to (4), (5) and (6).

It is worth mentioning that constraints (4), (5) and (6) prevent loops from occurring. A
loop for node k, k = 1, 2, . . . , n is mathematically expressed by xkk = 1. By (2) and (3), all
the variables xij, where i 6= j and either i = k or j = k (exactly one index is k), must be then
equal to zero. By (4) and (5), all the variables yij with exactly one index equal to k must be
equal to zero. Hence, out of all yij, where at least one index is k, ykk can be positive only.
The corresponding constraint for flow for node k is then

y11 − y11 = n− 1 for k = 1

or
ykk − ykk = −1 for k = 2, 3, . . . , n

Both variants of the constraint are obviously contradictory, so occurring as xkk = 1
in a feasible, and, in what follows, possibly an optimal solution is prevented no matter
what the values of ckk are. This is why there is no necessity of eliminating possible xkk = 1
feasible solutions (resulting from ckk = 0) by replacing ckk = 0 with ckk = M, where M is
“big M”, much larger than all the cij, where i 6= j (parameters of the objective function (1)
corresponding to “true” connections between pairs of different nodes).

The next step is to analyze an extension of the Gavish–Graves formulation of the TSP
with regard to handling node skipping at the cost of paying penalty per each skipped node.
This extension in the general form is expressed by (7) to (12) and—if applicable—optional
constraints (13) or (14). It is assumed that node 1 cannot be skipped. A binary variable
zk, k = 2, 3, . . . , n is associated with each node. A value of 1 means that the node is skipped,
whereas the value 0 means that the node is visited. Variables zk play two roles. The first
one is including the penalty cost for node i in the objective function. The second one is
“eliminating” all the variables xij (and, what follows, also yij), where i = k or j = k (at least
one index of two is k), by forcing them to be equal to zero. It must be performed because if
node k is skipped, the mathematical model must reflect the fact that no connections to and
from that node exist. Obviously, if at least one node is skipped, a cycle containing all the
visited nodes is no longer a Hamiltonian cycle.

Including the penalty costs for skipping nodes in the objective function is obvious—it
is performed by adding a sum of products of penalties and variables zk, k = 2, 3, . . . , n
in (7).
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Forcing all the variables xij and yij with at least one index k to be equal to zero for
variables xij is performed by constraints (8) and (9) (which are modified versions of (2) and
(3), respectively) and for variables yij by (12)—a modified version of (6).

Below all the feasible values in FS2 are presented as matrices.

[
xij
]
=



0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0


,
[
yij
]
=



0 0 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 4 0 0
5 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0


Skipping node 6 means that in both matrices, row 6 and column 6 contain zeroes only.
The value of the objective function (7) is 79. It is a sum of products of the weights

of edges and the corresponding xij binary variables added to a sum of products of the
penalties and the corresponding zk binary variables. Alternatively, it can be described as a
sum of the weights of used edges added to a sum of penalties on skipped nodes:

c17 + c72 + c23 + c34 + c45 + c51 + p6 = 12 + 10 + 11 + 15 + 12 + 10 + 9= 70 + 9 = 79.

It is less than the value of the objective function (1) for FS1, so skipping node 6 is
preferable to visiting it (and it would be also for other values of p6 as long as p6 < 15).

In feasible solution 2, node 6 is skipped; hence, z6 = 1. As node 6 will not be included
in any cycle connecting all other nodes, then xi6, x6j, yi6, y6j for i = 1, 2, . . . , n, j = 1, 2, . . . , n
all must be zeroes.

For variables xi6, x6j, we have

x61 + x62 + x63 + x64 + x65 + x66 = 1− z6 = 0
x16 + x26 + x36 + x46 + x56 + x66 = 1− z6 = 0

which (since xi6, x6j are binary variables) results in xi6 = x6j = 0.
Whenever node k is skipped, there cannot exist the flow of the fictional commodity via

that node. Obviously, constraints involving flows of the fictional commodity (10) and (11)
(identical to (4) and (5), respectively) and (12) (a modified version of (6)) are still necessary
because they allow only yij corresponding to xij = 1 to represent a flow through a single
cycle connecting 6 visited (not skipped) nodes. In the case of FS2, if xi6 = x6j = 0, then by
(10) and (11).

0 ≤ yi6 ≤ 6xi6, 0 ≤ y6j ≤ 6x6j for i = 1, 2, . . . , n, j = 1, 2, . . . , n

and hence yi6 = y6j = 0. Next,

y61 + y62 + y63 + y64 + y65 + y66 − (y61 + y62 + y63 + y64 + y65 + y66) = 0.

As such a constraint in the Gavish–Graves formulation of the TSP has a right-hand
side equal to −1, so it must be adjusted—in the case of no flow (z6 = 1)—such that the
RHS of the constraint must be zero. This is performed in the following way:

y61 + y62 + y63 + y64 + y65 + y66 − (y61 + y62 + y63 + y64 + y65 + y66) = z6 − 1

Analogical adjustments are performed for flow constraints for all the nodes except
node 1.

Node 1 is a special case. As it is never skipped, it cannot be “eliminated” from any
feasible solution. However, the flow balance constraint for node 1 must be adjusted to the
value of the flow depending on the number of visited/skipped nodes. This constraint in
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the Gavish–Graves formulation of the TSP (6) reflects the fact that inflow of the fictional
commodity to node 1 is equal to n− 1. The total value of inflow to node 1 is the sum of
units of the fictional commodity added at each node 2, 3, . . . , n− 1. However, if a node is
skipped, then obviously it is not a source of one unit of fictional commodity and does not
contribute to the total flow. In short, each skipped node decreases the inflow to node 1 by
one unit. This is why the value of that inflow must be “compensated” by the number of
skipped nodes, which is simply the sum of z2, z3, . . . , zn.

The constraint

y11 + y21 + . . . + yn1 − (y11 + y12 + . . . + y1n) + z2 + . . . + zn = n− 1

for FS2 takes the form
y51 + z6 = 5 + 1 = 6 = 7− 1.

An extreme case of skipping n− 1 nodes (all but node 1) additionally requires one
more adjustment—however, not in the constraints but in the objective function. In this
case, node 1 is the only visited node, which means that among all the xij variables, only
x11 = 1 (and, obviously z2 = z3 = . . . = zn = 1). However, such a value of x11 means that
there is a loop from node 1 to itself. Whereas loops must be eliminated from set of feasible
solutions, because they would “break” a single cycle, the case of n− 1 skipped nodes is
different. This means that the cycle along which “the salesman” would travel reduces to
“no trip” (no leaving node 1 at all), which is just a loop. Subtour elimination constraints
(10), (11) and (12) do not work in this case, and the loop from node 1 to itself remains in
the feasible solution. This fact does not affect the correctness of the feasible solution. The
only requirement is to set c11 = 0. Then, the total cost expressed by the objective function is
c11x11 + p2z2 + p3z3 + . . . + pnzn = p2 + p3 + . . . + pn; i.e., c11 does not affect it. Except this
case, at was shown earlier, the parameters ckk can take any values, because the constraints
force variables xkk to be zeroes.

Appendix B

The appendix contains details of an implementation of the example problem in Mi-
crosoft Excel 2019 with OpenSolver 2.9.3.

The following formatting rules were applied:

• default formatting—values of the parameters and text descriptions;
• bold centered—indices of the nodes;
• italic—values of the variables (bold italic—positive values);
• grey background—formulas.

The cell references pertaining to the particular parts of the considered mathematical
model are the following.

Variables:

• B22:R38— xij, i = 1, 2, . . . , 17; j = 1, 2, . . . , 17.
• B45:R61— yij, i = 1, 2, . . . , 17; j = 1, 2, . . . , 17,
• V3:V18— zi, i = 2, 3, . . . , 17.

Parameters:

• B2:R18— cij, i = 1, 2 . . . , 17; j = 1, 2, . . . , 17.
• W2:W18— pi, i = 2, 3, . . . , 17.
• B40, T22—1 (RHS’s for the constraints x11 + x12 + . . . + x1,17 = 1 and x11 + x21 + . . . +

xn,17 = 17, respectively).
• C41— n− 1 (16 in this model).

Formulas:

• S22:S38—sums of xij variables by index j (xi1 + xi2 + . . . + xI,17, i = 1, 2, . . . , 17); in
S22: =SUM(B22:R22), S22 copied to S23:S38.
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• B39:R39—sums of xij variables by index i (x1j + x2j + . . . + x17,j, j = 1, 2, . . . , 17); in
B39: =SUM(B22:B38), B39 copied to C39:R39;

• T23:T38—differences 1− zi (RHS’s for sums of xij variables by index j, i = 2, 3, . . . , 17);
in T23: =1-V3, T23 copied to T23:T38;

• C40:R40—differences 1− zj, (RHS’s for sums of xij variables by index i, j = 2, 3, . . . , 17);
in C40: =1- INDEX($V2:$V18,C21,1), C40 copied to D40:R40 (the function INDEX
provides references to consecutive cells of the one-column range V2:V18 when copying
of C40 is performed horizontally).

• S40—trip cost (the first part of the objective function): =SUMPRODUCT(B2:R18,B22:R38).
• U40—sum of the values of penalties (the second part of the objective function):

=SUMPRODUCT(W2:W18,V2:V18).
• W40—total cost (the objective function) = S40 + U40.
• B62:R62—sums of yij variables by index j (yi1 + yi2 + . . . + yI,17, i = 1, 2, . . . , 17)

—inflows of fictional commodity; in B62 = SUM(B45:B61), B62 copied to C62:R62;
• S45:S61—sums of yij variables by index i (y1j + y2j + . . . + y17,j, j = 1, 2, . . . , 17)

—outflows of fictional commodity; in S45 = SUM(B45:R45), S45 copied to S46:S61.
• U45:U61—inflows of fictional commodity—a transpose of B62:R62, introduced for

technical reasons; in U45 = INDEX(B$62:R$62,1,A45), U45 copied to U46:U61.
• V45—the formula for the LHS of the balance formula of fictional commodity flow for

node 1 (y11 + y21 + . . . + y17,1 − (y11 + y12 + . . . + y1,17n)+ z2 + . . . + z17): =U45-S45 +
SUM(V2:V18).

• V46:V61—differences in the inflow and the outflow for each node, i.e., LHSs of the
balance formulas of fictional commodity flows for nodes 2,3, . . . 17: in V46: =U46-S46.
V46 copied to V47:V61.

• W45—RHS of the balance formula of fictional commodity flow for node 1 (n− 1 = 16):
=C42

• W46:W61—differences zi − 1 (RHS’s of the balance formulas of fictional commodity
flows for nodes 2,3, . . . 17); in W46: =V3-1, W46 copied to W47:W61.

• B66:B82—products (n− 1)xij, i.e., RHS’s of the formulas limiting fictional commodity
flows between pairs of nodes to the values equal at most n− 1; in B66: =B22*$C$42,
B66 copied to B66:B82.

Auxiliary formulas introduced for better readability of the solution (not a part of the
mathematical model).

• V22:V38—indices of nodes which are connected with nodes specified in U22:U38 (con-
sidered pairwise, e.g., U22 with V22 and U23 with V23; if a node is skipped then there
is no connection, and 0 is displayed instead); in V22: =ROUND(SUMPRODUCT(B$21:
R$21,B22:R22),0), V22 is copied to V23:V38.

• W22:W38—sequence of nodes in the cycle starting from the node visited after leaving
node 1 and ending in node 1 (if not all nodes are visited, then the N/A errors display
in the lower part of the range), in W22: =V22, in W23: =VLOOKUP(W22,U$23:V$38,2),
W23 copied to W24:W38.

As optimal values of the variables in B22:R38 may slightly differ from zero or one due
to rounding errors during calculations, the ROUND function is used to provide integer
results. Integer values in W22:W38 are necessary to obtain correct results returned by the
function VLOOKUP, which calculates the sequence of visited nodes.

The exact layout for data entered into a spreadsheet are presented in Figures A3–A6.
Rows 19, 41 and 62 are not shown because they were empty. The settings entered into
OpenSolver’s model window are presented in Figure A7.
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