
Citation: Wang, Y.; Rezaei, M.;

Abdullah, R.A.; Hasanipanah, M.

Developing Two Hybrid Algorithms

for Predicting the Elastic Modulus of

Intact Rocks. Sustainability 2023, 15,

4230. https://doi.org/10.3390/

su15054230

Academic Editor: Jianjun Ma

Received: 30 January 2023

Revised: 22 February 2023

Accepted: 23 February 2023

Published: 26 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Developing Two Hybrid Algorithms for Predicting the Elastic
Modulus of Intact Rocks
Yuzhen Wang 1,2, Mohammad Rezaei 3,* , Rini Asnida Abdullah 4 and Mahdi Hasanipanah 4

1 School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
2 School of Civil Engineering, Henan Vocational College of Water Conservancy and Environment,

Zhengzhou 450008, China
3 Department of Mining Engineering, Faculty of Engineering, University of Kurdistan,

Sanandaj 66177-15175, Iran
4 Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia,

Skudai 81310, Johor Bahru, Malaysia
* Correspondence: m.rezaei@uok.ac.ir

Abstract: In the primary and final designs of projects related to rock mechanics and engineering
geology, one of the key parameters that needs to be taken into account is the intact rock elastic
modulus (E). To measure this parameter in a laboratory setting, core samples with high-quality and
costly tools are required, which also makes for a time-consuming process. The aim of this study
is to assess the effectiveness of two meta-heuristic-driven approaches to predicting E. The models
proposed in this paper, which are based on integrated expert systems, hybridize the adaptive neuro-
fuzzy inference system (ANFIS) with two optimization algorithms, i.e., the differential evolution (DE)
and the firefly algorithm (FA). The performance quality of both ANFIS-DE and ANFIS-FA models was
then evaluated by comparing them with ANFIS and neural network (NN) models. The ANFIS-DE
and ANFIS-FA models were formed on the basis of the data collected from the Azad and Bakhtiari
dam sites in Iran. After applying several statistical criteria, such as root mean square error (RMSE),
the ANFIS-FA model was found superior to the ANFIS-DE, ANFIS, and NN models in terms of
predicting the E value. Additionally, the sensitivity analysis results showed that the P-wave velocity
further influenced E compared with the other independent variables.

Keywords: elastic modulus; ANFIS; differential evolution; firefly algorithm

1. Introduction

When planning most projects pertinent to geotechnical issues and rock engineering, it
is of high importance to properly analyze how the intact rock behaves and carefully estimate
its associated mechanical properties. The intact rock elastic modulus (E) has substantial
effects on both the initial and final steps of designing geoscience-related projects, which
include planning tunnels; designing blasting operations in rock materials; analyzing the
constancy of rock slopes; and designing rock pillars, roads, dams, bridges, etc. Moreover,
E is the most significant parameter applied to analyzing the stress-strain chart of rock
specimens in a laboratory. E also plays an important role in analyzing the deformations and
breakage of rocks surrounding underground excavation projects. As a result, inaccurate
predictions of E can result in serious damages, leading to economic issues and severe safety
problems due to the breakage probability during construction processes [1,2]. Thus, it is
necessary to determine the E value quickly and accurately in order to correctly plan geo-
engineering structures, accurately design mining- and civil engineering-related projects,
and enhance the general safety level and effectiveness of operations at hand.

In general, the E value can be obtained using direct or indirect methods. The former
are typically carried out within rock mechanics laboratories, where rock core specimens are
subjected to experiments in a variety of conditions [1–3]. In contrast, indirect methods make
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use of predictive equations or models to estimate E. The direct methods have accuracy,
but at the same time, they suffer from some drawbacks. First, it is not easy to provide
the required specimens during the coring process with a high level of accuracy, especially
in jointed, layered, and weakened rock structures. Second, it is both difficult and time
consuming to prepare the core specimens with the appropriate geometry for the purpose
of carrying out laboratory E tests. Such issues hinder the use of direct methods unless there
is a high necessity [3–5].

Due to the above-mentioned challenges, various indirect methods have been intro-
duced in the literature on the basis of predictive models/algorithms and equations to
determine the E value of intact rocks. These methods have been normally configured
based on arithmetical and smart intelligent models. Statistical models generally make
use of simple or multiple regression models aiming to develop a number of empirical
equations between the E value and effective mechanical and physical rock properties. The
literature consists of numerous empirical equations formed based on analyzing petrology
and mineralogy in addition to values estimated using the rock physical and mechanical
properties, such as Schmidt hammer numbers [6], porosity of rock [7], slake durability of
rock [8], and compressional/primary wave velocity [9].

In recent years, scholars have made several efforts to develop artificial intelligence (AI)
models applicable to mining and rock engineering problems. Such efforts have resulted
in a number of novel models proposed to estimate E and some other rock mechanical
properties. These are mostly based on probable and intelligent methods, such as parti-
cle swarm optimization (PSO), fuzzy inference systems (FISs), genetic algorithms (GAs),
Bayesian methods, adaptive neuro-fuzzy inference systems (ANFIS), tree models, extreme
gradient-boosting (XGB), and artificial neural networks (ANNs), as well as their hybridized
forms [10–16]. Sarkhani Benemaran et al. [17] employed an XGB model in combination
with several optimization algorithms to predict the resilient modulus of flexible pavement
foundations. They concluded the effectiveness of PSO-XGB models in this field. In another
study, conducted by Shahani et al. [18], different AI models such as XGB, gradient-boosted
tree regressors (GBTRs), Catboost, and light gradient-boosting machines were used to pre-
dict E. According to their results, the performance of GBTR was better than that of the other
developed models. Recently, Tsang et al. [19] predicted the E values through some other
models, i.e., extreme gradient-boosting trees, ANNs, random forests, and classification and
regression trees. The results showed that the extreme gradient-boosting trees predicted the
E value with the highest accuracy.

Such applications show that intelligent algorithms typically outperform the tradition-
ally used statistical methods regarding E value prediction.

The present study is carried out to assess the potential of applying two hybrid evo-
lutionary models to predict E. The proposed models are based on the integrated expert
systems comprising ANFIS with two optimization algorithms, i.e., the firefly algorithm
(FA) and differential evolution (DE). To check the effectiveness of FA and DE, the results of
ANFIS-FA and ANFIS-DE are then compared with the ANFIS and NN results. The rest
of this study is organized as follows. In Section 2, the source of the database is described.
Then, the methodologies used in this paper and their implementations are explained in
detail in Section 3. Finally, Sections 4 and 5 present the results/discussions and conclusions
of this study, respectively.

2. Source of Database

An inclusive database is needed to be formed for E modeling by means of indirect
intelligent methods. Such data were obtained through performing laboratory experiments
on the core specimens provided from the excavation drilling processes carried out in two
under-construction dam sites, namely the Bakhtiari and Azad dams located in Iran. The
precise location of the Azad dam site is in the west of Iran, 40 km away from the western
city of Sanandaj in the Kurdistan state. It is situated on the Sanandaj–Marivan cities road
inside Kurdistan, with the 46◦32′57′ ′ to 35◦19′59′ ′ geographical coordinates of eastern and
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northern latitudes, respectively. The construction of this dam is currently in progress. It
is mainly aimed at supplying electrical energy and producing power plant storage. The
dimensions (length, height, and width) and water storage capacity of this dam are 595 m,
115 m, 11 m, and 260,000,000 m3, respectively.

The Bakhtiari dam is located in the Zagros Highlands, 65 km southwest of the town of
Dorud in the Lorestan state, and 70 km northeast of the town of Andimeshk in Khuzestan,
Iran. The position of the dam site is at the 48◦45′34.87′ ′ to 32◦57′23.58′ ′ geographical
coordinates of eastern and northern latitudes, respectively (Figure 1). The dam was built
upon the Bakhtiari River, aiming to provide adequate water for many purposes, such as
drinking, electrical power generation, flood control, and agricultural activities. The dam’s
body is at an elevation of 840 m. In addition, in the case of this dam, the peak elevation,
crown width, crown length, and foundation width are 325 m, 10 m, 434 m, and 30 m,
respectively [20]. The situations of both case studies (the Azad and Bakhtiari dams) on the
Iran map are illustrated in Figure 1.
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Figure 1. Situations of both case studies (the Azad and Bakhtiari Dams).

The Azad dam comprises a series of common structures, such as tailraces, higher
deposits, different caverns, gurgitation storages, and access tunnels. Geologically, this
dam is situated in Iran’s famous formation, Sanandaj–Sirjan, with an alternation of schist,
sandstone, limestone, and phylite rocks. The bedrock of the dam mainly comprises sand-
stone with a low degree of metamorphic, phyllite, and schist. Additionally, within the
highland areas, lenses of limestone are also observable. From the stratigraphy point of view,
rock outliers from the higher Cretaceous period to the present can be observed within the
investigated region. Such rocks consist of four types from the past to the current session:
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(1) metamorphic rock related to the Cretaceous period that includes a combination of
clay and shale; (2) phyllite formation rocks related to the participation of the Cretaceous
Paleocene periods, containing limestone and shale with sand; (3) rocks related to the par-
ticipation of the Paleocene and Eocene periods, comprising sandstone, shale, limestone
lenses, and volcanic rocks; and (4) formations related to the Quaternary period, consisting
of shallow terraces and debris. From a tectonic viewpoint, the Sarvabad, Kargineh, and
Satileh faults are situated 23, 4.5, and 32 km to the south, east, and northeast of the Azad
dam, respectively [21]. The geological conditions and faults of the Azad dam site are shown
in Figure 2.
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The Bakhtiari dam’s bedrock is made of separate limestone and limestone combined
with marl, which incorporates chert nodes. The limestone sections might be synthesized
by a combined dolomite substance. From the perspective of geological structure, the dam
area is positioned within the pleated Zagros, a portion of the tectono-sediment region of
the Zagros. In the lowest northern portion, the area is restricted by pushed Zagros, while
in the southwest, it is confined by the Khuzestan plain. With regard to the age of the
compressed reservoirs of the area, they date back to between the Triassic and Pliocene eras,
and then would have been wrinkled from the Plio-Pleistocene via the latest Alpine organic
phase. A number of syncline and anticline sets have been created through such tectonism
procedures. Primarily, the above arrangements have been identified by perpendicular axial
levels related to the lots of pushed faults in the Zagros area. Additionally, key bed-rocks
of the investigated area are made of limestone siliceous related to the current famous
formation, Sarvak. This formation (Sarvak) belongs to the Bangestan collection of the
middle period of the Cretaceous [20]. For a better review, the geological cross-section of the
Bakhtiary dam and plant site is shown in Figure 3.
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Database Description

To create inclusive datasets, adequate core samples with NX sizes, i.e., 54 mm in
diameter, perpendicular cylindrical shapes, and ratios of height to diameter in the middle of
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2:1 to 2.5:1 were used based on the process recommended by the ISRM [22,23]. The samples
were arranged from the two dam sites introduced before. When the core specimens were
prepared, their various characteristics, such as E value, porosity, density, and durability
index, were measured in a laboratory. Furthermore, in the course of the coring operation,
each sample’s coring depth was recorded for the purpose of evaluating its impact on the
rocks’ geomechanical properties. The laboratory experiments in this study were carried
out totally based on the ISRM and ASTM standard methods [22,23]. In this regard, a total
of 50 test series were done successfully, and the outputs were documented in the cases of
all variables noted above. As a result, 50 datasets were provided, aiming to construct the
ANFIS-FA, ANFIS-DE, ANFIS, and NN models. Then, a sorting approach was adopted
to divide the available database into training (constructing) and testing datasets. Roughly
20% of the database was determined as the testing dataset in order to be used later in the
process of evaluating the models built in this paper.

Note that the ratio of 80 to 20 for training and testing groups has been widely suggested
by many scholars, such as Ye et al. [24], Fang et al. [25], Nguyen et al. [26], and Zhou
et al. [27]. Aside from that, we also tested the ratio of 70:30. Nevertheless, the 80:20 ratio
had better performance; thus, this ratio was used in this study.

The statistical characteristics of all variables used in this study are shown in Table 1.
For a better view, the frequency histogram of all input and output variables are depicted
in Figures 4 and 5. For example, in Figure 4, regarding the depth of coring variables, 11,
21, 4, and 4 data were varied in the range of 0–50 m, 50–100 m, 100–150 m, and 150–250 m,
respectively. In addition, Figure 6 illustrates the Pearson correlation plots for all variables.

Table 1. Modelling variables and the statistical characteristics datasets.

Statistical
Characteristics

Variables

DC (m) ρ (g/cm3) n (%) DI (%) ν Vp (m/s) E (GPa)

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Mean 79.243 149.455 2.679 2.703 1.992 2.528 98.92 95.45 0.221 0.292 5.564 5.013 18.526 17.586

Standard Error 7.215 21.803 0.007 0.013 0.206 0.429 0.062 0.098 0.007 0.014 0.119 0.145 1.294 2.028

Standard
Deviation 45.633 68.948 0.049 0.043 1.305 1.357 0.394 0.310 0.045 0.04 0.756 0.458 8.185 6.413

Sample Variance 2082.38 4753.87 0.002 0.002 1.704 1.842 0.156 0.096 0.002 0.002 0.572 0.210 67.009 41.134

Skewness 1.361 0.051 −1.127 −1.003 1.291 1.795 −0.403 −1.118 0.121 −0.677 −1.258 0.225 0.487 −0.484

Minimum 14 55.85 2.52 2.616 0.37 1.39 98.1 94.8 0.14 0.21 2.985 4.316 3 7.98

Maximum 213.4 248.5 2.74 2.75 5.81 5.81 99.6 95.8 0.3 0.34 6.652 5.82 42.8 25.17

DC: depth of coring, ρ: density, n: porosity, DI: durability, ν: Poisson ratio, Vp: P-wave velocity, E: elastic
modulus.
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3. Methodology

This section explains how ANFIS combined with the FA and DE algorithms is imple-
mented. Additionally, the modeling process of the NN model is explained in this section.
In the aforementioned models, of the total 50 datasets, 40 were used for the training phase
and 10 were used for the testing phase. For a better overview, a schematic flowchart of
the ANFIS-FA and ANFIS-DE proposed in this study is shown in Figure 7. It is worth
mentioning that MATLAB@2018 was used to encode the proposed hybrid models.
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3.1. ANFIS Combined with DE

Differential evolution (DE), which was originally proposed by Storn and Price [28],
is an effective evolutionary algorithm that works on the basis of a global optimization
approach. In general, DE offers three benefits: (1) a simple structure, (2) high-quality
solutions achieved, and (3) easy implementation [29]. As a result, it is applied to a variety
of conditions. In the present study, DE is used for the aim of minimizing the function of
fitness using the amounts of optimized variable. By definition, the function of fitness refers
to the root mean square error (RMSE) between the estimated and target datasets. DE, as an
innovative algorithm, was implemented in order to adjust the functions of membership
amounts of the ANFIS model and, consequently, enhance its overall prediction capability.
Figure 4 illustrates the schematic presentation of the hybrid ANFIS-based DE algorithm.

To model ANFIS-DE, four parameters must be specified, namely the number of the
iteration, crossover probability, mutation probability, and population size. For the selection
of the optimal mutation probability, various values were examined, which can be seen in
Table 2. The table also shows that by setting the mutation probability to 0.3, the optimum
performance with the highest rank related to the testing phase (i.e., the maximum R2 values)
was attained. To obtain the best crossover probability, different values were examined (see
Table 3). The table shows that the maximum R2 values were attained when the crossover
probability was fixed at 0.75. Different population sizes were also tested, as can be observed
in Table 4. The table clearly demonstrates that when the population size was set to 250,
the best result (the maximum R2 values) was achieved. In these tests, the smallest amount
of error was fixed at 1× 10−5, and the peak repetition was set to 500. Accordingly, the
crossover probability, mutation probability, and scope of population were fixed to 0.75, 0.3,
and 250, respectively. It is worth mentioning that the bolded amounts in Tables 2–4 are
related to the best results (highest rank) obtained from the developed models.
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Table 2. Selection of the most optimum mutation rate value in implementing the ANFIS-DE model.

Mutation Rate

Performance Criteria
Rank

R2

Train Test

0.05 0.931 0.917 2

0.10 0.942 0.929 5

0.15 0.947 0.923 4

0.20 0.951 0.948 9

0.25 0.946 0.945 8

0.30 0.958 0.952 10

0.35 0.955 0.941 7

0.40 0.948 0.940 6

0.45 0.930 0.925 3

0.50 0.919 0.902 1

Table 3. Selection of the most optimum crossover value in implementing the ANFIS-DE model.

Crossover Rate

Performance Criteria
Rank

R2

Train Test

0.60 0.947 0.932 2

0.65 0.944 0.938 3

0.70 0.953 0.946 5

0.75 0.964 0.961 7

0.80 0.960 0.952 6

0.85 0.943 0.940 4

0.90 0.932 0.927 1

Table 4. Selection of the most optimum population size value in implementing the ANFIS-DE model.

Population Size

Performance Criteria
Rank

R2

Train Test

50 0.929 0.926 1

100 0.935 0.934 2

150 0.948 0.935 3

200 0.964 0.961 9

250 0.976 0.970 10

300 0.975 0.960 8

350 0.969 0.949 6

400 0.955 0.942 5

450 0.957 0.938 4

500 0.951 0.950 7
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Figure 8 also shows the ANFIS-DE flowchart used in this study.
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3.2. ANFIS Combined with FA

This section introduces a hybridized model combining ANFIS and FA, called ANFIS-
FA, with the objective of optimizing the premise parameters of ANFIS. To initiate the
modeling process, there is a need to first determine the input-target variables/parameters.
When the assembly of the input-target variables/parameters of the model is determined,
it is time to determine the training samples. The reason for this is that a model should
be capable of predicting the target parameter for those samples that have no effect on the
model training process. As a result, the entire dataset was divided into two categories:
training/construction and testing/examination samples. As previously mentioned, from
among a total of 50 datasets, 20% (n = 10) were chosen in a random way and assigned
to the testing group, while the remaining 80% (n = 40) were assigned to the training
samples. In addition, it was required to initialize the ANFIS and FA parameters prior to
ANFIS modeling in order to predict the target variables. With the use of a trial-and-error-
based approach, the optimal amount of membership functions (MFs) was archived as 6.
According to the literature [30–32], the α, β0, γ, number of variables, and the population
are the FA parameters. To improve the ANFIS performance, it was necessary to select the
most appropriate values for the aforementioned FA parameters. Table 2 clearly shows that
the number of variables is equal to six. As stated in the literature [31,32], in some cases, the
value of 1 is suitable for the β0 parameters. Therefore, in the modelling of ANFIS-FA, the
value of β0 was set to 1.

To select the most appropriate values for the α and γ parameters, various amounts
of these parameters were examined, as given in Tables 5 and 6. Considering these tables,
the most appropriate values (the highest R2) for the α and γ parameters were obtained
with α = 0.6 and γ = 1.5. As a result, the values of 0.6 and 1.5 were used for the α and γ
parameters in ANFIS-FA modelling. By setting the number of iterations to 1000, different
values were also tested to select the most appropriate value for the population size, as
shown in Table 7. The table shows that the best performance was attained with population
= 200. Based on the above descriptions, the values of 6, 1, 0.6, 1.5 and 200 were set as the
number of variables, β0, α, γ, and population size, respectively. It is worth mentioning that
the bolded amounts in Tables 5–7 are related to the best results (highest rank) obtained from
the developed models. In this step, the most appropriate value of the number of iterations
needed to be determined. According to the results, after the 15th iteration, no significant
change was observed in the ANFIS-FA performance. In other words, after 15 iterations,
the performance for different populations was constant. Accordingly, the number of
iterations in ANFIS-FA modelling used in this study was set to 15. When the user-based
defined parameters in the investigated models (FA and ANFIS) were determined, then the
ANFIS training process was begun with the use of the training samples. To this end, the
FA algorithm was used to optimize the primary part of the fuzzy If-Then rules, and the
least-square method was applied to the optimization of the linear consequent fuzzy rules.

Additionally, the preliminary light strength corresponding to the primary generation
was computed, and then each firefly’s attractiveness level was measured. With the use of
the movement equation, those fireflies that had a lower level of attraction were pushed
toward the brighter firefly. Afterward, the light strength and individual firefly’s position
were updated, and the function of fitness was computed again. All steps involved in
ANFIS-FA are displayed in Figure 9.
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Table 5. Selection of the optimum α value in implementing the ANFIS-FA.

α

Performance Criteria
Rank

R2

Train Test

0.10 0.945 0.933 1

0.20 0.947 0.941 4

0.30 0.954 0.943 5

0.40 0.951 0.948 6

0.50 0.958 0.955 8

0.60 0.962 0.956 9

0.70 0.951 0.949 7

0.80 0.944 0.938 2

0.90 0.941 0.940 3

Table 6. Selection of the optimum γ value in implementing the ANFIS-FA.

γ

Performance Criteria
Rank

R2

Train Test

0.5 0.951 0.947 1

1 0.959 0.955 3

1.5 0.973 0.968 6

2 0.971 0.960 5

2.5 0.965 0.958 4

3 0.952 0.951 2

Table 7. Selection of the optimum population value in implementing the ANFIS-FA.

Population

Performance Criteria
Rank

R2

Train Test

50 0.965 0.961 4

100 0.972 0.966 6

150 0.973 0.971 7

200 0.979 0.975 8

250 0.971 0.965 5

300 0.963 0.960 3

350 0.958 0.957 2

400 0.955 0.948 1



Sustainability 2023, 15, 4230 15 of 24Sustainability 2023, 15, 4230 14 of 24 
 

 

Figure 9. Implementing the ANFIS-FA used in this study. 

  

Figure 9. Implementing the ANFIS-FA used in this study.



Sustainability 2023, 15, 4230 16 of 24

3.3. Neural Network (NN)

Neural Networks (NNs), especially the Multi-Layer Perceptron (MLP), are widely
used in prediction models applied to different engineering problems [31,32]. MLP, which
is employed in the present study, contains three layers: input, hidden, and output layers.
Therefore, as can be seen in Figure 6, the nodes that exist within the input layer correspond
to DC, ρ, n, DI, ν, and Vp, while those in the output layer correspond to E. Based on the
trial-and-error approach, we considered the number of nodes within the hidden layer. The
evaluation results showed that the existence of seven nodes within the hidden layer can
result in a higher reliability. As can be observed in Figure 10, the hidden layer with seven
nodes resulted in the optimal performance of NN (with the maximum R2). It is worth
mentioning that, to select the suitable number of nodes inside the hidden layer, different
numbers were tested. As a result, the NN structure in the present research was built on the
basis of six nodes within the first/input layer, seven nodes within the second/hidden layer,
and one node within the last/output layer.
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4. Results and Discussion

The present study was aimed at examining the effectiveness of the FA and DE algo-
rithms in optimizing ANFIS for the prediction of E. The results obtained from the proposed
ANFIS-FA and ANFIS-DE models were compared to those of ANFIS and NN models.
Here, the models’ prediction capabilities were assessed regarding RMSE, mean of aver-
age percentage error (MAPE), mean of absolute error (MAE), variance account for (VAF),
A10-index, and performance index (PI) [33–37], as presented in the following equations:

MAE =
1
n ∑n

i=1|Ai − Pi| (1)

RMSE =

√
∑n

i=1 (Ai − Pi)
2

n
(2)

MAPE =

[
1
n ∑n

i=1
|Ai − Pi|

Am

]
× 100 (3)

VAF =

[
1− var (Ai − Pi)

var (Ai)

]
× 100 (4)

A10− index =
m10

n
(5)

PI =
1
Ai

RMSE
R + 1

(6)
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where n stands for the number of data (n = 50), and Ai, Pi, and Ai signify the actual,
estimated, and average of actual E values, respectively. Additionally, m10 is the number of
data with values of rate actual/predicted values (ranging from 0.9 to 1.1), and R in Equation
(6) is the correlation coefficient. Table 8 presents the MAPE (%), MAE, RMSE, VAF(%), and
A10-Index values attained by the developed models.

Table 8. Performance of the models to predict E by using six statistical criteria.

Model

Statistical Criteria Total
RankRMSE MAE MAPE (%) VAF (%) A10-Index PI

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank Train Test

ANFIS 2.337; 2 2.557; 2 2.258; 2 2.456; 2 10.173; 2 13.965; 2 93.274; 2 92.514; 2 0.35; 2 0.4; 2 0.064; 2 0.070; 2 12 12

NN 2.491; 1 2.781; 1 2.409; 1 2.639; 1 10.849; 1 15.006; 1 92.341; 1 90.985; 1 0.3; 1 0.4; 2 0.068; 1 0.076; 1 6 7

ANFIS-
DE 1.447; 3 1.827; 3 1.384; 3 1.662; 3 6.236; 3 9.451; 3 97.436; 3 96.957; 3 0.75; 3 0.6; 3 0.039; 3 0.049; 3 18 18

ANFIS-
FA 0.909; 4 1.152; 4 0.865; 4 1.100; 4 3.899; 4 6.254; 4 98.962; 4 98.778; 4 0.925; 4 0.9; 4 0.024; 4 0.031; 4 24 24

As can be observed in Table 8, the lowest MAPE (%), MAE, RMSE, and PI values
were determined for the ANFIS-FA model as 6.254%, 1.1, 1.152, and 0.031, respectively. In
addition, the highest VAF (%) and A10-index values were determined for the ANFIS-FA
model as 98.778% and 0.9, respectively. These values were calculated for the ANFIS-DE
model as 1.827, 1.662, 9.452%, 0.049, 96.957%, and 0.6, respectively; for the ANFIS model as
2.557, 2.456, 13.965%, 0.070, 92.514%, and 0.4, respectively; and for the NN model as 2.781,
2.639, 15.006%, 0.076, 90.985%, and 0.4, respectively. According to Table 8, the highest total
rank values for both the training and testing groups were obtained by the ANFIS-FA model.
It is worth mentioning that the bolded amounts in Table 8 are related to the best results
(highest rank) obtained from the ANFIS-FA model. For a better overview, the predicted E
values provided by all models in the testing phase are depicted in Figure 11. Additionally,
Figure 12 shows the amount of error for each model related to the testing phase. According
to these two figures, the prediction of E by the ANFIS-FA model is very accurate and closer
to measured E values. In addition, Figures 13 and 14 demonstrate the scatter plots of actual
versus estimated E values with the use of all predictive models. The figures show that the
ANFIS-FA model obtained a greater value for the coefficients of determination (R2). The R2

values of 0.988, 0.970, 0.928, and 0.913 were obtained by the ANFIS-FA, ANFIS-DE, ANFIS,
and NN models, respectively. Accordingly, FA was more effective in comparison with DE
in regard to the ANFIS improvement. Furthermore, the absolute error of ANFIS-FA, ANFIS-
DE, ANFIS, and NN models in predicting E for testing datasets (ten datasets) is depicted
in Figure 15. According to this Figure, the orange-coloured line, which was obtained by
the ANFIS-FA model, yields the lowest absolute error for all ten datasets. Moreover, the
Taylor diagrams for both training and testing groups are shown in Figure 16. The results
show that the ANFIS-FA has a stronger potential to predict E than the others. In this study,
a sensitivity analysis was also performed. For this work, the effect of removing each input
variable on E for the ANFIS-FA was calculated. In this regard, six new models based on the
combination of input variables were constructed, as follows:

Model 1: inputs: all variables given in Table 1.
Model 2: inputs: all variables given in Table 1 except the depth of coring.
Model 3: inputs: all variables given in Table 1 except density.
Model 4: inputs: all variables given in Table 1 except porosity.
Model 5: inputs: all variables given in Table 1 except durability.
Model 6: inputs: all variables given in Table 1 except Poisson ratio.
Model 7: inputs: all variables given in Table 1 except P-wave velocity.
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The results of the above models are presented in Table 9, which shows that models 1
and 7 had the highest total rank (i.e., the best performance) and lowest total rank (i.e., the
worst performance), respectively (Figure 17). Note that, the results of model 1 is bolded
in Table 9. The results of presented in Table 9 indicated that once the P-wave velocity was
removed from the modeling, the worst performance was obtained; thus, P-wave velocity
can be determined as the most effective variable in the modeling.
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Table 9. Performance of all seven ANFIS-FA models.

Model

Statistical Criteria
Total Rank

RMSE MAE MAPE (%) VAF (%)

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank Train Test

Model 1 0.909; 7 1.152; 7 0.865; 7 1.100; 7 3.899; 7 6.254; 7 98.962; 7 98.778; 7 28 28

Model 2 1.776; 3 2.306; 3 1.683; 4 2.204; 3 7.583; 4 12.532; 3 95.979; 3 95.848; 3 14 12

Model 3 1.570; 4 1.523; 6 1.508; 5 1.460; 6 6.790; 5 8.30; 6 96.910; 5 96.50; 5 19 23

Model 4 1.739; 5 2.056; 4 1.695; 3 2.022; 4 7.635; 4 11.497; 4 96.673; 4 96.254; 4 16 16

Model 5 1.856; 2 2.447; 2 1.808; 2 2.386; 2 8.146; 2 13.567; 2 95.899; 2 95.321; 2 8 8

Model 6 1.524; 6 1.917; 5 1.441; 6 1.838; 5 6.493; 6 10.451; 5 97.353; 6 96.808; 6 24 21

Model 7 2.279; 1 3.054; 1 2.167; 1 2.986; 1 9.761; 1 16.979; 1 93.408; 1 92.691; 1 4 4
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5. Conclusions

The elastic modulus (E) is considered one of the most significant factors in the primary
and ultimate plans of projects related to the geo-engineering field. As a result, it is highly
necessary to predict E with a high accuracy level. This paper examined the use of two
hybrid evolutionary models, namely ANFIS-FA and ANFIS-DE, to predict E. Additionally,
the traditional ANFIS and NN models were developed for comparison aims. In total,
50 datasets were collected during the drilling process in the Azad and Bakhtiari under-
construction dams in Iran. Out of the 50 datasets, 40 were used to construct the models,
and the remaining datasets were used to test them. The input parameters considered in
the construction of the models were porosity, density, depth of coring, Poisson’s ratio,
compressional/primary wave velocity, and durability, which were assigned as the input
variables, whereas E was the output/target variable. Finally, some statistical indices
were designed in order to demonstrate the capacity of the models in the prediction of E.
According to the findings, the following results and remarks can be briefly listed:

1. The results demonstrated that ANFIS-FA was the most suitable model for the predic-
tion of E in the cases studied. The ANFIS-DE, ANFIS, and NN models were identified
as the next cases in this rank.

2. The FA and DE algorithms strongly improved the ANFIS performance in terms of
predicting the E value. This confirms the effectiveness of FA and DE; accordingly,
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these two algorithms can be effectively used to address other predicting problems in
rock engineering fields.

3. The results of sensitivity analysis showed that the P-wave velocity was the most
effective parameter on the intensity of E.

4. For future studies in this field, other evolutionary algorithms, e.g., the central force
optimization, chicken swarm optimization, elephant search algorithm, and flower
pollination algorithm, could be implemented to enhance the ANFIS performance.
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tion, Y.W., M.R., and M.H.; investigation, M.H. and M.R.; data curation, M.R.; writing—original
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version of the manuscript.
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Nomenclature

ANFIS Adaptive neuro-fuzzy inference systems
ASTM American Society for Testing and Materials
AI Artificial intellginence
ANNs Artificial neural networks
ρ Density
DC Depth of coring
DE Differential evolution
DI Durability
E Elastic modulus
FA Firefly algorithm
FIS Fuzzy inference systems
GA Genetic algorithm
ISRM International Society for Rock Mechanics
MAE Mean of absolute error
MAPE Mean of average percentage error
MFs Membership functions
MLP Multi-layer perceptron
PSO Particle swarm optimization
ν Poisson ratio
n Porosity
Vp P-wave velocity
RMSE Root mean square error
XGB Extreme gradient boosting
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