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Abstract: Artificial Intelligence (AI) is providing the technology for large-scale, cost-effective and
current asbestos-containing material (ACM) roofing detection. AI models can provide additional
data to monitor, manage and plan for ACM in situ and its safe removal and disposal, compared
with traditional approaches alone. Advances are being made in AI algorithms and imagery applied
to ACM detection. This study applies mask region-based convolution neural networks (Mask R-
CNN) to multi-spectral satellite imagery (MSSI) and high-resolution aerial imagery (HRAI) to detect
the presence of ACM roofing on residential buildings across an Australian case study area. The
results provide insights into the challenges and benefits of using AI and different imageries for
ACM detection, providing future directions for its practical application. The study found model 1,
using HRAI and 460 training samples, was the more reliable model of the three with a precision of
94%. These findings confirm the efficacy of combining advanced AI techniques and remote sensing
imagery, specifically Mask R-CNN with HRAI, for ACM roofing detection. Such combinations can
provide efficient methods for the large-scale detection of ACM roofing, improving the coverage
and currency of data for the implementation of coordinated management policies for ACM in the
built environment.

Keywords: asbestos containing material (ACM); asbestos detection; artificial intelligence; Mask
R-CNN; remote sensing imagery

1. Introduction

The global industrialisation of asbestos occurred rapidly over a 150-year period as
its conductivity, fire-proofing and strengthening properties became valuable in the con-
struction and manufacturing industries. Now, asbestos-related diseases cause an estimated
255,000 global deaths annually [1,2]. Responding to the prevalence of asbestos-related
diseases, the use and distribution of asbestos and asbestos-containing materials (ACMs) is
banned in over 60 countries as of 2020 [2].

Asbestos is a hazardous substance [3]. When asbestos is disturbed, or ACMs become
damaged, disturbed or are deteriorating, microscopic silicate fibres can become airborne.
Inhalation exposure to these airborne fibres can cause asbestos-related diseases such as
asbestosis, lung cancer, and mesothelioma [3,4]. Disturbance activities which can lead
to asbestos exposure include but are not limited to unsafe ACM management practices
during home improvement and redevelopment, disaster events, illegal dumping and
weathering [5].
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This paper focuses on the Australian asbestos problem as an archetype case study for
the broader application of artificial intelligence (AI) for ACM detection both domestically
and in other countries. Asbestos was completely banned in Australia from the end of
2003, but a large legacy of ACMs remains in the built environment. New approaches to
more effectively manage the legacy ACM remaining in situ, and plan for its safe removal
and disposal are needed. To aid in developing these new approaches, the Australian
Government Asbestos Safety and Eradication Agency (ASEA) was established in 2013 to
coordinate the implementation of the National Strategic Plan for Asbestos Management
and Awareness (Asbestos National Strategic Plan). The current phase of the Asbestos
National Strategic Plan contains a target of developing an evidence-based national picture
that assesses the likelihood of ACMs being present in the residential environment. ACM
identification is a key national priority of this plan, as locating ACM provides the means
to estimate quantities and plan for safe management in situ, before removal and disposal.
This study was undertaken in conjunction with ASEA. Australia is a suitable case study for
AI detection of ACMs, as asbestos-related diseases are responsible for over 4000 Australian
deaths every year [6], and there are an estimated 6.2 million tonnes of ACM remaining in
the Australian built environment [7].

To ultimately reduce the cases of exposure, individuals and policymakers require
information about the location and quantity of ACMs [8,9]. Traditional methods to detect
asbestos are costly and time-consuming, requiring physical sampling in situ, laboratory
testing and extended waiting periods for results [10]. Current data about the location of
ACMs in the residential environment is scattered and incomplete, and traditional methods
are difficult to implement on a large scale while maintaining currency. Large-scale detection
methods for ACM roofing are being investigated across the world and generally utilise
remote sensing imageries such as multi-spectral resolution imagery (MSSI) and high-
resolution aerial imagery (HRAI), combined with AI technologies [8]. As most ACMs are
reaching the end of their product life and can begin deteriorating, there is an elevated risk
for asbestos exposure from the release of airborne asbestos fibres. ACM roofing can be
difficult to maintain, as it is not as easily monitored and accessible as ground-level ACMs
are. Remote sensing imagery allows for ACM roofing to be easily detected at a large scale,
contributing to efforts to prevent exposure to asbestos fibres.

This research will utilise remote sensing imageries and advanced AI to explore its
efficacy to detect ACM roofing and the variability of the AI models in this space. The aim of
this study is to investigate the use of MSSI and HRAI with an AI called mask region-based
convolutional neural network (Mask R-CNN) for the detection of ACM roofing in the
residential building stock of a case study area in Australia.

1.1. Asbestos in Australia

The manufacture, use, reuse, import, transport, storage or sale of all forms of asbestos
was banned in Australia from 2003 [7]. Prior to that, Australia was one of the highest
consumers of asbestos per capita during its peak production in the 1900s. It now deals with
a legacy issue of ACM in situ throughout government, commercial and residential building
stock. It is estimated that 1.9 million tonnes of asbestos were consumed in Australia
between 1920–2003 [7].

A residential-focused case study area was chosen for this Australian study as while
more is known about the level of ACMs present in public and commercial buildings, less
is known about the residential building stock. Nation-wide, ‘workplaces’ built before
certain dates are required to use an asbestos register that lists areas of confirmed or as-
sumed asbestos in the building, whereas this is not a requirement for almost all residential
buildings [11].

In residential buildings, roofing, eaves, walls, tiles and fences are just some products
that could contain asbestos. Before the 1960s, 25% of residential buildings in Australia used
ACM sheeting externally, internally and for roofing [7]. Recent studies estimate that 1 in
3 houses contain some type of ACM; however, there is limited data on the density and
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location of affected houses in Australia [12]. Successful large-scale ACM detection and
asbestos identification for Australian residential buildings would have a great impact on
the overall health of Australian communities as there is a lack of existing data for residential
buildings and high volumes of ACM that remain in situ.

1.2. Asbestos Identification vs. ACM Detection

In Australia, workplace health and safety laws provide that only an asbestos test
performed in an accredited laboratory can be used to identify asbestos in a material [11].
Furthermore, only the National Association of Testing Authorities (NATA) accredits lab-
oratories for asbestos testing. The traditional asbestos testing method requires physical
sampling and at least polarised light microscopy, in accordance with Australian Standard
AS4964-2004 [13]. This is a time-consuming and expensive method due to the workforce
and equipment required [9,10] and is inefficient when considering ACM detection on a
large scale. Advancements in technology and accessibility, and investigations into other
methods of ACM detection are being carried out across the world. These represent comple-
mentary approaches to asbestos identification that can be used to inform on-the-ground
asbestos assessment and testing, validate the outputs from new technology or inform where
to prioritise asbestos management action.

The use of AI and imagery for large-scale ACM detection has increased as remote
sensing imagery has become more cost efficient, greater coverage and better temporal
currency. Published studies using AI and imagery for ACM roof detection have included
methods combining remote sensing imagery with object detection and pixel classification-
based AI algorithms [8]. Advancements in machine learning (specifically deep learning)
have provided opportunities to improve object detection, therefore improving the ability
to detect ACM roofing [14,15]. These methods are more sophisticated and efficient for
large-scale asbestos detection compared to the traditional methods and are now start-
ing to be used in practice; however, there are still areas for improvement. Studies that
used MSSI and hyperspectral satellite imagery (HSSI) were restricted due to the lower
spatial resolutions available for that type of imagery [16]. Generally, previous studies
used classification algorithms that were primarily pixel based. However, a 2008 study by
Weih and Riggan [17] highlighted the increase in accuracy of object detection methods
when using HRAI, as opposed to MSSI. One study identified in the literature explored
the use of remote sensing imagery and convolutional neural networks (CNN) to detect
ACM roofing focusing on the use of aerial hyper-spectral and multi-spectral imagery [10].
Similar studies [9,10,14–16,18,19] present evidence for the efficacy of using remote sensing
and AI methods to detect ACM roofing; however, there is an opportunity to advance and
expand upon the existing works regarding the best practice of large-scale asbestos detection
and management. Expanding these works can be accomplished by investigating existing
studies for limitations, making new adjustments to methods or using newer data inputs,
since changes in these areas can enhance modelling outputs. For example, in 2016, Toth
and Jóźków [20] remarked on the advancements occurring in remote sensing technology,
which has resulted in improved resolution availability, spectral capacity, coverage and
accessibility [21]. The advancements in remote sensing capabilities, and the data and
information that can now be captured provides the opportunity for more in-depth research
to be accomplished [18–20]. Toth and Jóźków [20] also commented on the necessity for
improving methods to be able to process and analyse these enhanced datasets and informa-
tion. In other research areas, studies have focused on advancing CNN frameworks and
capabilities, allowing for more adaptable hyperparameters (e.g., number of training cycles)
to improve model performance of processing times, precision and recall [22]. This was
evident in a study by Iqbal [23] where Mask R-CNN outperformed previous versions of
CNN using similar input imageries to detect individual trees with a classification accuracy
of 96–98%.
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1.3. Remote Sensing Imagery

The theme of definitions for remote sensing is the act of gathering information from
an overhead perspective using airborne technology, including satellites, planes, drones,
etc. [24]. Remote sensing imagery is useful for studying the changes or patterns that occur
on the planet’s surface as it can cover large areas with varying image types and resolutions.

Two types of remote sensing imagery that are often used are HSSI and MSSI. These
imageries use sensors and satellites to capture different electromagnetic spectrum bands.
HSSI can potentially capture hundreds of spectral bands and has a higher spectral resolu-
tion compared to MSSI sensors that can capture anywhere from 3–10 spectral bands [25,26].
Higher spectral resolution imagery like HSSI can be useful, but the sensor technology
required to capture the additional bands can have accessibility issues regarding cost. Fur-
thermore, a study by Krówczyńska et al. [10] found HSSI was not necessary to accurately
detect ACM roofing and that MSSI could be an alternative. The selection of MSSI for this
study is supported by findings of Krówczyńska et al. [10]. Another study describing best
practices for ACM detection [9] successfully combined MSSI and pixel-based classification,
which categorises individual pixels of an image, including images comprised of multiple
spectral bands.

HRAI is another common imagery method in remote sensing and uses aerial vehicles
to capture RGB spectral band imagery. HRAI was chosen to be investigated alongside
MSSI due to its accessibility and efficient cost for the case study area. Furthermore, a study
produced by Weih and Riggan [17] highlighted the increase in accuracy of object detection
methods when using HRAI, opposed to MSSI. Weih and Riggan [17] showed that higher
resolution imagery increases accuracy in object detection. The higher resolution improves
the classification of the individual pixels of an image, and therefore improves the ability to
locate the edge of an object using the classified pixels [17].

Figure 1 provides a visual comparison of HRAI with 3 bands and MSSI with 8 bands.
This figure highlights the differences in resolution and spectral coverage of the two types
of imagery.
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Table 1 compares the attributes of the chosen remote sensing imageries of this study,
MSSI and HRAI.
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Table 1. Comparison of MSSI and HRAI attributes.

Attributes MSSI HRAI

Method of capture
Several photos of the same scene using
different sensors attached to a satellite (see
Figure 1B,D) [25].

One photo taken of one scene until the desired
area is covered using a high-resolution camera
attached to an aerial vehicle
(see Figure 1A,C) [24].

Bands of the electromagnetic spectrum
captured

Approximately 3 to 10 bands depending on
the number of sensors. Bands can include red,
green, blue (RGB), near-infrared, thermal
infrared, short-wave infrared, panchromatic,
cirrus and thermal infrared [26]

Three bands available: red, green, blue (RGB).

Available resolution

Three to four types of resolution are generally
available.

• low resolution: over 60 m per pixel,
• medium resolution: 10–30 m per pixel,
• high to very high resolution: 0.3–5 m per

pixel [25,27].

High to very high-resolution available ranging
from 2.5 to 10–15 cm per pixel [25,27]

Weather

Generally, cannot guarantee cloud-free
imagery, particularly over tropical areas. MSSI
can be affected by atmospheric interference,
which requires post-processing corrections
[25].

Flexible data capturing subject to the local
weather, including altitude adjustments. This
can guarantee cloud-free data and aerial
imagery is not impacted by atmospheric
interference [25].

Location accuracy and accessibility
General accuracy is 10–20 m without ground
control points, and accuracy is improving with
new satellite technology [25].

General horizontal accuracy is two pixels and
the accuracy of aerial imagery is improving
with the use of airborne ground positioning
systems and post-processing.

Speed

Generally, capturing specific locations and
time-sensitive events cannot be guaranteed
within two to three days, as they are
depending on the satellite’s position in orbit.
Worldview-3 has an average revisit time of less
than one day [28]. MSSI processing times are
low as there is usually a smaller number of
images to process due to the coverage.

HRAI is useful for specific locations or
time-sensitive events depending on the
availability of the equipment to the location.
Processing times for this imagery are
dependent on the number of images captured
for coverage. This is improving with
advancements in technology [25].

Coverage and currency
MSSI can quickly cover large geographic areas
when in the correct place. Worldview-3 can
cover up to 680,000 km2 per day [28].

HRAI can capture large amounts of data in a
small quantity of data collection runs.
Commercial aerial imagery providers in
Australia update the coverage of metropolitan
areas 2–6 times a year and can provide access
up to 3900 to 130,100 per km2 [29,30].

Cost

Varies depending on resolutions, accuracy and
timeliness. Worldview-1 and Worldview-2 cost
anywhere between AUD$14 1 and AUD$23 1

per km2 depending on the currency [27,31]

Varies depending on mobilisation costs,
resolution, accuracy, timeliness and if manned
or unmanned [25]. Commercial suppliers can
charge AUD$5.91 1 per km2 for 15 cm
resolution, archived, orthorectified, aerial
imagery captured by a manned aerial vehicle
[27]. Unmanned aerial vehicles (UAV) capture,
such as using drones, can lower associated
costs [32].

1 AUD$1 = USD$0.67 November 2022.

Table 2 provides a summary of remote sensing studies, including ACM-related remote
sensing studies reported in the literature; and summarises the utilised data, including
remote sensing imagery resolution, bands and capture methods.
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Table 2. Reported remote sensing imagery studies including ACM-related studies.

Author Resolution (Metres) Bands Capture

Weih and Riggan
(2008) [17]

1 m 11 Aerial & satellite
1 m 7 Aerial & satellite
10 m 8 Satellite

Bassani
et al. (2007) * [16] 3 m 102 (hyperspectral) Aerial

Frassy et al.
(2014) * [18]

4 m 102 (hyperspectral) Aerial
6 m–9 m 102 (hyperspectral) Aerial

Taherzadeh and
Shafri (2013) * [19] 0.5 m 8 (visible and

near-infrared) Satellite

Guo et al. (2018) [14]
0.5 m–2 m 3 (RGB) Satellite

0.08 m 2 (colour-infrared) Satellite

Krówczyńska et al.
(2020) * [10] 0.25 m 5 (RBG &

colour-infrared) Aerial

* ACM roofing related.

1.4. Mask Region-Based Convolutional Neural Network

Detecting targets through remote sensing imagery using AI has been proven in the
literature [8–10,14–16,18–24]. To contribute to the existing literature, this study utilised a
progression of AI and machine learning (ML) called deep learning (DL) to automate the
detection of ACM roofing through remote sensing imagery. Figure 2 shows the position of
DL in the AI technology space. For the remainder of this study, the terminology DL will be
used to represent the utilisation of this more sophisticated AI technique. This method of
DL uses artificial neural networks (ANN) that are designed to replicate human learning
processes more efficiently and beyond what ML is capable of [33]. ANN was enhanced to
develop CNN, which is an efficient algorithm that can extract features by simultaneously
using pixel classification and object detection to identify individual objects [33–35]. There
are several enhancements between CNN and the Mask R-CNN used in this study. The
predecessors of Mask R-CNN include a regional convolutional neural network (R-CNN)
and Faster R-CNN. Mask R-CNN is currently the most evolved CNN algorithm with
slightly enhanced architecture and the inclusion of a mask layer as an output [35]. Figure 3
provides a visualisation of the principle of Mask R-CNN. The architecture of Mask R-
CNN processes images through a selected backbone to create abstract feature maps of
the data. The feature maps are then scanned by the region proposal network (RPN) to
identify potential objects [34,35]. Using region of interest alignment (RoIAlign) the model
then extracts the features of the feature map according to the RPN. RoIAlign extracts
the identified features without losing data like its predecessor region of interest pooling
(RoIpooling) that is used in Faster R-CNN [33–36]. Two processes then occur using the
extracted features. The model classifies the pixels of the identified objects, even if there
are multiple classes, and the masks are generated for each class prediction, covering the
extent of the object. This type of output is referred to as instance segmentation [37]. Further
advantages of Mask R-CNN compared to other CNN methods is that it is easy to train,
adaptable to other tasks and maintains efficiency with only a small increase in processing
required compared to the Faster-R-CNN. In a 2022 survey by Bharati and Pramanik [35] that
compared Mask R-CNN with other R-CNN methods, Mask R-CNN outperformed the other
algorithms on an average precision of ~47.3%. Another 2022 study by Yu et al. [38] found
that Mask R-CNN using remote sensing imageries achieved the highest accuracy when
identifying individual trees (F1 = 94.68%) against other modelling algorithms, local maxima
(F1 score = 87.68%) and marker-controlled watershed segmentation (F1 score = 85.92%).
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1.5. Summary

This study progresses existing ACM detection research by leveraging from the ad-
vancements in remote sensing imagery and AI analytic methods. This study will investigate
the use of Mask R-CNN to detect ACM roofing using HRAI and MSSI, as this has not yet
been fully explored in the literature.

2. Methods
2.1. Overview

This section provides an overview of the method used for both the MSSI and HRAI
models as visualised in Figure 4. The first step of the method was to identify a suitable case
study area. The advice and observations of a subject matter expert (SME) was essential
for establishing the case study area and creation of a training sample dataset of ACM
roofing likelihood via desktop, observational analysis. Both types of imagery required
input imagery preparation, training sample dataset creation, model training, and running
the Mask R-CNN model and feedback loops. Variations occurred between the two models
during the method process that resulted in different training sample datasets being used.
To better discuss these variations, the model using HRAI and 460 training samples is hereon
referred to as model 1, and the model using MSSI and 184 training samples is referred
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to as model 2. Finally, the results of ACM roofing detection were produced, analysed
and discussed.
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To further explore the effect of the variations on the results of models 1 and 2, a third
model referred to as model 3 was produced. Model 3 used HRAI with a reduced training
sample dataset to match that used in model 2 (184).

2.2. Case Study Area Selection

The first step of this research method is the case study area selection. To detect ACM
in the residential built environment at a large scale, the process first requires the prediction
of areas that have a higher occurrence of ACM anywhere in the building stock. This was
achieved by understanding the socioeconomic and urban development characteristics
of areas that had high development growth during the historical period of asbestos use
and were also less likely to have been redeveloped since the ban in 2003. Using these
characteristics, a multi-criteria analysis along with unsupervised cluster analysis was
undertaken using the k-mean method. Results were reported spatially at a statistical area
level 2s (SA2s) scale. Following the multi-criteria analysis and cluster analysis results, SA2s
with the highest score were selected for further investigation. A preliminary investigation
shortlisted 542 out of 2310 SA2s [39] across Australia. Further investigation resulted in the
selection of six SA2s in Western Sydney, covering 26.8 km2, as an ideal case study area for
this research.

Western Sydney refers to a region of suburbs located to the west of the city of Sydney,
New South Wales, Australia, as shown in Figure 5. Western Sydney began to grow in the late
1800s to 1900s as the opening of railway lines improved access to and from the dense city
to the east [40]. Post-World War II, immigration, industrial growth and the construction of
public housing estates dramatically increased the population in this region [40]. Residential
development was occurring so rapidly that many building materials became expensive and
inaccessible [41]. This increased the popularity of a cheaper and more accessible building
material, fibrous cement sheeting (fibro-cement) [40]. From 1916 to 1983, a James Hardie
asbestos manufacturing plant was operating in Parramatta, a suburb of Western Sydney [42].
This plant produced fibro-cement products containing asbestos, which were used heavily in
the surrounding suburbs of Western Sydney and also distributed throughout Australia. As
a result, Western Sydney forms part of Sydney’s “fibro-belt”, a term that refers to areas of
greater Sydney with higher occurrences of fibro-cement housing [40,41]. Rapid expansion
and redevelopment in this region are beginning to occur as the original building stocks are
around 80 years old. The intense revitalisation fuelled by housing demand and investments
seen in the inner suburbs of the city is not mirrored in the Western Sydney area, which
had an average property market growth rate of 4.8% in the last two decades. In this area,
redevelopment is occurring on a local, property-by-property scale, dispersed across the
suburbs [40]. An observational desktop analysis was conducted to verify the prediction
of the data that Western Sydney was an ideal case study area. This analysis used SME
observations through aerial and street view imagery to present a likelihood of ACM in
residential buildings in the area. The SME for this study was an occupational hygienist
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with over 25 years’ experience in asbestos and other hazardous materials surveying and
land contamination assessment.
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Figure 5. Western Sydney case study area.

2.3. Input Imagery Data

The HRAI used for this study was 7.5-cm resolution RGB images purchased from a
commercial aerial imagery producer and supplier. The MSSI was purchased from a commer-
cial satellite imagery supplier that supplies imagery produced by the Worldview-3 satellite.
The MSSI imagery included a 30-cm resolution panchromatic band (450–800 nm) and 1.24
m resolution multi-spectral bands (blue 450–510 nm, green 510–580 nm, red 655–690 nm,
near infrared 780–920 nm, coastal and red-edge). The MSSI was processed using pan-
sharpening to combine the high-resolution panchromatic raster dataset with a lower-
resolution multiband raster dataset to create a high-resolution multiband raster dataset for
remote sensing analysis. This approach creates high-resolution 8-band multi-spectral im-
ages that can be used to improve segmentation and classification. The MSSI had 0% cloud
coverage and was within the 30 degrees off-nadir limit, which applies for the WorldView-3
satellite. Any variance in degrees off-nadir may change the way the multi-spectral signal
interacts with the surface. The extent of variance and change in results was not measured
as part of this study. Furthermore, the currencies of the imageries differ by a maximum of
6 months, the HRAI being more recently captured than the MSSI.

2.4. Training Sample Dataset Creation

Deep learning models were trained using examples of ACM roofing observed and
extracted from HRAI and pan-sharpened MSSI. Figure 6 provides an overview of the input
imagery search strategies, which involved analysts undertaking a systemic search of each
SA2 in the case study area specifically for ACM roofing. Reference images of ACM roofing
on residential dwellings were validated by an SME and provided to the analysts. Each
analyst then undertook three search strategies across each SA2 from a desktop:

1. detailed aerial imagery searches scanning left to right across each urban block at differ-
ent scales to identify different roofing materials depending on the imagery resolution,

2. a more distributed search strategy to scan across a broader area to better observe
patterns of streets and property sizes at a larger scale,

3. ‘desktop-walking’ down the streets with ACM dwellings using Google Street-view to
observe potential ACM roofing that could not be fully observed in aerial imagery.
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During the searches, training samples were captured for the dataset by creating bound-
ing boxes from approximately 0 to 1 m around the building footprint of the target dwelling.
Depending on the variation of ACM roof types captured in the training samples, such as
painted, unpainted, overall shape and area of the roof, further sampling was undertaken to
improve representative sampling, reduce bias and enhance the model performance. The
training sample dataset size could be increased from 184 using 30-cm MSSI for model 2, to
460 records using 7.5-cm HRAI for model 1. The higher resolution of the HRAI made it
easier to observe the characteristics of ACM roofing, which increased target data detection
and sampling. The training sample dataset for model 1 was not able to be applied to model
2 as the imageries had different currencies and aerial angles.

As model 1 and 2 have different-sized datasets, to further investigate the use of Mask
R-CNN with MSSI and HRAI for the detection of ACM roofing, a third model was produced.
Model 3 used HRAI; however, the training sample dataset for this model was limited to
184 samples to match the size of the dataset used for model 2. Furthermore, the 184 training
samples were manually selected at random (with some consideration to representative
sampling of different varieties of ACM roofing) from the 460 training samples used for
model 1. Therefore, while the training sample dataset size matched for models 2 and 3, the
geographical location of the training samples did not completely match due to the slight
variation in imagery. All three training datasets were distributed across the case study area.

2.5. Model Training

The training sample dataset bounding boxes were used to produce image tiles (‘chips’)
using the modelling software. The model training hyperparameters included the selection
of tile sizes, which was set to 256 by 256 pixels around the training samples. These tiles
were then used to train a deep learning model. Figure 7 provides a visual representation of
the creation of the chips from the training samples.
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2.6. Run Mask R-CNN Model

Table 3 summarises the process of the methods in this step. The geometric locational
data created in the training dataset creation was used to produce the deep learning chips
from the imagery. That chip data was then used to train the Mask R-CNN model.

The trained deep learning models were then processed using Mask R-CNN to detect
ACM roofing within the case study area. The Mask R-CNN model required inputting the
MSSI or HRAI for the relevant model that covered the case study area and the trained
model. The number of epochs (i.e., number of times that the model loops through the
data while training), learn rate (i.e., hyperparameter that defines how fast the model
adapts to the target) and confidence threshold (set to 70–90%) were also calibrated for
modelling optimisation. These hyperparameters were set according to parameters used in
asbestos and non-asbestos detection literature that produced successful results. The chosen
hyperparameter settings considered commentary from the literature that correlated certain
hyperparameter adjustments to improved accuracy and precision. From there, manual
adjustments were considered where required.
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Table 3. Summary of data created prior to Mask R-CNN model run.

Method Format Model Data Created

Training Dataset Creation

Used SME observations,
desktop analysis and

imagery to outline
potential ACM roofing

locations

Polygon shapefile

Model 1 460 polygons of ACM
roofing locations

Model 2 184 polygons of ACM
roofing locations

Model 3 184 polygons of ACM
roofing locations

Model training

Created ‘chips’ of
imagery from the

locations of the training
dataset creation step and

used them to train the
model.

Tag Image Film
Format (TIFF)

Model 1 HRAI 7.5 cm resolution
chips of ACM roofs

Model 2 MSSI 30 cm resolution
chips of ACM roofs

Model 3 HRAI 7.5 cm resolution
chips of ACM roofs

2.7. Feedback Loop

If the model inference accuracy was lower than 80%, true positives were incorporated
to the training sample dataset to increase the sample size to improve the model performance.
This would require using the inferences to identify roofs that could be added to the training
sample dataset and re-running the model. The inference accuracy benchmark of 80%
was selected as an industry-accepted benchmark of model output accuracy [10]. When
considering the difference between using 70% or 90% as a benchmark for inference accuracy,
there was minimal effect on the inference count regarding asbestos management.

3. Results

The following section outlines the results of the three models using MSSI and HRAI
with Mask R-CNN to detect ACM roofing in the Australian residential building stock.
The main results of this study are from model 1 and 2, followed by the results of model 3.
Table 4 details the similarities and variabilities between models 1 and 2, including the case
study area details and model parameters.

Table 4. Model 1 and 2 similarities and variabilities.

Model Parameters Model 1—HRAI Model 2—MSSI

Case Study Area Details

Area Western Sydney Western Sydney

Included SA2s

Cabramatta West—Mount
Prichard, Canley

Vale—Canley Heights,
Fairfield, Fairfield—West,

Greenfield
Park—Prairiewood, St. Johns

Park—Wakeley

Cabramatta West—Mount
Prichard, Canley

Vale—Canley Heights,
Fairfield, Fairfield—West,

Greenfield
Park—Prairiewood, St. Johns

Park—Wakeley
Population (2016) [41] 93,944 93,944

Dwelling Count (2016) [41] 29,595 29,595
Area (km2) (2016) [41] 26.8 26.8

Model input
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Table 4. Cont.

Model Parameters Model 1—HRAI Model 2—MSSI

Model type Mask R-CNN Mask R-CNN
Training sample size 460 184

Input imagery resolution 7.5 cm 30 cm & 1.24 m

Input imagery band types 3 (RGB)
8 (RGB, red-edge, coastal,

near-infrared 1, near-infrared
2 & panchromatic)

Input imagery
pre-processing N/A Pan-sharpening

Model processing

Processing unit Graphics processing unit
(GPU)

Graphics processing unit
(GPU)

Processing time 15 h 18 h 30 min

Model output

Confidence threshold 99.8% 90%
Recall rate (inferences) 1938 533

Average precision 94% 63%

A residential asbestos heatmap for the Western Sydney area showing inference results
produced by model 1, using 7.5-cm HRAI is illustrated in Figure 8.

The distribution of the inferences across models 1 and 2 in Figures 8 and 9, respectively,
highlight similar areas where higher numbers of inferences were detected, in particular,
Canfield Heights and Fairfield West areas. Furthermore, both figures have similar areas of
scattered inferences, including Greenfield Park and the eastern area of Fairfield.

Using HRAI and Mask R-CNN, 1938 inferences of ACM roofing were detected with
a 99.8% confidence threshold for model 1. The MSSI and Mask R-CNN model 2 detected
533 inferences of ACM roofing with a 90% confidence interval. The cut-off confidence
interval threshold of the HRAI model was optimised to 99.8%. For this purpose, true
and false positives and negatives within model 1 and the respective heatmap, asbestos
clusters were considered, i.e., the Fairfield West asbestos cluster. In this cluster, a total
of 234 records at a 50% confidence interval were identified and classified by the type
of the actual material, as illustrated in Figure 10. This Pareto chart aids in defining the
proportion of true and false positives for records. Out of 234 records detected as ACM
roofing at 50% confidence, 144 inferences were ACM roofing and 90 were incorrect and
post-identified as other materials, including tile, metal or pavement. Also included in
Figure 10 is the cumulative Pareto percentage line, which shows the proportions as a
percentage. In this measure, 62.5% of the inferences in the cluster were true positives and
37.5% were other materials and, therefore, false positives. The SME quality assurance using
a stratified random sample of SA2s found four incorrect inferences out of 67 records, which
is equivalent to 94% precision.
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Figure 10. Model 1 inferences at 50% confidence interval for Fairfield West asbestos cluster in Western
Sydney case study area.

By also creating a receiver operator characteristic (ROC) curve for the Fairfield West
asbestos cluster in Western Sydney, true positives (sensitivity) and false positives (specificity
complement) were identified for different threshold values, as illustrated in Figure 11. This
analysis provides a visual representation of the model accuracy, in which models with
random precision follow a linear trend (i.e., true and false positives increase simultaneously).
In this instance, this was the case with model 2. The low recall rate of model 2 resulted
in reduced model precision. Models such as model 1 that sustain large true positive
proportions (e.g., >80%) without a considerable increase in false positives are considered
reliable models. Model 1 using HRAI had over 80% true positives with a small number of
false positives. To avoid false positives in the records from model 1, the cut-off confidence
interval threshold was set to 99.8%, totalling 1938 records across Western Sydney, as shown
in Figure 8.
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Furthermore, observations of the inferential results for models 1 and 2 saw that among
the properties with ACM roofing detected, there was a large proportion of asbestos in
outbuildings rather than the main dwelling. ACM roofing was also detected in several
extensions to main buildings that have primarily tile roofs and a footprint of less than



Sustainability 2023, 15, 4276 16 of 23

100 m2. Such examples are indicative of pre-1950s properties with renovation undertaken
during the asbestos era.

The ROC of the model 3 visualises its position of model performance in this study.
It was not as precise or reliable as model 1 but still outperformed model 2 in those areas.
While model 2 and 3 used the same sized training sample dataset and produced similar
precision of 63% and 62% respectively, model 3 produced a larger number of inferences at a
higher confidence threshold of 98%, as shown in Table 5.

Table 5. Comparison of MSSI and HRAI (smaller training sample dataset) inputs and outputs.

Model Parameters Model 2—MSSI Model 3—HRAI

Model Input

Model type Mask R-CNN Mask R-CNN
Training dataset size 184 184

Input imagery resolution 30 cm & 1.24 m 7.5 cm

Input imagery band types
8 (RGB, red-edge, coastal,

near-infrared 1, near-infrared
2 & panchromatic)

3 (RGB)

Input imagery
pre-processing Pan-sharpening N/A

Model processing

Processing unit Graphics processing unit
(GPU)

Graphics processing unit
(GPU)

Processing time 15 h 10 h

Model output

Confidence threshold 90% 98%
Recall rate (inferences) 533 1737

Average precision 63% 62%

Table 5 details the similarities and variabilities of the inputs, processing and outputs
of models 2 and 3.

4. Discussion

The study results provide contributions across two key areas: (1) demonstration of the
ability of Mask R-CNN models to detect ACM roofing, and in effect, the application of AI
for improved asbestos management; (2) an investigation of modelling variables, assisting
with decision making regarding the use of AI for ACM detection; and the considerations
for model inputs, configuration, processing and outputs. Prior studies support the findings
that there are many variables to consider for an optimal AI model [8–10,14–16,18–24]. Many
trade-offs can be made throughout a study, customised for overall project management and
technical execution requirements.

This study aimed to investigate the use of MSSI and HRAI to detect ACM roofing
using Mask R-CNN. This was accomplished with some variations to each model that
are important to explore to better understand current and future modelling outcomes.
Previous publications [8–10,14–16,18–24] have shown that changing relationships between
inputs, parameters and outputs can aid in understanding the efficiency and accuracy of a
model. The following section discusses the detection of ACM roofing by Mask R-CNN and
remote sensing imagery and the variables of this study that contributed to the configuration
of the models. These variables include financial and technical resourcing, input data
ownership and usage restrictions, input imagery types, training sample dataset creation,
model preparation and processing times, and the application of DL. Figure 12 highlights
the points of this discussion.



Sustainability 2023, 15, 4276 17 of 23

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 22 
 

4. Discussion 
The study results provide contributions across two key areas: (1) demonstration of 

the ability of Mask R-CNN models to detect ACM roofing, and in effect, the application 
of AI for improved asbestos management; (2) an investigation of modelling variables, as-
sisting with decision making regarding the use of AI for ACM detection; and the consid-
erations for model inputs, configuration, processing and outputs. Prior studies support 
the findings that there are many variables to consider for an optimal AI model [8–10,14–
16,18–24]. Many trade-offs can be made throughout a study, customised for overall project 
management and technical execution requirements.  

This study aimed to investigate the use of MSSI and HRAI to detect ACM roofing 
using Mask R-CNN. This was accomplished with some variations to each model that are 
important to explore to better understand current and future modelling outcomes. Previ-
ous publications [8–10,14–16,18–24] have shown that changing relationships between in-
puts, parameters and outputs can aid in understanding the efficiency and accuracy of a 
model. The following section discusses the detection of ACM roofing by Mask R-CNN 
and remote sensing imagery and the variables of this study that contributed to the config-
uration of the models. These variables include financial and technical resourcing, input 
data ownership and usage restrictions, input imagery types, training sample dataset cre-
ation, model preparation and processing times, and the application of DL. Figure 12 high-
lights the points of this discussion. 

 
Figure 12. Summary of variables to consider for this study. 

Financial Resources

• HRAI is a lower cost per square 
kilometer

• There are publicly available datasets, 
software and licensing that better suited 
to lower financial resourcing

• Cloud computing opportunity for access 
to greater processing capacity without 
the outlay of purchasing hardware

• MSSI is a higher cost per square 
kilometer

• Increased opportunity to use paid 
software and licenses which can reduced 
technical requirements and time

• Increased access to hardware resources 
with higher processing capacity

Technical Resources

• HRAI may require a lower level of 
technical skill to process as it captures 
RGB in one layer 

• More time and costs may be required 
for knowledge building and 
configuration attempts if there is lower
experience and technical skill

• MSSI may require a higher level of 
technical skill to process as it captures the 
spectral bands in multiple layers

• Increased opportunity to use more 
complex DL algorithm and software due 
to higher level of experience and 
technical skill

• Less time may be required for configuring 
and processing the DL due to a higher
level of experience and technical skills

Longer Shorter

Model preparation and processing time

• MSSI model processing took 15 hours
• The shorter the model processing takes, 

the more opportunity there is to fine 
tune model parameters and test 
augmentation

• To achieve shorter model processing 
times may require the use of imagery 
that has lower memory and processing 
requirements 

• Investigation into the use of cloud 
computing could be beneficial to 
processing times and costs

• HRAI model processing took 18.5 hours
• The longer the model processing takes, 

the less time there may be for fine tuning 
model parameters and test augmentation

• Investigation into the use of cloud 
computing could be beneficial to 
reducing processing times and costs of 
higher model processing times

Lower Higher 

Larger

Training dataset creation

• MSSI had a smaller training dataset 
creation capacity due to lower 
resolution

• Using a smaller dataset may require 
further investigation into the affect of 
smaller datasets on overall recall, 
accuracy and precision

• HRAI had a larger training dataset creation 
capacity due to increased resolution

• With a larger training dataset there is 
opportunity to use more complex DL and 
software

Smaller

Figure 12. Summary of variables to consider for this study.

4.1. Financial and Technical Resources

For this study, model 2 used MSSI with 8 spectral bands with Mask R-CNN to accu-
rately detect ACM roofing. However, model 1 using HRAI with 3 bands (RGB) with Mask
R-CNN was also able to accurately detect ACM roofing and with greater precision. The
ability to accurately detect ACM roofing with HRAI brings a potential cost reduction for
future ACM roofing detection projects, as MSSI can be more expensive than high-resolution,
RGB aerial imagery. Other costs to be considered for this study are relevant to machine
hardware, modelling software, licensing for additional functions of the software and ac-
quiring the modellers with the technical skills and experience required to achieve this study.
This study required modellers with skills in GIS, DL and an in-depth understanding of
ACM and its presentation in the urban environment. Workers with GIS and DL skillsets,
with an overall background in computer and data science, and urban planning participated
in every aspect of this study. SMEs with professional experience in occupational hygiene
and asbestos, and other hazardous material surveying were brought into this project to
provide their subject matter expertise at the inception of the project and the creation of the
validation dataset.
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4.2. Input Data Ownership and Usage Restrictions

For this study, limitations set by imagery suppliers required their permission to use
DL analysis on the imagery. There were also limitations on outcomes and ownership of the
derivative works produced by the analysis. These limitations were overcome for this study
but imposed delays and additional costs to the project. Considering these types of data
usage constraints at project commencement will assist with the successful delivery of the
project. The ability to capture and procure public imagery and the increased availability of
data from the rise in popularity of remote sensing imagery may reduce the impact of data
ownership and usage restrictions in the future.

4.3. Input Imagery Characteristics

Coverage and currency: As detailed in Table 1, the accessibility of MSSI and HRAI
can vary depending on the available extent of geographical coverage (coverage) and
the timeliness of the data (currency). Coverage and currency can impede comparability,
monitoring abilities and the timeframe of projects [25–30]. HRAI is more likely to be limited
by currency and coverage due to the costs and accessibility of aerial vehicles and sensors
for capturing; and it is not available for all settlements, particularly if they are outside
metropolitan areas. MSSI is more accessible for coverage and currency as existing satellites
with sensors can cover more area, more frequently. For this study, the same coverage was
able to be sourced in both MSSI and HRAI due the metropolitan settlement of the case
study area. The imageries had a maximum of a 6-month difference in currencies. The MSSI
was 6 months older than the HRAI. ACM roofing captured in the MSSI model could have
been redeveloped before the HRAI was captured, creating differences in inference results.
However, since the average property market growth across the Western Sydney SA2s was
4.8% over the last two decades, redevelopment that occurred during that time potentially
would not have impacted the inference results.

Spatial resolution: In a study by Bassani et al. [8], the pixel resolution of the HSSI and
MSSI was a limitation for detecting smaller structures with ACM and mixed materials. This
was not a limitation in this study as the results showed that all three models detected smaller
areas of ACM roofing on smaller outbuildings and roof extensions. The Bassani et al. [16]
study was completed in 2007 and used 3 m ground pixel resolution spectral satellite imagery,
whereas this study used 30–1.24 m ground pixel resolution MSSI and 7.5 cm ground pixel
HRAI. It is potentially the improved pixel resolution of the imageries used in this study
that contributed to the increased detection of smaller ACM roofing structures.

Spectral resolution and signature: The presence of a spectral signature for ACM roofing
detection is debated in the literature [9,10]. A study by Krówczyńska et al. [10] identified
that HSSI, which has the highest spectral resolution compared to MSSI, was not necessary
for detecting a spectral signature of ACM roofing. The study by Krówczyńska et al. [10]
used multi-spectral aerial imagery containing RGB and colour-infrared spectral bands and
identified that when using CNNs, the spectral resolution only affected the classification
accuracy by 2%. Furthermore, the accurate capture of spectral bands can vary depending
on numerous environmental factors, including topography and roofing typology, which is
relevant for studies using wide-scale coverage of the built environment. In a study using
HSSI, Frassy et al. [18] found the mountainous typology of the study area did not affect the
study results. However, in a study by Fiumi, Congedo and Meoni [43], also using HSSI,
the vaulted and pitched roofing typology did affect the study results. The presence of a
spectral signature or the effect the environmental factors had on the spectral resolution
of the MSSI in this study was not investigated. If the presence of a spectral signature or
environmental factors did influence the model 2 results by using MSSI, the impact was
potentially minimal, as evident in Krówczyńska et al. [10].

4.4. Training Sample Dataset Creation and Size

One of the main challenges during the research development was that there were no
pre-existing training sample datasets for ACM roofing to train DL models. Therefore, new
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data needed to be created. The creation of the training sample dataset utilised the expertise
of the SME to observationally identify ACM roofing using the HRAI and MSSI imagery.
The spatial resolution of the imagery was an influencing factor in the number of training
samples that could be identified. The characteristics of ACM roofing were easily observed
in the HRAI compared to MSSI; and as a result, more training samples were captured for
model 1. The increased training samples for model 1 increased the recall results, increasing
the overall performance of that model. The training sample dataset created using HRAI
could not be used for model 2 due to the difference in currency between the imageries
and an approximately 2-m difference in aerial angle that created a minor spatial difference
between the imageries. Model 1 using HRAI and 460 training samples produced 1938
inferences at a precision of 94% and a 99.8% confidence threshold. Model 2 using MSSI
and 184 training samples produced 533 inferences at 63% precision and a 90% confidence
threshold. Model 3 using HRAI and 184 training samples produced 1737 inferences at
62% precision and a 97% confidence threshold. The literature presents results showing a
minimal reduction in overall performance using varying training sample sizes [44–46]. For
example, a study by Xu et al. [44] for crack detecting using Faster R-CNN and Mask R-CNN
achieved sufficiently accurate results using only 130+ training samples. Furthermore, a land
cover study by Ramezan et al. [46] that compared machine-learning algorithm accuracy
when applied to large and small datasets identified only a 1% decrease in accuracy between
the two when applying a Random Forest model. While these studies were successful using
small datasets to detect their objectives, this was not consistent with the findings of this
study for ACM roofing. From this study, the ROCs of the three models indicate that the
model with the larger training sample dataset, model 1, was the more reliable model, and
its precision and recall rating supported that. The ROCs of models 2 and 3 illustrate a lower
model performance and reliability, which is potentially correlated to the training dataset
size. To detect ACM roofing using smaller dataset efficiently and precisely, this would
require further model alterations and research.

4.5. Model Preparation and Processing Time

The preparation of the input data and model configuration involved identifying com-
patibility between software and imageries, ordering and addressing limitations of use with
the imagery, working with SMEs to understand what ACM in the built environment looks
like, the creation of the training sample dataset, understanding the DL model require-
ments, and configuring the model hyperparameters. The initial manual input required
for DL modelling is necessary to begin to reduce the amount of manual input required.
For example, creating 460 training samples produced 1938 inferences of ACM roofing at
a high precision and confidence. During upscaling, the validated inferences can be used
to increase the training sample dataset and, therefore, the automated processing gains
momentum, lowering the workload and increasing production of inferences even further.
This momentum could not occur through the traditional methods of ACM identification as
the nature of the process presents one result to one sample.

Models 1 and 2 were processed using Mask R-CNN to produce inferences in a time
of 18.5 h and 15 h, respectively. Model 3 processed in a time of 10 h. The models were
processed separately on the same machine using the local 16 GB random access memory
(RAM), graphic processing unit (GPU), software and libraries. The variations in the training
sample datasets sizes, spectral and spatial resolutions are potentially the cause of the
variation in processing time. The overall processing time of the models can be attributed
to the format size of the imageries used. Both imageries were supplied, processed and
stored in georeferenced tagged image file format. A georeferenced tagged image file
format is a data-heavy format that requires more memory for storing and processing
when compared to a portable network graphic format. Upscaling this study beyond
26.8 km2 would increase the size of the imagery required. To keep processing times within
an efficient timeframe, greater processing capacity may be required. There are financial,
accessibility and technological limitations related to upgrading the necessary hardware,
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software and licenses to accommodate the upscaling of large data projects [42]. An option
to avoid these limitations while being able to progress with upscaling is cloud computing.
Cloud computing is a concept that is becoming more prominent in the DL space, in
place of traditional technological upgrades [47], as it can provide on-demand agility in
data storage, processing capacity, timeframes and costs. Accessing virtual storage and
processing capacity opens the opportunities for upscaling into large data projects with
more timely processing.

4.6. Application of Deep Learning

As found by Guo et al. [14] and Zhang et al. [15], advancements in deep learning
have provided opportunities to improve object detection, therefore improving the ability to
detect ACM roofing. This was evident in this study as the current evolution of AI-based
segmentation algorithms, i.e., Mask R-CNN, successfully detected ACM roofing. This is
also proven in a study by Iqbal et al. [23] that tested Mask R-CNN and previous versions of
CNNs to detect individual trees. In that study, Mask R-CNN outperformed the previous
versions with a classification accuracy of 96–98% [23]. In this study, model 1 had a higher
precision of 94% when using Mask R-CNN. Models 2 and 3 had a similar precision, with
63% for model 2 and 62% for model 3. The model 3 ROC showed it was a better performing
model. Model 3 produced more inferences at a similar precision to model 2, potentially due
to the higher resolution of the imagery. Results seen in a study by Weih and Riggan [17]
also highlighted the increase in accuracy of object detection methods when using HRAI,
compared with MSSI. This is potentially due to the object detection algorithm addition that
is used by Mask R-CNN to achieve instance segmentation [17]. As artificial intelligence
and descendant algorithms improve, other algorithms could replicate the results of this
study or improve upon them with the correct application.

5. Conclusions

This study investigated the use of AI, specifically Mask R-CNN, to detect ACM
roofing using HRAI and MSSI in a case study area in Australia. Model 1 using HRAI and
460 training samples produced 1938 inferences at a precision of 94% and a 99.8% confidence
threshold. Model 2 using MSSI and 184 training samples produced 533 inferences at
63% precision and a 90% confidence threshold. Model 3 using HRAI and 184 training
samples produced 1737 inferences at 62% precision and a 97% confidence threshold. The
results across the three models indicate that model 1, using HRAI and a larger training
sample dataset with Mask R-CNN, produced the highest number of inferences at the
highest precision and confidence threshold. Overall, this study confirmed the efficacy
of AI (i.e., Mask RCNN) to detect ACM roofing using remote sensing imagery. Without
replacing traditional in situ inspection and detection methods, AI detection methods can
be useful to widen the scale of investigation coverage and better allocate resources for
targeted investigations in areas that have a high likelihood for asbestos. Wide-scale AI
detection of ACM roofing can provide a foundation for cost-effective larger-scale detection
of asbestos roofing. The cost-effective techniques described in this paper can be applied by
governments and stakeholders for the safe management and disposal of ACM in developed,
developing and undeveloped regions worldwide.

6. Future Research Direction

The application of AI in ACM detection is being recognised for its
benefits [9,10,14–16,18,19] in introducing newer available resources to assist with address-
ing this global problem. For example, cloud computing, automated training, publicly
available imagery databases, UAV technology and open-source coding libraries are all
recent innovations that assist with improved detection of ACM roofing using AI. These
innovations contribute to improving the efficiency of financial and technical resourcing, in-
put data ownership and usage restrictions, the use of input imagery types, training sample
dataset creation, model preparation and processing times, and the application of DL.
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As part of this study, a total training sample of 648 records was created for Western
Sydney, which can be increased to over 2400 records by using inferential model results
in future upscaled studies. Increasing the training sample dataset using high-resolution
imagery over other areas during the upscale may also improve the model accuracy by
increasing the training sample dataset variability [43,44].

Investigations to further understand the effect of geography and roofing typology on
spectral signatures when using MSSI with Mask R-CNN could aid in reducing any potential
impact of spectral signature on the overall recall rate. More to this point, the case study area
overall had some variation in geography and roofing typology; however, upscaling this
study to areas with greater variation in these aspects would require more representative
sampling for HRAI in addition to spectral signature investigation. Furthermore, the
reproduction or upscaling of this study should consider utilising the processing power of
cloud computing to reduce the timeframe for model processing and decrease the overall
costs associated with this aspect of the study.

Finally, if the currency of HRAI and MSSI can be matched, a larger training sample
dataset can be created using HRAI and then transferred to MSSI to allow for the full perfor-
mance capability of an MSSI-based, Mask R-CNN ACM detection model to be known.
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