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Abstract: Landslide susceptibility mapping (LSM) studies provide essential information that helps
various authorities in managing landslide-susceptible areas. This study aimed at applying and
comparing the performance of DIvisive ANAlysis (DIANA) and RObust Clustering using linKs
(ROCK) algorithms for LSM in the Baota District, China. These methods can be applied when the
data has no labels and when there is insufficient inventory data. First, based on historical records,
survey reports, and previous studies, 293 landslides were mapped in the study area and 7 landslide-
influencing attributes were selected for modeling. Second, the methods were clustered in the study
area mapping units into 469 and 476 subsets, respectively; for mapping landslide susceptibility, the
subsets were classified into 5 susceptibility levels through the K-means method using landslide
densities and attribute values. Then, their performances were assessed and compared using statistical
metrics and the receiver operating curve (ROC). The outcomes indicated that similarity measures
influenced the accuracy and the predictive power of these clustering models. In particular, when
using a link-based similarity measure, the ROCK performed better with overall performance accuracy
of 0.8933 and an area under the curve (AUC) of 0.875. The maps constructed from the models can
be useful in landslide assessment, prevention, and mitigation strategies in the study area, especially
for areas classified with higher susceptibility levels. Moreover, this comparison provides a new
perspective in the selection of a considerable model for LSM in the Baota District.

Keywords: landslide; landslide susceptibility mapping; disasters; machine learning; clustering;
ROCK algorithm; DIANA algorithm; Baota District

1. Introduction

Landslides are among the vast, frequent, and common natural calamities in China [1–5].
One-third of landslide events occurring in China every year occur in the Loess Plateau (which
covers about 400,000 square km of land in China), which has a complex geo-environmental
nature [6–9]. These landslides always result in the loss of lives and massive damages, as well
as the destruction of roads and railways [10–12] (examples are shown in Figure 1). The risk
(expected losses or damages) of landslide events will elevate as a result of global climate
changes and increasing urbanization caused by the growing population. For this reason, it is
crucial to find urgent assessment strategies to prevent and manage landslides and mitigate
their consequences.

Landslide susceptibility mapping (LSM) is essential and a common procedure for
landslide assessment. Landslide susceptibility refers to the probability of a landslide
occurring in an area based on local environmental conditions [13,14]. Typically, LSM is used
to predict and map where future landslides may occur [15,16]. Generally, it involves these
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stages: A collection of spatial data and selection of landslide-related attributes (factors);
application of various methods to develop the LSM model, which processes and analyzes
the influence of landslide-related attributes on the spatial distribution of landslides; the
construction of a landslide susceptibility map; model evaluation. The maps developed in
the process can provide different authorities with insights for landslide-susceptible areas
for land assessment and management decisions [17].
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Figure 1. Landslide events in China: (A,B) Zaolin village, in Shanxi Province-2018; (C) Xiangning 
county, Shanxi province- 2019; and (D) Huaihua city in Hunan province-2019. 
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past decade. MLM can generally be categorized as supervised learning and unsupervised 
learning [22,23]. Supervised learning takes a known set of input datasets (the training 
dataset) and known class labels of the dataset (the output) and forms a model to predict 
the class labels of the new inputs. Supervised learning methods are widely applied in 
LSM modeling in different regions around the world [15,24–28]. Some of the popular 
supervised learning methods include Decision Tree (DT) [15,29], Logistic Regression (LR) 
[30,31], Support Vector Machine (SMV) [25,32], Random Forest (RF) [24,33], Artificial 
Neural Networks (ANN) [34,35], and Naïve Bayes (NB) [26,36]. Despite their popularity, 
their application becomes limited when there is insufficient data or when the dataset has 
no labels. To make use of the available and unlabeled dataset, unsupervised learning can 
be applied [22].  

Clustering is a type of unsupervised learning that groups a dataset into subsets 
called clusters without any training, which makes overall susceptibility mapping possi-
ble even when the available dataset is insufficient or when the dataset is large and diffi-
cult or expensive to label [37–40]. The clustering for susceptibility mapping is based on 
the assumption that mapping units with the same susceptibility have similar values of 
landslide-influencing attributes. Generally, clustering can be categorized into parti-
tion-based methods, hierarchical methods, density-based methods, and model-based 
clustering methods. Based on these categories, various clustering methods have been 
proposed for conducting LSM modeling [41–47]. However, from the literature review, it 
can be noted that these methods are rare in the field of LSM compared to supervised 
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county, Shanxi province- 2019; and (D) Huaihua city in Hunan province-2019.

Several methods have been applied for LSM modeling, including direct mapping,
deterministic methods, heuristic methods, probabilistic methods, and machine learning
methods (MLM) [18–21]. Among them, MLM has received increased popularity over the
past decade. MLM can generally be categorized as supervised learning and unsupervised
learning [22,23]. Supervised learning takes a known set of input datasets (the training
dataset) and known class labels of the dataset (the output) and forms a model to predict
the class labels of the new inputs. Supervised learning methods are widely applied in LSM
modeling in different regions around the world [15,24–28]. Some of the popular supervised
learning methods include Decision Tree (DT) [15,29], Logistic Regression (LR) [30,31],
Support Vector Machine (SMV) [25,32], Random Forest (RF) [24,33], Artificial Neural
Networks (ANN) [34,35], and Naïve Bayes (NB) [26,36]. Despite their popularity, their
application becomes limited when there is insufficient data or when the dataset has no
labels. To make use of the available and unlabeled dataset, unsupervised learning can be
applied [22].

Clustering is a type of unsupervised learning that groups a dataset into subsets called
clusters without any training, which makes overall susceptibility mapping possible even
when the available dataset is insufficient or when the dataset is large and difficult or expen-
sive to label [37–40]. The clustering for susceptibility mapping is based on the assumption
that mapping units with the same susceptibility have similar values of landslide-influencing
attributes. Generally, clustering can be categorized into partition-based methods, hierar-
chical methods, density-based methods, and model-based clustering methods. Based on
these categories, various clustering methods have been proposed for conducting LSM
modeling [41–47]. However, from the literature review, it can be noted that these methods
are rare in the field of LSM compared to supervised learning-based methods; at present,
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there is no agreement on the most suitable method for LSM [48–50]. Thus, on this basis and
in light of the advantages of clustering methods, there is still a need for more applications
and comparative studies among different clustering methods to assess the effectiveness of
the models and improve landslide susceptibility assessments.

For this reason, this study presented a comprehensive evaluation of the performance
of two hierarchical clustering methods, namely the Divisive ANAlysis (DIANA) and Robust
Clustering using linKs (ROCK) [51–54] methods for LSM in the Baota District, Shaanxi Province,
China. These methods have been frequently applied in other fields, including networking,
bioinformatics, GPS data, road network construction, and gene expression [55–58]. The study
explored the potential prediction abilities of these clustering algorithms and provided some
valuable insight for future research and assessments in LSM, as well as for scientific literature as
a whole. The performance evaluation was carried out based on some statistical metrics, namely:
sensitivity, specificity, accuracy, kappa, and the receiver operating curve (ROC). Additionally, to
show the advantageous capability of clustering algorithms over supervised learning algorithms,
the Decision Tree and Random Forest classification methods were employed for comparison
based on performance accuracy and ROC.

Moreover, the susceptibility maps generated in this study can recognize and allocate
landslide-susceptible places so that land engineers and concerned authorities can decide on
favorable places (such as mining areas, new economic zones, and urban areas) for ongoing
and forthcoming development arrangements.

2. Overview of the Study Area

The Baota District (Figure 2) is the selected study area. It is found in Yan’an City of
Shaanxi Province, which is located in the middle of the Loess Plateau in China. Geographi-
cally, it occupies an area of approximately 3556 km2 (0.55% of the Loess Plateau coverage)
between longitudes 109◦14′ E–110◦07′ E and longitudes and latitudes 36◦11′ N–37◦02′ N.
Its elevation above sea level ranges between 800 and 1800 m. This area is also recog-
nized as a typical valley area and a fragile environmental area for severe soil erosion and
landslides [59]. There are two rivers in the northern and southern parts of the area, the
Yanhe River and Fenchuan River, respectively. These features describe the topography of
the area. Geomorphological characteristics of the area include gorges and heaved slopes.
Additionally, there are deposited rocks and extensive quaternary loess deposits that cover
the largest part of the area, explaining the geology of the area [60]. The annual average
rainfall is 550 mm, and heavy rainfalls are recorded between June and October, ranging
between 58 and 117 mm, which have triggered most of the landslides in the area [44,45,61].

The Baota District serves as Yan’an’s administrative center, where various city gov-
ernment offices are located. It is a significant site for various economic activities such as
tourism. However, because of the nature of the environment, prolonged heavy rainfalls,
and the growing population leading to the expansion of habitation and the development
of social and economic activities in the area, various disasters including landslides tend
to occur frequently in the area. In response to this, the assessment and management of
these disasters are considerably important [59,62]. Thus, we developed this LSM study,
particularly for this area, as a helpful tool in assessing and managing landslides and
their impacts.
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Figure 2. The location of the study area and landslide distribution; (A) the location of Shaanxi 
Province in China; (B) the location of Baota District in Yan’an City, Shaanxi Province; (C) the land-
slide inventory of Baota District. 
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The landslide susceptibility mapping is determined by the characteristics of the area, 

the availability of the data, and the methods used to produce the susceptibility map. It is 
essential to develop a proper methodological structure that aids in determining suscep-
tibility mapping. For this purpose, this study adopted the following steps: (1) data col-
lection: preparation of landslide database and selection of the influencing attributes 
based on an extensive literature survey and local geo-environmental conditions, as well 
as the description of their relationship to landslide occurrence; (2) description of the re-
search methods and their implementation in LSM; (3) a susceptibility map that was con-
structed based on the obtained results; (4) the evaluation and comparison of the methods’ 
performance based on internal and external evaluation metrics. The study methodology 
structure is presented in Figure 3. 

Figure 2. The location of the study area and landslide distribution; (A) the location of Shaanxi
Province in China; (B) the location of Baota District in Yan’an City, Shaanxi Province; (C) the landslide
inventory of Baota District.

3. Methodology

The landslide susceptibility mapping is determined by the characteristics of the area,
the availability of the data, and the methods used to produce the susceptibility map. It is
essential to develop a proper methodological structure that aids in determining susceptibil-
ity mapping. For this purpose, this study adopted the following steps: (1) data collection:
preparation of landslide database and selection of the influencing attributes based on an ex-
tensive literature survey and local geo-environmental conditions, as well as the description
of their relationship to landslide occurrence; (2) description of the research methods and
their implementation in LSM; (3) a susceptibility map that was constructed based on the
obtained results; (4) the evaluation and comparison of the methods’ performance based on
internal and external evaluation metrics. The study methodology structure is presented in
Figure 3.

3.1. Data Collection
3.1.1. Landslides Database

In LSM studies, the landslide geospatial database is very essential for providing details
on past landslides, as well as the relationship between landslides and landslide-influencing
attributes [63]. The database used in this study was prepared based on data provided by
Xi’an Center for Geological Survey (XCGS). This data was collected through interpretation
of the post-disaster aerial photographs and field investigations from 1081 locations in
the area, from which 293 historical landslides were recorded (as presented in Figure 2C).
The landslides were of two types: rotational and translational, with most of them being
rotational landslides. In terms of size, the volume of the sliding mass was classified as: less
than 101 × 104 m3 (small scale, 30.7% of the recorded landslides); between 101 × 104 and
102 × 104 m3, 52.6% of the landslides; between 102 × 104 and 103 × 104 m3 (large scale, 16.7%
of the recorded landslides) [61]. These 293 landslide sites, along with 213 randomly selected
non-landslide sites (making 506 samples in total), were applied to evaluate the LSM models
in this study. In addition, the database comprised a set of landslide-influencing attributes.
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3.1.2. Landslide Influencing Attributes (LIAs)

Selecting LIAs for the development and evaluation of models is a basic phase in
LSM [64]. Landslide occurrence can be influenced by various attributes. By referring to
previous studies [44–46,61] and the availability of data, 7 LIAs were selected: elevation,
slope angle, slope aspect, profile curvature, rainfall, lithology, and Normalized Difference
Vegetation Index (NDVI). Landslides occur as a result of slope instability [65,66]. Elevation
and slope angle play an important role in influencing landslide occurrences because slope
instability increases with an increase in elevation and slope angle [67,68]. Landslide events
in the Baota District happened in slopes with an elevation range of 20 to 30 m and an angle
higher than 60◦. The slope aspect describes slope orientation (direction); this regulates
the slope’s exposure to sunlight, hydrological processes, and wind direction, which have
an impact on the physical characteristics of rock and soil masses and ultimately on slope
stability [69,70]. In the study area, landslides are more likely to occur in the northeast
direction (between 0◦–45◦ and 315◦–360◦) [47,61]. Profile curvature describes the slope
curving in the downward direction, and its values represent the topography structure. The
positive and negative values are indicated as upwardly concave and upwardly convex,
respectively, while zero represents a flat surface. In addition, the more strongly negative
or strongly positive the value, the higher the possibility of a landslide occurring [71,72].
Lithology is an important attribute that describes the rock and soil structure and properties
in an area [73]. NDVI was selected to represent and quantify the vegetation cover of the area.
Vegetation cover helps to resist slope movements, reduces soil, and improves slope stability.
Thus, barren or sparsely vegetated areas are frequently exposed to landslides [74]. In the
study area, most of the landslide events were recorded during and after rainfall periods,
indicating that rainfall attribute is directly associated with landslide occurrence [43,45,61].
In addition, several researchers have verified that intense and continuous rainfall affects
the slope stability, which consequently results in landslide occurrence [15,29,75–79]. Based
on their significant relationship and impact on slope stability, the selected attributes are of
great importance in landslide susceptibility assessment, not only in this study area but also



Sustainability 2023, 15, 4218 6 of 20

in other areas around the world [19,20,80–82]. The category, data types, scale/resolutions,
class, and sources of the influencing attribute data are shown in Table 1.

Table 1. Information on the Landslide Influencing Attributes used in this study.

Category Attribute Name Data Type Scale Class Data Source

Topography

Elevation (m) Continuous

1:50,000

0~254

Xi’an Center of
Geological Survey

Slope angle (◦) Continuous

0–6.54, 6.54–13.08, 13.08–18.42,
18.42–22.78, 22.78–26.66,
26.66–30.54, 30.54–34.41,
34.41–39.02, 39.02–61.80

Slope aspect Discrete

Flat, North (N), North-East
(NE), North-West (NW), East
(E), West (W), South-East (SE),

South (S), and South-West
(SW)

Profile curvature Discrete <−0.05, −0.05 to 0.05, >0.05

Geology Lithology Discrete

I: loess + nearly horizontal
paleo-soil, II: loess + inclined

paleo-soil,
III: loess + paleo-soil layers +
bedrock, IV: loess + paleo-soil

layers + the Neogene clay

Xi’an Center of
Geological Survey

Underlying surface NDVI Continuous −0.54~0.99 Xi’an Center of
Geological Survey

Triggering
attribute Rainfall (mm) Uncertain 0~200 Baota Weather

Bureau

Using ArcGIS 10.2 software, the study area was divided into 5,672,922 mapping units
(grids units) with 25 m × 25 m spacing. Each mapping unit was described by the 7 LIAs
values. The Digital Elevation Model of the study area was acquired from XCGS, from
which the thematic maps for topography and geology attributes were extracted at a scale
of 1: 50,000. The NDVI thematic map was constructed using Enhanced Thematic Mapper
Plus (ETM+) remote sensing image processing software. Rainfall data was collected based
on the meteorological rainfall graphs from Baota Weather Bureau [14]. The thematic maps
are presented in Figure 4.

3.2. Research Methods
3.2.1. DIANA Algorithm

DIANA is a hierarchical clustering algorithm that constructs a hierarchy of clusters in
the dataset [51,52,83,84]. It works in a top-down manner, meaning that it begins with all
points in a single cluster and then splits the cluster into smaller and least similar subclusters.
To compute the similarity among the points to be clustered, the algorithm employs the
basic Euclidean distance function.

Let p = (p1, p2) and q = (q1, q2) be n-dimensional data points, the Euclidean distance
dEuc(p, q) between the points is given by:

dEuc(p, q) =
√
(q1 − p1)

2 + (q2 − p2)
2 + . . . + (qn − pn)

2 (1)

The clusters are split based on the maximum dEuc (distance between the closest
neighboring points in the cluster). The DIANA algorithm is explained in the following
steps and illustrated in Figure 5.
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1: Load into the algorithm the dataset containing n data points
2: Compute dEuc between the points and find the maximum dEuc
3: Form a distance matrix using the dEuc values acquired from the previous step
4: Split the cluster based on the distance matrix into the least similar subclusters
5: From new subclusters, calculate new dEuc and update the distance matrix
6: Repeat the process until the points in a cluster are comparatively similar
To its advantage, the DIANA algorithm does not require a pre-defined number of

clusters and can detect arbitrarily shaped clusters. However, its main limitation is the
use of distance similarity measures, which expose the algorithm to errors and misleading
results. This limitation can be avoided using the links approach in the ROCK algorithm.

3.2.2. ROCK Algorithm

ROCK is a hierarchical clustering algorithm that constructs a hierarchy of clusters in
the dataset through a bottom-up approach [51,85–87]. Initially, it treats every object as a
solo cluster and then merges the more similar clusters to form a new cluster. To compute
similarity, ROCK uses the links approach instead of distance similarity measures. For a pair
of objects, a link is described by the number of common neighbors of the objects. Objects
that belong to the same cluster will generally contain a large number of common neighbors,
and thus more links, and in case two links do not have any neighbors in common, then their
link similarity will be equal to 0. In addition, the objects with no or with few neighbors are
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regarded as noise and are eliminated. In that manner, merging clusters with the maximum
number of links first will lead to the construction of better and more significant clusters.

The implementation of the ROCK algorithm is described in the following steps and
illustrated in Figure 6:

1. Load the dataset containing n objects
2. Select a random sample of objects from the dataset
3. Compute the link value for each pair of objects—that is, the number of shared neigh-

bors between objects
4. Perform a bottom-up hierarchical clustering on the data based on the link’s

similarity measure
5. Compute and employ a goodness measure (Equation (2)) to identify the pair of objects

to be merged at each step.
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(
li, lj
)
=
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(
li, lj
)(

ni + nj
)1+2f(α) − ni

1+2f(α) − nj
1+2f(α)

(2)

where: link
(
li, lj
)

is the number of links between two clusters (say ci and cj); ni and ni
stand for the number of objects in the two clusters, respectively. Each object in the links has
approximately nf(α) neighbors in the clusters.

6. Repeat the same procedures and assign the rest of the objects to the clusters that have
been created.

Note:

• The pair of clusters with maximum G
(
li, lj
)

is considered to be the best pair to
be merged.

Unlike many other clustering algorithms, ROCK does not require the user to specify
the number of clusters in advance, and can find clusters with varying shapes and sizes.
In addition, the link approach supports the successful elimination of noise, and thus can
identify better clusters.

3.2.3. Implementation of DIANA and ROCK Clustering Methods in LSM

The implementation of these methods in LSM is based on the assumption that mapping
units with the same susceptibility have similar values of influencing attributes [88]. In this
study, the values of the 7 LIAs were represented by a band of mapping units. The values of
all LIAs at a given unit form a vector (A1, A2 . . . , A7), which was treated as a point/object
(as used in the DIANA and ROCK methods, respectively) in the 7-dimension property
space. Then, the mapping units correspond to a point/object set in the space. Therefore, as
the mapping unit data were prepared, each unit was normalized by its maximum value
so that the value of every attribute is between 0 and 1. Then, the data were used as
inputs into the DIANA and ROCK clustering methods. The methods find the units with
similar characteristic values and categorize them into various clusters/subsets. All of these
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operations, including conversion, calculation, and clustering analysis, were facilitated by
ArcGIS 10.2 under its effective spatial analyst toolbox and Python programming language.

3.3. Methods for Landslide Susceptibility Classification

Based on the existing LSM literature in the study area, landslide susceptibility is
usually classified into 5 levels: very high susceptibility level (VHSL), high susceptibility
level (HSL), moderate susceptibility level (MSL), low susceptibility level (LSL), and very
low susceptibility level (VLSL) [43,44,46,47,60,89,90]. However, the DIANA and ROCK
methods categorized the mapping units (points/objects as used in the methods) to their
respective subclasses, but did not identify the susceptibility levels in the subsets. Thus, to
classify the obtained subsets into the 5 susceptibility levels, a k-means clustering algorithm
and landslide density were applied in this study.

3.3.1. K-Means Algorithm

K-means is a simple clustering algorithm that finds k-groups of points from the
unlabeled dataset [41,91,92]. Given a dataset containing several points, the algorithm is
described below:

1. Define the value of “k”.
2. Randomly select k-initial centroids.
3. Assign each point to its nearest centroid to form a group.
4. Calculate and update the centroid (mean) of each group.
5. Repeat steps 3–4 until no point changes the group.

To implement this algorithm, the subsets obtained from the DIANA and ROCK clus-
tering methods are treated as points in the K-means algorithm, and the value of “k” is
set to 5, denoting 5 susceptibility levels. However, the results still present the statistical
information about the 5 groups (susceptibility levels) but do not clarity their meanings (as
which group belongs to VHSL, HSL, MSL, LSL, or VLSL).

3.3.2. Landslide Density

Landslide density (LDen) was applied to clarify the meaning of the obtained suscep-
tibility levels. It was calculated in ArcGIS 10.2 platform by computing the number of
landslides (from the landslide database) per 1 km2 of the mapping unit in each subset.
The general principle “the higher the landslide density, the higher the susceptibility level”
was applied to clarify the susceptibility levels [45,88,93]. Moreover, for LDen = 0, the
susceptibility levels were identified by examining the values of LIAs.

3.4. Performance Evaluation and Comparison Methods
3.4.1. Performance Evaluation

Performance evaluation is the process of applying various evaluation metrics to
understand how well or how badly the method has performed on the given data [67,94].
Evaluating the performance of a clustering method is still a problematic and controversial
issue because there is no universal criterion for evaluation. However, several criteria have
been developed in the literature [95–97]. These criteria are generally categorized into two:
(i) internal criteria, which usually measures the compactness of the clusters using some
similarity measure, and do not use any external information other than the data itself;
(ii) external criteria, which is useful for examining whether the clustering results match
some external information about the data (inventory data) [44,98,99].

To evaluate the performance of the models based on internal criteria, the Silhouette
value is selected as the clusters’ evaluation criterion [100,101]. Silhouette value is calculated
by the closeness of the data samples and it is expressed using the following equation:

Silhouette value for a point x within a cluster Ci is given by:

Sil(x) =
v(x)− u(x)

max{v(x), u(x)} (3)
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where u(x) represents the average distance between sample x and other samples in the
cluster (x ∈ Ci), and v(x) = max {dis(x,Ci)} [44]. The value of the Silhouette value ranges
between −1 and 1. The closer the value is to 1, the better the clustering effect [44,102,103].

However, to assess performance in case of comparison, the external criterion is pre-
ferred. Here, the general concept that landslide susceptibility modeling is a binary problem
is applied [70]. In addition, the prepared dataset containing 506 samples (293 landslide
samples and 213 non-landslide samples) is used for performance evaluation. To this end,
the confusion matrix is used, and each sample is given a prediction of either positive (land-
slide) or negative (non-landslide) [44,104,105]. From the matrix, 4 results are produced:
true positive (tp), false negative (fn), false positives ( f p), and true negatives (tn). Based
on these results, sensitivity (st), specificity (sp), accuracy, and kappa were selected as the
model evaluation metrics (Equations (4)–(7), respectively). These metrics are common and
widely used in LSM studies [20,28,73,74,106].

st = tp/(tp + fn) (4)

sp = tn/(fp + tn) (5)

Accuracy = (tp + tn)/(tp + tn + fp + fn) (6)

kappa =
(
Pa − Pexp

)
/
(
1− Pexp

)
(7)

whereby: Pa = (tp + tn)/(tp + tn + fp + fn) and Pexp = (((tp + fn)(tp + fp) + (tn + fp)
(tn + fn))/(

√
tp + tn + fp + fn).

In addition, the ROC (receiver operating characteristic) curve—a quantitative re-
search method—was used to evaluate the models. It is a graph plotted by sensitivity (on
the y-axis) that indicates the proportion of correctly predicted landslide samples against
1-specificity (x-axis), which indicates the proportion of incorrectly predicted non-landslide
samples [107]. The areas under the ROC curves (AUCs) were applied to judge the predic-
tion performance. The AUC values range between 0.5 to 1, and a higher value indicates
greater performance [67,68,70].

3.4.2. Comparison Methods

To further assess their effectiveness, ROCK and DIANA methods were compared with
popular supervised learning methods: DT and RF based on performance accuracy and ROC.

DT is applied in classification tasks to classify labeled data and make
predictions [29,108,109]. It aims to construct a model that predicts the class of a target
sample by learning some simple decision rules drawn from data structures. DT is based on
a tree structure that is composed of a root node, a set of internal nodes, and a set of terminal
nodes (leaves). Each node makes a binary decision separating one or more classes from
the remaining classes; it is executed by moving down the tree until the terminal node is
obtained. The DT model is easy to construct and interpret, which makes it easy for decision
makers to use, and thus is commonly adopted to assess landslide predictions [29,109,110].

Random Forest is a supervised learning method that consists of multiple decision
trees [24,33]. While classifying a sample, the final result is obtained through a voting
mechanism of many decision trees. This means that each tree provides a predicted result,
and the result with the most votes (selected by most trees) is taken as the optimal output of
the RF method. RF can classify a large amount of higher-dimensional data and has a high
tolerance for noise. Thus, it is one of the most commonly used classification methods with
high prediction accuracy and is very popular in LSM studies [111,112].

To implement the methods in LSM modeling, the dataset containing 506 samples was
divided into training and verification sets: 30% of the samples for training and 70% for
verification. The procedure was conducted repeatedly by adding 10% of the data from the
verification to the training set until the training set had 70% of the total dataset.
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4. Results
4.1. Clustering Analysis

Clustering for mapping susceptibility is based on the assumption that mapping units
with the same susceptibility features (geology and geomorphology features) have similar
values of LIAs. Based on the aforementioned procedures, 469 and 476 distinct and arbi-
trary subsets were obtained from the DIANA and ROCK clustering models, respectively.
Figure 7 portrays the distribution of those subsets in the study area, whereby different
subsets are indicated by different colors in the figure. The ability of the models to identify
distinguishing features of the mapping units and cluster them into their respective subsets
without prior knowledge of the mapping units belonging indicates that the models have
good and effective performance capability [46,113].
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4.2. Landslide Susceptibility Mapping

In this study, to map landslide susceptibility in the obtained subsets, the k-means
clustering algorithm, LDen, and attribute values were applied to classify the subsets into
5 susceptibility levels. The LDen values obtained in both models ranged between 0 and
1.8. Based on the two models, the attribute values, their corresponding LDen values,
and susceptibility levels for some subsets are shown in Table 2. The distribution of the
susceptibility levels obtained in both models is shown in Figure 8. As for the DIANA
model, the very high level occupied the largest proportion, at 29% of the study area, while
the very low level occupied the smallest proportion, at 11%. High and low levels accounted
for 14% and 15%, respectively, and moderate levels accounted for 28%. Compared with the
DIANA model, the ROCK model classified the very high and high levels as 33% and 16%
of the study area, respectively, which were all more than those of the DIANA model. The
moderate, low, and very low levels accounted for 26%, 15%, and 10%, respectively.

4.3. Evaluation and Comparison Results

The performance of the two models was assessed and compared using the Silhouette
as an internal evaluation criterion, and statistical metrics and ROC for external evaluation
criteria. ROCK and DIANA models obtained Silhouette values of 0.8677 and 0.8543,
respectively. For the statistical metrics, Table 3 was prepared to show the performance
and comparative results of the models. In grouping the landslide samples, the DIANA
and ROCK models obtained st values of 0.8805 and 0.8874, respectively, similarly for the
prediction of non-landslide samples; they also obtained sp values of 0.8732 and 0.8732,
respectively. Moreover, the two models obtained kappa of 0.7518 and 0.7828, respectively,
and accuracy of 0.8775 and 0.8933, respectively. In addition, for the case of ROC (Figure 9),
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the DIANA and ROCK landslide susceptibility models showed AUC values of 0.854 and
0.875, respectively.

Table 2. Description of some subsets obtained based on (A) DIANA (B) ROCK models.

(A)

Subset
Id.

Attribute Values (Before Normalization) Landslide Density
Susceptibility

LevelElevation Slope
Angle

Profile
Curvature

Slope
Aspect Lithology NDVI Rainfall Area

(km2) Landslides LD
(/km2)

1 32.41 26.89 0.026 S II 0.67 32–286 9.54 8 0.84 HSL

2 25.35 21.67 0.041 SE IV 0.56 24–237 8.92 0 0 Based on
expertise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
190 21.88 30.38 0.61 S III 0.69 38–189 12.34 9 0.73 MSL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(B)

Subset
Id.

Attribute Values (Before Normalization) Landslide Density
Susceptibility

LevelElevation Slope
Angle

Profile
Curvature

Slope
Aspect Lithology NDVI Rainfall Area

(km2) Landslides LD
(/km2)

1 29.89 24.82 0.032 S II 0.77 30–283 9.53 7 0.73 MSL
2 21.99 19.19 0.043 N III 0.64 26–232 6.67 5 0.74 MSL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

235 14.89 39.43 0.61 NE II 0.71 20–150 15.32 0 0 Based on
expertise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 3. Model assessments and comparative results.

Models DIANA ROCK

tp 258 280
tn 186 192
fp 27 21
fn 35 33
St 0.8805 0.8874
sp 0.8732 0.9014

Kappa 0.7518 0.7828
Silhouette 0.8543 0.8677
Accuracy 0.8775 0.8933
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Moreover, the performances of DIANA and ROCK models were compared with RF
and DT-supervised learning models. Under ROC, the AUC of RF was a little higher (0.879)
than ROCK (0.875), followed by DIANA (0.854), while DT showed the lowest AUC (0.839)
(Figure 9). In addition, as shown in Figure 10, the performance of RF and DT kept on
increasing with the increase in data samples. For instance, with 30–70% of the sample data,
the accuracy values of DT were 0.348, 0.599, 0.664, 0.747, and 0.868, respectively; for RF:
0.468, 0.654, 0.878, 0.898, and 0.906, respectively. With 30–70% of the sample data, ROCK
and DIANA showed steady accuracy values of (0.867, 0.869, 0.872, 0.875, and 0.877) and
(0.878, 0.881, 0.887, 0.890, and 0.893), respectively.
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5. Discussion

Landslides are complicated and disastrous natural disasters that require immediate
and appropriate assessment measures. Conducting landslide susceptibility mapping is a
primary step in assessing landslides, by which the susceptible areas and non-susceptible
areas can be located and assessment measures can be employed. Therefore, this study
applied and compared two clustering-unsupervised learning methods, namely DIANA and
ROCK, in mapping landslide susceptibility in the Baota District of Yan’an city in Shaanxi,
China. Silhouette internal evaluation metrics, as well as sensitivity, specificity, accuracy,
and kappa and ROC external evaluation metrics were employed to evaluate and compare
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their performances. Moreover, to evaluate the efficiency and effectiveness of these methods,
DT and RF-supervised methods were applied for comparison.

From the analysis, both DIANA and ROCK models performed very well because their
Silhouette values were more than 0.85. This implies that they both have good clustering
capability; thus, they can be effective in assessing landslide susceptibility. However, the
results indicate that the ROCK model has comparatively better performance than the
DIANA model in terms of sensitivity, specificity, accuracy, and kappa metrics. In addition,
the overall performance based on the area under the ROC (AUC) was higher for the
ROCK model than the DIANA model. The outstanding performance of ROCK was mainly
supported by the application of the link similarity measure, which introduces a global
approach to the clustering procedure and facilitates the capturing of global information
(knowledge) of neighboring mapping units into the relationship between individual pairs
of mapping units. Applying this approach in deciding which mapping units to be merged
will lead to the construction of better and more significant subsets. In addition, through this
approach, the algorithm can detect significant subsets and eliminate noise. These features
add value to the ROCK model, thus providing better and more robust performance. The
DIANA model is based on the distance similarity measure, which does not reflect the
property of the mapping units’ neighborhood. It is a local approach to clustering tasks and
is vulnerable to errors because two different subsets may have a few mapping units (which
are then considered noise) that could be very close, and distance similarity could merge
the two subsets, causing the situation to worsen as clustering continues. This problem is
successfully handled using the link approach. With these limitations, the DIANA model’s
performance is less than the ROCK model.

Moreover, in comparison with supervised learning models, Random Forest showed
the highest accuracy and AUC, followed by ROCK and DIANA. However, like other
supervised learning methods, to obtain higher performance, the models demand a large
amount of training data and with less data, performance will always be low. This is a
limitation because it is a fact that some study areas may not always have sufficient data to
make the algorithms perform highly, and the process of getting information from landslide
databases and sites is very exhaustive and expensive. In addition, the supervised learning
models are sensitive to changes in the training dataset, meaning that slight changes in
the training dataset can cause big variations in the process. These limitations suggest that
these supervised learning models cannot be reliable in landslide susceptibility mapping.
Fortunately, these limitations can be successively avoided using the ROCK and DIANA
models unsupervised learning models. Therefore, from this analysis and discussion, it
can be concluded that the ROCK and DIANA unsupervised learning models are more
advantageous and more resourceful than the supervised learning models. They can be
successfully used in mapping landslide susceptibility and other real-world problems.

It is generally known that the predicted landslide samples should appear in very high
or high susceptibility areas as much as possible, while non-landslide samples should appear
in a safe area with low or very low susceptibility. Moreover, the constructed landslide
susceptibility maps indicate areas that are very high and highly susceptible to landslide
occurrences. The map constructed based on the ROCK model showed that a large area
(33% coverage) along the Yanhe River is very highly susceptible (indicated by red dots
in the figures) to landslides, which is more than the prediction (29%) from the DIANA
model. Amounts of 16% and 14% of the subsets from the ROCK and DIANA models,
respectively, fell in high susceptible levels (indicated by yellow dots), mostly in the upper
part of the study area. In addition, the models predicted that 10% and 11% of the subsets,
respectively, were very low, while 15% and 18% of the subsets, respectively, were in the low
susceptible level, mostly in the southern part of the area. Upon observing and comparing
these results and the inventory map shown in Figure 2, it can be observed that: though
the ROCK model had better predictions than the DIANA model, predictions from both
models were consistent or in close agreement with the landslide database applied for model
construction. This information can be very useful to concerned authorities, decision makers,
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and residents regarding activities going on in the susceptible areas and to be aware of the
landslide risk and its consequences; thus, appropriate measures can be taken. Meanwhile,
areas predicted at lower susceptibility levels can continue to be protected by following
environmental guidelines for safety assurance.

6. Conclusions

The main purpose of this research was to apply and compare the performance of
DIANA and ROCK hierarchical clustering methods for mapping landslide susceptibility in
the Baota District, one of the landslide-susceptible areas in China. The study also delivers
an evaluation regarding the impact of similarity measures in these clustering methods,
while pinpointing the most accurate and reliable clustering method. The models were
evaluated and compared based on the Silhouette measure, specificity, sensitivity, accuracy,
kappa, and ROC. Both models obtained Silhouette values very close to one, implying
that they both have good clustering capability, and can be effective in assessing landslide
susceptibility. However, the ROCK model performed better than the DIANA model, with
accuracy = 0.8933, kappa = 0.7828, and AUC = 0.875. This is because ROCK uses the
link similarity measure, which facilitated the construction of better and more significant
clustering results, hence obtaining higher and more robust performance, whereas DIANA
uses a distance similarity measure that is prone to errors, which then led to the development
of low-quality and less significant clusters, hence lower performance. Moreover, it was
noted that the similarity measures have a great impact on the clustering results, and it
should be a point of concern while applying these models in LSM studies. In addition, the
LSM maps constructed based on these models and the knowledge extracted from them may
be significant for the determination and implementation of landslide mitigation schemes.
However, the rainfall attribute is of an uncertain data type (because it is recorded in
intervals), but, like other clustering methods that rely on distance similarity measurements,
the DIANA method did not take into consideration the uncertainty of this attribute. Thus,
in the future, this study can be improved by using appropriate methods to process the
uncertain data. In addition, more internal criteria should be explored to further evaluate
the methods’ performance, and data from other study areas should be applied to validate
the methods’ robustness, reproducibility, reliability, and objectivity.
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Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 491–508.

72. Selamat, S.N.; Abd Majid, N.; Mohd Taib, A. A Comparative Assessment of Sampling Ratios Using Artificial Neural Network
(ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia. Sustainability 2023, 15, 861. [CrossRef]

73. Liu, S.; Zhu, J.; Yang, D.; Ma, B. Comparative Study of Geological Hazard Evaluation Systems Using Grid Units and Slope Units
under Different Rainfall Conditions. Sustainability 2022, 14, 16153. [CrossRef]

74. Yu, X.; Xia, Y.; Zhou, J.; Jiang, W. Landslide Susceptibility Mapping Based on Multitemporal Remote Sensing Image Change
Detection and Multiexponential Band Math. Sustainability 2023, 15, 2226. [CrossRef]

75. Ngandam Mfondoum, A.H.; Wokwenmendam Nguet, P.; Mefire Mfondoum, J.V.; Tchindjang, M.; Hakdaoui, S.; Cooper, R.;
Gbetkom, P.G.; Penaye, J.; Bekoa, A.; Moudioh, C. Adapting sudden landslide identification product (SLIP) and detecting real-time
increased precipitation (DRIP) algorithms to map rainfall-triggered landslides in Western Cameroon highlands (Central-Africa).
Geoenviron. Disasters 2021, 8, 1–26. [CrossRef]

76. Ismail, E.H.; Rogers, J.D.; Ahmed, M.F.; Usery, E.L.; Abdelsalam, M.G. Landslide susceptibility mapping of Blue Nile and Tekeze
River Basins using oblique rainfall-aspect rasters. Bull. Eng. Geol. Environ. 2018, 77, 1311–1329. [CrossRef]

77. Kuradusenge, M.; Kumaran, S.; Zennaro, M. Rainfall-induced landslide prediction using machine learning models: The case of
Ngororero District, Rwanda. Int. J. Environ. Res. Public Health 2020, 17, 4147. [CrossRef]

78. Hong, H.; Chen, W.; Xu, C.; Youssef, A.M.; Pradhan, B.; Tien Bui, D. Rainfall-induced landslide susceptibility assessment at the
Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Int. 2017, 32, 139–154. [CrossRef]

79. Chowdhuri, I.; Pal, S.C.; Chakrabortty, R.; Malik, S.; Das, B.; Roy, P. Torrential rainfall-induced landslide susceptibility assessment
using machine learning and statistical methods of eastern Himalaya. Nat. Hazards 2021, 107, 697–722. [CrossRef]

80. Das, S.; Sarkar, S.; Kanungo, D.P. A critical review on landslide susceptibility zonation: Recent trends, techniques, and practices
in Indian Himalaya. Nat. Hazards 2022, 115, 23–72. [CrossRef]

81. Lee, S. Current and future status of GIS-based landslide susceptibility mapping: A literature review. Korean J. Remote Sens. 2019,
35, 179–193.

82. Dias, H.C.; Hölbling, D.; Grohmann, C.H. Landslide inventory mapping in Brazil: Status and challenges. In Proceedings of the
XIII International Symposium on Landslides 2021, Cartagena, Colombia, 22–26 February 2021.

83. Roux, M. A comparative study of divisive hierarchical clustering algorithms. arXiv 2015, arXiv:1506.08977. [CrossRef]
84. Qin, H.; Ma, X.; Herawan, T.; Zain, J.M. MGR: An information theory based hierarchical divisive clustering algorithm for

categorical data. Knowl. Based Syst. 2014, 67, 401–411. [CrossRef]
85. Tyagi, A.; Sharma, S. Implementation of ROCK clustering algorithm for the optimization of query searching time. Int. J. Comput.

Sci. Eng. 2012, 4, 809.
86. Altameem, A.; Poonia, R.C.; Kumar, A.; Raja, L.; Jilani Saudagar, A.K. P-ROCK: A Sustainable Clustering Algorithm for Large

Categorical Datasets. Intell. Autom. Soft Comput. 2023, 35, 553–566. [CrossRef]
87. Guha, S.; Rastogi, R.; Shim, K. ROCK: A robust clustering algorithm for categorical attributes. Inf. Syst. 2000, 25, 345–366.

[CrossRef]
88. Ding, M.; Hu, K. Susceptibility mapping of landslides in Beichuan County using cluster and MLC methods. Nat. Hazards 2014, 70,

755–766. [CrossRef]

http://doi.org/10.1007/s12665-017-7095-6
http://doi.org/10.1007/s12665-009-0149-7
http://doi.org/10.1007/s11442-022-2020-7
http://doi.org/10.1016/j.sciaf.2021.e01032
http://doi.org/10.1016/j.catena.2021.105388
http://doi.org/10.1016/j.earscirev.2019.03.019
http://doi.org/10.3390/su142416716
http://doi.org/10.3390/su15010006
http://doi.org/10.1186/s40677-020-00155-x
http://doi.org/10.3390/su142416692
http://doi.org/10.3390/su15010861
http://doi.org/10.3390/su142316153
http://doi.org/10.3390/su15032226
http://doi.org/10.1186/s40677-021-00189-9
http://doi.org/10.1007/s10064-017-1033-4
http://doi.org/10.3390/ijerph17114147
http://doi.org/10.1080/10106049.2015.1130086
http://doi.org/10.1007/s11069-021-04601-3
http://doi.org/10.1007/s11069-022-05554-x
http://doi.org/10.1007/s00357-018-9259-9
http://doi.org/10.1016/j.knosys.2014.03.013
http://doi.org/10.32604/iasc.2023.027579
http://doi.org/10.1016/S0306-4379(00)00022-3
http://doi.org/10.1007/s11069-013-0854-0


Sustainability 2023, 15, 4218 20 of 20

89. Mao, Y.-M.; Zhang, M.-S.; Wang, G.-L.; Sun, P.-P. Landslide hazards mapping using uncertain Naïve Bayesian classification
method. J. Cent. South Univ. 2015, 22, 3512–3520. [CrossRef]

90. Yimin, M.; Yican, L.; Simon Mwakapesa, D.; Genglong, W.; Ahangari Nanehkaran, Y.; Asim Khan, M.; Maosheng, Z. Innovative
Landslide Susceptibility Mapping Portrayed by CA-AQD and K-Means Clustering Algorithms. Adv. Civ. Eng. 2021, 2021, 8846779.
[CrossRef]

91. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability 1967; University of California: Berkeley, CA, USA, 1967; pp. 281–297.

92. Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics
2020, 9, 1295. [CrossRef]

93. Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany
(Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [CrossRef]

94. Sun, H.; Burton, H.V.; Huang, H. Machine learning applications for building structural design and performance assessment:
State-of-the-art review. J. Build. Eng. 2021, 33, 101816. [CrossRef]

95. Jones, P.J.; Catt, M.; Davies, M.J.; Edwardson, C.L.; Mirkes, E.M.; Khunti, K.; Yates, T.; Rowlands, A.V. Feature selection for
unsupervised machine learning of accelerometer data physical activity clusters–A systematic review. Gait Posture 2021, 90,
120–128. [CrossRef] [PubMed]

96. Zimmermann, A. Method evaluation, parameterization, and result validation in unsupervised data mining: A critical survey.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1330. [CrossRef]

97. Celebi, M.E.; Aydin, K. Unsupervised Learning Algorithms; Springer: Berlin/Heidelberg, Germany, 2016.
98. Rokach, L.; Maimon, O. Clustering Methods. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg,

Germany, 2005.
99. Palacio-Niño, J.-O.; Berzal, F. Evaluation metrics for unsupervised learning algorithms. arXiv 2019, arXiv:1905.05667.
100. Belyadi, H.; Haghighat, A. Unsupervised machine learning: Clustering algorithms. Mach. Learn. Guide Oil Gas Using Python 2021.
101. Mao, X.; Zhu, W.; Wu, L.; Zhou, B. Comparative study on methods for computing electrical distance. Int. J. Electr. Power Energy

Syst. 2021, 130, 106923. [CrossRef]
102. Shahapure, K.R.; Nicholas, C. Cluster quality analysis using silhouette score. In Proceedings of the 2020 IEEE 7th International

Conference on Data Science and Advanced Analytics (DSAA), Sydney, Australia, 6–9 October 2020; pp. 747–748.
103. Thinsungnoena, T.; Kaoungkub, N.; Durongdumronchaib, P.; Kerdprasopb, K.; Kerdprasopb, N. The clustering validity with

silhouette and sum of squared errors. Learning 2015, 3. [CrossRef]
104. Xie, W.; Nie, W.; Saffari, P.; Robledo, L.F.; Descote, P.-Y.; Jian, W. Landslide hazard assessment based on Bayesian optimization–

support vector machine in Nanping City, China. Nat. Hazards 2021, 109, 931–948. [CrossRef]
105. Sadighi, M.; Motamedvaziri, B.; Ahmadi, H.; Moeini, A. Assessing landslide susceptibility using machine learning models: A

comparison between ANN, ANFIS, and ANFIS-ICA. Environ. Earth Sci. 2020, 79, 1–14. [CrossRef]
106. Darminto, M.R.; Widodob, A.; Alfatinahc, A.; Chuc, H.-J. High-resolution landslide susceptibility map generation using machine

learning (Case Study in Pacitan, Indonesia). Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 369–379. [CrossRef]
107. Yu, X.; Xiong, T.; Jiang, W.; Zhou, J. Comparative Assessment of the Efficacy of the Five Kinds of Models in Landslide Susceptibility

Map for Factor Screening: A Case Study at Zigui-Badong in the Three Gorges Reservoir Area, China. Sustainability 2023, 15, 800.
[CrossRef]

108. Zhang, K.; Wu, X.; Niu, R.; Yang, K.; Zhao, L. The assessment of landslide susceptibility mapping using random forest and
decision tree methods in the Three Gorges Reservoir area, China. Environ. Earth Sci. 2017, 76, 1–20. [CrossRef]

109. Park, S.-J.; Lee, C.-W.; Lee, S.; Lee, M.-J. Landslide susceptibility mapping and comparison using decision tree models: A Case
Study of Jumunjin Area, Korea. Remote Sens. 2018, 10, 1545. [CrossRef]

110. Kadavi, P.R.; Lee, C.-W.; Lee, S. Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and
decision tree models. Environ. Earth Sci. 2019, 78, 1–17. [CrossRef]

111. Deng, H.; Wu, X.; Zhang, W.; Liu, Y.; Li, W.; Li, X.; Zhou, P.; Zhuo, W. Slope-Unit Scale Landslide Susceptibility Mapping Based
on the Random Forest Model in Deep Valley Areas. Remote Sens. 2022, 14, 4245. [CrossRef]

112. Yu, C.; Chen, J. Application of a GIS-based slope unit method for landslide susceptibility mapping in Helong City: Comparative
assessment of ICM, AHP, and RF model. Symmetry 2020, 12, 1848. [CrossRef]

113. Barbará, D. Requirements for clustering data streams. ACM Sigkdd Explor. Newsl. 2002, 3, 23–27. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11771-015-2891-1
http://doi.org/10.1155/2021/8846779
http://doi.org/10.3390/electronics9081295
http://doi.org/10.1007/s10346-017-0861-4
http://doi.org/10.1016/j.jobe.2020.101816
http://doi.org/10.1016/j.gaitpost.2021.08.007
http://www.ncbi.nlm.nih.gov/pubmed/34438293
http://doi.org/10.1002/widm.1330
http://doi.org/10.1016/j.ijepes.2021.106923
http://doi.org/10.12792/iciae2015.012
http://doi.org/10.1007/s11069-021-04862-y
http://doi.org/10.1007/s12665-020-09294-8
http://doi.org/10.18517/ijaseit.11.1.11679
http://doi.org/10.3390/su15010800
http://doi.org/10.1007/s12665-017-6731-5
http://doi.org/10.3390/rs10101545
http://doi.org/10.1007/s12665-019-8119-1
http://doi.org/10.3390/rs14174245
http://doi.org/10.3390/sym12111848
http://doi.org/10.1145/507515.507519

	Introduction 
	Overview of the Study Area 
	Methodology 
	Data Collection 
	Landslides Database 
	Landslide Influencing Attributes (LIAs) 

	Research Methods 
	DIANA Algorithm 
	ROCK Algorithm 
	Implementation of DIANA and ROCK Clustering Methods in LSM 

	Methods for Landslide Susceptibility Classification 
	K-Means Algorithm 
	Landslide Density 

	Performance Evaluation and Comparison Methods 
	Performance Evaluation 
	Comparison Methods 


	Results 
	Clustering Analysis 
	Landslide Susceptibility Mapping 
	Evaluation and Comparison Results 

	Discussion 
	Conclusions 
	References

