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Abstract: We use circuit-level granular electricity measurements from student housing and statistical
analysis to better understand individuals’ electricity consumption. Two key patterns emerged—
individuals varied systematically in their magnitude of electricity use as well as in their variability
of usage at the hourly and daily level. A cluster analysis of electricity consumption in individ-
ual bedrooms shows that 18% of students consume 48% of total electricity use at a median of
2.17 kWh/d/person. These few energy hogs have a disproportionate impact on electricity consump-
tion. In contrast, the misers (22% of students) consume only 4% of the electricity (0.18 kWh/d/person).
Mini-refrigerators in bedrooms contributed substantially to the total electricity use of the moderate
users. In contrast, mini-refrigerators were less influential for energy hogs, suggesting that these
residents may draw power in others ways, such as by using powerful computing or gaming systems
for hours each day. A sub-cluster analysis revealed substantial individual variability in hourly usage
profiles. Some energy hogs use electricity consistently throughout the day, while others have specific
periods of high consumption. We demonstrate how our analysis is generalizable to other situations
where the resident does not directly pay their utility bills and thus has limited financial incentive to
conserve, and how it contributes to a deeper understanding of the different ways in which individuals
use energy. This allows for targeting interventions to groups with similar patterns of consumption.
For example, policies such as fines or fees that might reduce the excessive electricity use for short
times or for individual hogs could result in potential savings ranging from 16–33% of bedroom
electricity.

Keywords: energy conservation; occupant behavior; end-use; residential buildings; university;
individual electricity use

1. Introduction

In the U.S., the residential sector accounts for 22% of total energy consumption and
about 19% of carbon dioxide emissions [1,2]. Federal and state policies have focused
on reducing this energy use to decrease fossil fuel consumption, reduce greenhouse gas
emissions, and save money for homeowners.

Approaches to tackle this problem involve understanding interconnected technical,
physical, and human factors. Technical and physical factors include climate, building enve-
lope, and building infrastructure [3]. Human factors, such as operation and maintenance,
indoor environmental conditions, appliance use and occupant activities and behavior,
can have a greater impact in reducing energy consumption than technical and physical
factors [3]. Similarly, Zhao et al. found that advanced technological building systems con-
tributed to 42% of the potential for energy efficiency, suggesting that 58% of the potential
for energy efficiency lies in human-influenced factors [4].

An extensive amount of literature has emerged to understand and respond to human
factors in the residential sector, particularly in terms of occupant activities and behavior to-
wards energy conservation. Residents need better information about their utility use [5–9].
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This includes information frequency and detail [5,8], associated costs [7], and appliance effi-
ciency [9]. For example, the meta-analysis conducted by [6] found that strategies providing
individualized energy audits and consulting are more effective for conservation behavior
than strategies that provide historical, peer comparison energy feedback.

Residents’ lack of information about their electricity use creates a gap between the
degree to which they acknowledge the need for resource efficiency practices and their actual
conservation actions [10,11]. This information deficit is compounded for residents who do
not see or pay their own utility bills because they are included in a rent payment, or they
receive housing at little or no cost. For example, those in residential housing such as univer-
sity residences, rental units, low-income housing, or army barracks. Consequently, these
residents lack both this financial motivation to conserve and the information from monthly
bills that can foster awareness of the quantity and consequences of energy consumption
habits and potential for conservation [11].

A personalized experience can help users better understand and take action towards
energy conservation [12–14]. Therefore, modification of resident behaviors requires that
they have tailored information that can help them understand their personal motivation
to change a specific behavior [15–17]. We suggest that detailed granular electricity data,
which are captured over short time intervals and at the circuit level, can provide a better
understanding of different types of users, the magnitude and variability of their patterns of
electricity consumption, and the impact of appliances on individual electricity use.

Many previous studies have used electricity consumption data at the household level
to assess the type of household and their contribution to overall electricity consumption. For
example, Refs. [17,18] used half-hour interval electricity data to understand the electricity
use of household customers in subpopulations. Similarly, Satre-Meloy et al. [19] used
household electricity data to identify hourly load profiles as a function of the time of
day and day of the week. McLoughlin et al. [18] classify households based on diurnal,
intra daily, and seasonal variations. Alternately, Ushakova and Mikhaylov [20] classify
households based on their daily electricity use. These studies illustrate that heterogeneous
households can be characterized based on the magnitude of their electricity use. They
also emphasize the importance of disaggregating data to develop detailed electricity use
patterns that aggregated data could not identify.

Granular data can quantify consumption behavior and appliance use at the house-
hold level. Albert and Rajagopal [21] used smart meters to assess household electricity
consumption with an emphasis on determining the magnitude, duration, and variability
in use to characterize the household’s behavior and identify occupancy of the residence.
Smart meters used by Azaza and Fredrik [22] characterized households’ responsibility
toward and variance in use that contributes to peak loads. Diawuo et al. [23] found that
93% of residential electricity use is associated with seven energy intensive appliances:
refrigerator, air conditioner, television, freezer, fan, electric iron, washing machine and
compact fluorescent lights. Asensio and Delmas [24] found that the major contributions
to electricity consumption in the house are plug load equipment at 36% followed by re-
frigerators at 19%. Typically, these sorts of household appliances are used by all members
of the household. Collectively, these studies identify appliance type and user behavior as
a source of variability in the magnitude and hourly load profiles of household electricity
use. The papers discussed here use mathematical algorithms to identify particular energy
use activities, hourly load profiles, and individual behavior. They generally do not have
substantial databases of measured electricity use data to verify their approaches (e.g., [19]).
They identify though the need to understand energy use at this level of detail in order to
better design intervention strategies, to motivate behavior change or incentivize demand
response approaches to reducing or shifting peak loads.

In contrast to studies of household-level electricity use, the measurement of individual
level electricity use is rare. Past research has not typically incorporated analysis at granular
levels of time (e.g., minute-, hour-, and daily-level data instead of weekly or monthly
data) or has not analyzed usage patterns at the level of individual circuits or outlets. The
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exception is the measurement in office settings. Murtagh et al. [25] were the first to publish
actual individual consumption in a group setting in an office. Using circuit-level outlet
data for daily and weekly energy use, these researchers identified the individual usage
of 83 participants. They found three types of energy users: typical, always active, and
maximal, suggesting a wide range in the magnitude of electricity use among individuals.
Similarly, Rafsanjani and Ghahramani [26] make use of electricity meters and sensors to
identify individual energy users and their use of shared appliances in an office setting.
Ten users were analyzed over a 6-week period and categorized based on their energy
use intensity and energy behaviors. They also found a wide range of the magnitude of
individual electricity use. In a follow up study [27], sophisticated disaggregation algorithms
used to isolate individual electricity use behaviors was touted for its potential cost-effective
opportunities for triggering behavior modifications in an office setting.

Other researchers have also studied office settings; Kamilaris et al. [28] use outlet
data to identify desktop electricity use for 18 participants. Their study identified potential
energy savings linked with usage patterns such as setting sleeping mode at lunchtime
and turning off the computer over the weekend. Annaqeeb et al. [29] recorded outlet data
at 15 min intervals to analyze the contribution of 8 individual users in an office setting.
Their study showed that personal computers, monitors, and lamps contribute to electricity
consumption even when individual users are not in the office. They also found differences
in usage due to individual work schedules. Understanding individual electricity use at a
granular level among members in a residential context has not been studied to the same
degree as in office or work contexts. The work presented here is some of the first to do so.

To understand and assess individual residential electricity consumption, the Smart
Housing testbed at Clarkson University (Potsdam, NY, USA) was developed. In 2013, the
University integrated utility monitoring equipment in four renovated buildings, including
circuit-level electricity meters for two of the buildings [30]. The testbed allows highly
granular measurements of student utility use in campus apartment housing. Previous
results show that group-level education and feedback interventions at the apartment level
promote water and electricity conservation behaviors [30]. The results presented here
extend that work to focus on the consumption behaviors of individuals and a forthcom-
ing paper correlates these consumption behaviors to their motivational and ideological
characteristics.

2. Research Scope
2.1. Objectives

This paper uses individual residential electricity consumption at a granular level
(e.g., hourly and daily use data at the circuit level) to identify individuals who use the most
energy, and to identify attributes that characterize different types of users. The research
results of this study could improve interventions and policies designed to reduce use,
influence energy use behavior, and help residents understand their energy use patterns.

Three primary objectives characterize this analysis:

1. Understand and quantify individual electricity consumption at a granular level in
residential settings;

2. Identify and improve our understanding of variables linked with individual-level
energy consumption in residential settings;

3. Outline the benefits of these findings to inform energy conservation interventions and
policies.

The research presented here focuses on electricity use by individuals rather than in
group areas. Having detailed data specifically for bedrooms provides the best available
proxy for individual use within multi-resident apartments. The discussion section explores
the quality of this assumption. Data from appliances, electronics, and lights plugged into
outlets are included in this analysis. Past research suggests that plug loads account for a
significant fraction of residential electricity consumption. Moreover, as demonstrated in
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Section 4.1, bedrooms comprise the greatest singular use of electricity in the apartments
compared to common areas.

This manuscript includes four additional sections that identify the methods (Section 3),
results describing electricity use and characterization at the individual level (Section 4), dis-
cussion of the implications and use of these findings (Section 5) and conclusions (Section 6).

2.2. Characteristics of the Smart Housing Testbed Used for This Field Study

Clarkson’s Smart Housing testbed serves as the location for the data and activities
that inform our study. We use data from fall semesters over seven years (2013 to 2019;
~80 days per semester). These periods were unaffected by related studies that evaluated
interventions or treatments designed to curb individual electricity use [30]. The testbed
comprises two buildings with six apartments and a capacity of 28 students in each. All
apartments contain single-occupant bedrooms. This results in 84 apartments and a potential
for 392 individual bedroom occupants for analysis over the seven-year period.

Data quantifying electricity use (watt-hours per minute) was collected with Triacta
PowerHawk 4124 m [31]. These revenue-grade meters are capable of monitoring 24 circuits
of single-phase service, which allows one meter to measure the electricity consumed at
each circuit of each apartment. The meters are hardwired to electrical lines mounted inside
the wall with current transformers (CTs) hardwired to each circuit breaker. Data used
in this analysis includes everything plugged into an outlet and overhead lighting in the
apartments. No heating, ventilation or air conditioning equipment electricity use was
considered.

The database server pulled a reading from each meter at 60-s intervals for storage in
a virtual network of servers provided by IBM. The data set was available to the research
team via the project’s built-in data export tool for analysis over various time scales. All
the original, non-manipulated data readings were automatically backed up on separate
servers.

Demographic characteristics in our data set involved undergraduate students living
on campus with a mean age of 20.5 ± 1.0. They were dominated by white (80%), male
(53%), and engineering majors (66%). The median reported parental income is less than
USD 75,000. These students were randomly chosen by lottery to live in this housing testbed
due to the desirability of apartment housing. They pay a flat housing fee each semester that
is independent of their personal utility use. The supplemental materials (SM-6) include
additional student information.

3. Research Methods

Three phases of this work align with the objectives. Details on the data cleaning and
statistical analysis are in Sections 3.1 and 3.2.

Phase 1. Preliminary analysis to identify trends, potential variables, and limita-
tions in the dataset: We start with an exploratory data analysis using time series, and
assessing data distributions for hourly and daily electricity use for all users. We then
evaluate and interpret missing data for bedroom use. Data cleaning protocols focus on
users who actively use their bedrooms.

Phase 2. Statistical analysis to identify key variables to characterize electricity use
behavior among individuals in their bedrooms: Descriptive and comparative statistics
(Wilcoxon test) were used to explore and identify variables that potentially affect bedroom
electricity use patterns. We use a Principal Component Analysis (PCA) to identify the
key variables to characterize bedroom electricity use and use cluster analysis to combine
users by the main key variable identified by the PCA and to identify a second key variable
to further characterize users within each primary cluster. Ultimately, we assess mini-
refrigerator use as an exploratory analysis of individuals’ appliance use and consumption.

Phase 3. Value of intervention or policy initiatives to reduce electricity consump-
tion: data collection and sampling are used to analyze potential interventions to reduce
electricity use.
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3.1. Details—Data Cleaning Protocols

Preparing the raw meter data for analysis involved downloading it from the archive
server into SPSS (statistical software, IBM, Armonk, NY, USA), applying a series of cor-
rective scripts, determining missing data, and aggregating the data from minute to hour
and daily totals. Due to random missing data, aggregated hourly and daily electric energy
totals (EE) could not simply be determined as a sum of the available data. An average of the
data that was available was assumed to reflect any missing data (Equation (1)).However, if
more than 10% of the 60 min in an hour or of 1440 min in a day were missing, the entire
hour or day was identified as a missing value and was not included in any of the statistical
analyses.

EEDaily Total

[
Wh

d

]
=

∑1440
t=1 EEmin

[
Wh
min

]
Count(t = 1 − 1440)

× 1440
[

min
day

]
(1)

The compiled hourly and daily electric energy dataset was reduced to include days
of the fall semester when students were living in their residences and showing active
electricity use. Break periods were excluded starting on the Friday before the break and
resuming at the end of the official break period. We also deleted other periods when it
was apparent that there was no or little activity in the bedroom. This ensured our focus
on identifying and characterizing actual individual electricity consumption and behaviors
among users.

Determining active occupancy required criteria to evaluate when students were not
using their rooms (e.g., absences from campus or staying regularly in another room for a
variety of reasons). Of the possible 392 possible bedrooms, 44 were vacant for the semester
and removed from the dataset. In addition, bedrooms that appeared vacant were also
disqualified based on the number of days a room had zero electricity consumption. Daily
electricity use of 0 kWh for more than three days was recorded as blank values. The 10th
percentile of the daily electricity consumption among all users was then used to identify
and exclude additional days for some residents with low electricity use in the bedroom
that suggested inactivity. The data cleaning protocol reduced the population from the
348 bedrooms with assigned residents to 312 inhabited bedrooms with electricity use
activity.

3.2. Details—Statistical Analyses

Due to the non-normal distribution of electricity use values, we used the non-parametric
Wilcoxon signed rank test [32] to determine if the means of two data sets are reliably differ-
ent. Based on variables identified in the literature, we explored comparisons among years,
apartment size (3-, 4-, 6-member apartments), time considerations such as between months,
classroom scheduling (Tu-Th versus M-W-F class schedules), and potential differences
between weekends and weekdays.

A preliminary exploratory principal component analysis (PCA) conducted with SPSS
identified potential variables to characterize individual electricity use. This technique
replaces the large set of measured electricity use variables by a smaller number of derived
variables, the principle components, while minimizing the loss of information [33]. The
derived variables are linear functions of the original variables, with the first component
describing the maximum possible variance. The PCA analysis was implemented using
orthogonal rotation with a varimax method for a clear separation of factors. The data were
not normally distributed, so a logarithmic transformation of the variables was used. The
Kaiser–Meyer–Olkin (KMO) Test and Bartlett’s test of sphericity provided standards for
sample adequacy and for significant differences among variance that should be passed
before conducting the PCA [34]. Details are provided in the supplemental materials (SM-2).

k-Means cluster analysis was used to classify users based on their values of the primary
variable. The k-means algorithm is a method of vector quantization for cluster analysis
in data mining. Given the simple nature of the algorithm, it is one of the widely used
classification techniques. It has been used extensively to understand electricity use patterns
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and occupancy patterns (e.g., [17,21]). This method separates a dataset containing n obser-
vations into k clusters. A centroid of each cluster is determined with other observations
assigned to the cluster with the closest centroid [35].

Our extended cluster analysis focused on users who consume the greatest amounts
of electricity to identify additional characteristics that may explain different user types or
behaviors. Identification of the optimal number of clusters was based on a comparison of
F-statistics and p-values and a hierarchical cluster analysis (see Supplemental Materials
SM-3).

A correlation matrix served to choose the secondary variable to characterize individ-
ual electricity use behaviors. Previous analysis considered multiple variables that were
discarded due to concerns with multi-collinearity.

Electricity use associated with mini-fridges in the bedrooms was quantified because
they are categorized as energy-intensive appliances and we had the mathematical capacity
to identify the electricity use signatures of this particular type of appliance. A subsample of
the dataset from 2013–2016 was evaluated in a companion paper to identify the refrigerators
based on recurring compressor cycle patterns [36]. Power consumption was analyzed at the
minute level for 223 bedrooms. To eliminate noise and other human activities that influence
electricity consumption, the analysis considered power consumption for Thanksgiving
break when little other electricity use was expected. The results from [36] were matched to
specific bedrooms in the analysis presented here to assess the relative importance of the
mini-fridges to the total bedroom electricity use.

4. Results
4.1. General Understanding of Overall Electricity Use

The initial analysis of the electricity data considered 312 bedrooms and all days
included in this study. Box plots in Figure 1 and details in Table 1 show a wide distribution
of daily electricity use among users, days, and different areas of the apartment. The
percentile ranges and maximum values shown in Table 1 include outliers that are not
apparent in the box plots (Figure 1).
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Table 1. Daily per capita bedroom and apartment electricity use distributions, 312 students.

Percentile

Bedroom-Level Electricity Use Apartment-Level Electricity Use

Daily Use
(kWh/d/
Person)

Electricity
Used by

Percentile
Range (kWh)

% Cumulative
Electricity
Used by

Percentile

Daily Use
(kWh/d/
Person)

Electricity
Used by

Percentile
Range (kWh)

% Cumulative
Electricity
Used by

Percentile

50th 0.62 3029 13.3% 2.23 3457 34.7%
90th 2.24 7498 64.6% 3.71 3396 80.0%
95th 3.01 3844 78.5% 4.33 1379 88.0%
99th 4.50 4291 94.1% 6.47 1425 96.2%

Maximum 13.21 1628 100% 20.47 649 100%

The median per capita electricity consumption is 2.23 kWh/d/person at the apartment
level and 0.62 kWh/d/person in bedrooms. Bedrooms represent the highest electricity
use overall (36.6%) and highest variability in use. Unlike other shared living spaces in the
apartment, an analysis of bedroom outlets offers the opportunity to attribute electricity
consumption to the individual occupant.

The overall magnitude and variability in day-to-day electricity use for all apartments
and bedrooms emphasizes that there are days with very high levels of electricity use that are
substantial contributions to the overall energy consumption. Of the nearly 30,000 bedroom-
days in this analysis, the top 5% of days consume 21.5% of the electricity, and the top
1% consume 5.9%. The nearly 7000 apartment-days similarly show the consequence of
outliers, with the top 1% consuming 3.8% of the total electricity. The much higher relative
importance of these outliers at the bedroom level (99th percentile = ~7 times the median)
versus the apartment level (99th percentile = ~3 times the median) adds evidence to the
importance of using granular data to explore individual behavior rather than the more
typical approach of measuring aggregated household electricity use. The apartment overall
per capita values do not illustrate the same wide behavior among energy users that the
individual bedrooms provide.

4.2. Identifying Primary Measure to Characterize Individual Electricity Use Behaviors

Evaluation of time series graphs for bedrooms helped to identify individual behavior
contributing to the wide variability of electricity use shown in Figure 1 and Table 1. Figure 2
provides samples of the hourly and daily bedroom electricity use for four individual
students. There are clear differences in the magnitude of these students’ electricity use both
among students and within each individual’s own habits. Daily use ranged from 0.2 to
5 kWh, with some students using relatively constant electricity from day to day, others
had random spikes in their use. Similarly, the hour-to-hour behavior is also quite different
among the students, with some having very high electricity use at night, but they manage
to turn at least some of their loads to sleep. In all cases, the highest loads were at night,
though the magnitude of those loads varied considerably. Median hourly loads at midnight
for these four students range from 0.02 to 0.25 kWh/h.

We further explored the dataset to identify additional emerging patterns and specific
variables that were most pertinent for understanding individual energy use. That is,
descriptive and comparative statistics (Wilcoxon test) were applied to bedroom electricity
usage to explore and identify key variables that affect electricity use patterns. This involved
analyzing overall electricity usage and consistency of electricity use over 24-h periods to
understand peak usage patterns or other kinds of identifiable sequences (e.g., Figure 2).
Relative electricity use between bedrooms and common areas were compared. Other
factors explored included the year, apartment size (3-, 4-, 6-member apartments), time
considerations such as variations over months, classroom scheduling (Tu-Th versus M-W-F
class schedules), and potential differences between weekends and weekdays. The analysis
showed that these additional variables did not explain differences or patterns in electricity
use and could be ignored as relevant parameters across the dataset.
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Figure 2. Example electricity use for four representative individuals (each a separate color) illustrates
a wide range of the magnitude and variability in their electricity use on (a) day-to-day (arbitrary
14-day sample) and (b) hour-to-hour (as represented by median values for each hour for each
individual).

Ultimately, two general categories (Figure 2) emerged as the most likely key variables
to demonstrate critical differences in individual electricity use behaviors: the magnitude
and variability of electricity use on both hourly and daily time scales. These variables
are consistent with the work of [21,22] who identified the magnitude and variability (or
heterogeneity) in electricity use behavior as key factors for understanding individual
contributions to a household’s consumption and targeting those with a higher responsibility
for the use for energy efficiency interventions.

Table 2 lists the single-point aggregated measures considered to quantify these charac-
teristics. Due to their non-normal distributions, logarithmic transformation of each of these
measures and percentiles were used. Additional normalized measures to represent daily
variability (e.g., (75th − 25th)/50th)) were also considered. However, the median electricity
use was zero for too many individuals, preventing use of the median in the denominator to
normalize measures.

A principal component analysis determined the most influential measures included
in Table 2 that describe the magnitude and variability in individual consumption. The
PCA analysis showed that median daily electricity use (log transformed) was the top
loading component, explaining 49% of the variance in the data (additional details in the
supplemental materials, SM-2).
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Table 2. Single-point aggregated measures to quantify individual’s electricity use behaviors.

Daily Measures Hourly Measures

Magnitude • Median daily
• Max daily
• Min daily

• Max of the median of each hour
• Min of the median of each hour

Variability Based on percentiles of daily
elec. use:

• 75th–25th
• 90th–10th

Based on percentiles of median elec.
use of each hour of the day:

• 75th–25th
• 90th–10th

A k-means cluster analysis meaningfully classified users according to the measure
that best expressed the magnitude of each individual’s electricity use: the log transform of
the median daily bedroom electricity use. Two sets of different cluster possibilities emerged
(three vs. four clusters). We ultimately chose the set of four clusters as the optimal model
(F = 1083, p = 0.000) for a four-cluster model vs. three-cluster model (F = 938, p = 0.000). The
final k-means cluster analysis classifies users into four unique clusters: misers, moderate
users, hogs, and super hogs. Additional details are included in the supplemental materials,
SM-3.

Figure 3 organizes residents in increasing value of their median daily electricity use.
Color-coding identifies the individuals in each cluster. The median of the median per capita
daily electricity consumption for super hogs (2.17 kWh/d) is twelve times the median of
median daily electricity consumption for low users (0.18 kWh/d). More than 50% of the
individuals consume only relatively low or moderate amounts of electricity, but the top
18%—the “super hogs”—account for 48% of total electricity use. This shows that a small
number of individuals can have a tremendous impact on electricity consumption.
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Figure 3. The daily median electricity for each resident is shown in ascending order. Users are
segmented into four categories based on cluster analysis of their (log) median daily electricity use.
The percentages quantify the proportion of the 312 individuals associated with each cluster.

4.3. Secondary Measures to Characterize Individual Electricity Use Behaviors

The magnitude of daily electricity use is the primary variable to characterize electricity
use behavior and cluster users. However, the wide variability of behaviors within each
of these individuals (e.g., Figure 2b) was not captured by this primary variable. Hourly
and daily variability was assessed by several measures defined in Table 2. The measure
quantifying the 75th–25th percentiles of the daily electricity use explained 14% of the
variance in the PCA, and the 90th–10th explained 11%. However, a correlation analysis
showed that both of these variables were highly correlated to the primary variable, so they
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were not considered further here as a means to further characterize individuals’ behavior.
In contrast, the measure that describes variability in the hour-to-hour electricity use by
each individual defined by the differential between the 90th–10th percentiles of the median
electricity use for each of 24 h per day (log transformed) was the least correlated with our
main variable (r = 0.559). These hourly patterns give us insight into the variable behavior
within these high energy users. As illustrated with four individuals in Figure 2b, some
individuals exhibit a large range in hourly electricity consumption, often with minimal
consumption in early mornings. In contrast, others show constant electricity use over the
day. There is clearly a difference in how residents think about and use electricity.

The secondary measure, which characterizes hour-to-hour electricity use based on
the 90th percentile (~highest use hour) and 10th percentile (~lowest use hour) was used
to further differentiate electricity use behaviors for individuals in each of the high-energy
user clusters. Cluster analysis enabled the hogs and super hogs to be sub-divided into 3
and 4 sub-groups, respectively (Figure 4).
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Figure 4. Hog (a) and super hog (b) clusters were further divided by the characteristic that measures
hour-to-hour variability. The sub-clusters are identified by color and arranged left to right from the
clusters with the least to the most hour-to-hour variability. Within each sub-cluster, box plots that
characterize variability in each individual’s hourly electricity use are arranged in order of increasing
median hourly use.
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Even among the super energy hogs—who represent only 18% of residents—we find
users that present different patterns in their behavior. Some super hogs have hour-to-hour
variability that is extreme, ranging as much as 0.2 kWh/h over the course of a day, whereas
the hourly electricity use varies by less than 0.01 kWh/h for other super hogs. Within each
of these sub-clusters, there is little correlation between the magnitude of their use and the
hour-to-hour electricity use behaviors. For example, the second sub-cluster for the super
hogs (Figure 4b, orange) includes both the lowest and highest median hourly use, and the
sub-cluster with the highest variability includes one individual with a median hourly use
that is fifth lowest among all of the super hog individuals.

There are many implications and suppositions that one can make about these residents.
For instance, a user with high electricity use that has small hourly variability may have
appliances on all the time such as a computer server or a mini-fridge. In contrast, a
user with high electricity use at specific times during the day may be doing time-specific
activities such as playing video games, amplified guitar music, high-intensity limited-time
computing, or even regular use of a hair dryer. This variability in the magnitude and
variation in individuals’ electricity use is consistent with what has been reported in office
situations [25,26] and household energy use [21].

4.4. Appliance Analysis

Variations in electricity use in bedrooms between residents and within individual’s
hour-to-hour patterns clearly indicate that there is a range of different appliances and
electronics used by, and used differently by, the population considered here. Occasional
apartment walk-throughs of the apartments and bedrooms in this study show that mini-
refrigerators and TVs are the most common appliances in the bedrooms, followed by
fans, computers, and gaming systems. Three amplifiers, a recording studio, and one
air conditioner were also observed in one effort to document appliances. Fans do not
consume much electricity, although the other electronics and appliances can contribute to
the substantially high electricity loads of the hogs and super hogs.

In previous work using the Smart Housing testbed, Gao et al. [36] used electricity use
patterns to detect the presence of refrigerators in bedrooms using data from 2013–2016.
Most other appliances do not have the necessary power signatures for reliable detection, so
our analysis here was limited to refrigerators. Gao et al.’s results showed a total of 72 mini-
fridges detected out of the 223 possible cases (32%). Results were confirmed by visual
inspection of the rooms during mid-semester holiday periods (with student permission).
Their analysis demonstrated that mini-fridge electricity use remained similar over the
semester.

This mini refrigerator analysis was integrated into the analysis presented here to
understand the contributions of this appliance to high electricity consumption in student
bedrooms. Of the 72 refrigerators defined by Gao et al. [36], 66 of them were in the 195 bed-
rooms included in the present study (34%) for the 2013–2016 period. Mini-fridge electricity
use ranged between 0.16 to 0.97 kWh/d with an average usage of 0.45 ± 0.16 kWh/d. For
comparison, most current Energy Star certified mini-fridges (1.6–3.2 cu. ft.) use 0.41 to
0.55 kWh/d, with no consistent trend between energy consumption and size [37]. Overall,
mini-fridges contributed to 33% of the electricity use in bedrooms that had these appliances,
and 16% of all bedroom electricity use.

Mini-fridge use varied with living situation and the overall electricity use within each
bedroom. They were found more often in six-person apartments (56% of the fridges), than
in four-person apartments (44%), which is to be expected based on the higher number
of people sharing a single kitchen refrigerator in the larger apartments. As shown in
Figure 5 and Table 3, a higher percentage of super hogs (64%) have mini-fridges compared
with the hogs (46%) and moderate use (27%) clusters. However, among the residents
in the moderate use clusters, the refrigerators make up a greater fraction (64%) of the
total electricity use in bedrooms with mini-fridges, suggesting that there were fewer other
appliances or electronics in these bedrooms. There were no mini-fridge users in the lowest
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electricity use cluster. These trends and the diminishing importance of mini-fridges to the
total electricity use by the super hogs is evident in Figure 5.

We initially expected that the presence of the 24-h/d electricity consumption by
refrigerators would result in lower hour-to-hour electric load variability for the individuals
who had refrigerators. Additional analysis of the sub-cluster of higher use individuals
defined as hogs, however, shows that this expectation is only weakly affirmed (Figure 6).
The 2013–2016 subset of the values included in Figure 4a now also identifies those with
refrigerators (hatched shading). As expected, the individuals with the greatest variation in
their hour-to-hour electricity consumption (yellow bars on the right), had no refrigerators.
However, many people with no refrigerators had very little hourly variability and some
with refrigerators had a great extent of hourly variability.
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individuals.

Table 3. Electricity use by mini refrigerators—analyzed by cluster.

Cluster: Miser Moderate Hogs Super Hogs

Number of bedrooms 40 60 59 36
Number with a fridge 0 16 27 23
Percent of bedrooms with a fridge 0 27% 46% 64%
Avg. fridge elec use (kWh/d) 0 0.39 0.45 0.50
% fridge elec use—mini-fridge owners 0 64% 44% 21%
% fridge elec use—overall bedrooms 0 20% 20% 13%

Overall, the mini-refrigerator analysis was not sufficient to understand the magnitude
or variability of electricity consumption, especially of the hog and super hog clusters. Super
hog users typically consume 2–5 kWh/d in their bedrooms (median across all days for
each individual), with a few individual days as high as 13 kWh/d. A review of standard
appliance power and energy use [38] was considered here to envision what it might take to
reach these values. At the median of all super hogs (2.2 kWh/d, Figure 2), daily gaming
activity for ~7 h could reach this energy consumption (200 W gaming console + 100 W
50 inchLED monitor). For those super hogs at the higher end of the consumption (median
daily electricity use ~4.5 kWh/d, Figure 2), reaching this level of electricity use could be
accomplished by adding an inefficient refrigerator (1 kWh/d, Figure 5) and increasing
the power consumption of the gaming computer to 400 W, still with the 50inch LED TV.
Gaming activity would be required for ~7 h on average every day. Room-sized heaters or
air conditioners could also contribute to the high electricity use values we observed.
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4.5. Value of Intervention or Policy Initiatives to Reduce Electricity Consumption

Analysis of highly granular data (hourly and daily measures at the circuit level) allows
policymakers, administrators, or building managers to consider policies or interventions
to address specific behaviors. This is especially needed in housing such as rental units,
or university or military housing, where the residents are not influenced to change their
behavior based on a monthly electric bill [11].

Four hypothetical policy outcomes are discussed here in terms of their potential to
reduce electricity use. The potential savings are based on the energy use distributions
presented in Table 1 and refrigerator use summary statistics in Table 3.

1. No mini-refrigerators (16% reduction of bedroom electricity use);
2. Median daily bedroom electricity use for an individual (across the semester) does not

exceed the 90th percentile of use (2.09 kWh/d; 33% savings of bedroom electricity
use);

3. Bedroom daily electricity does not exceed the 90th percentile as determined across
the semester, all 312 bedrooms (2.24 kWh/d maximum, 35% savings of bedroom
electricity);

4. Apartment daily electricity use per capita use does not exceed the 90th percentile
as determined for all apartments, all days (3.71 kWh/d/person; 20% savings of
apartment electricity use).

Mechanisms to move toward these outcomes could include daily electricity use feed-
back with motivational messages (e.g., climate change, health benefits, social norming),
significant fines for excessive consumption, or an outright ban on refrigerators. Approaches
such as a monetary fine are consistent with deposits in rental units or end-of-semester
charges to students for damage to the housing unit. Excessive electricity use could be
considered in an analogous way to other forms of damage, and some universities are
moving towards sub-metered apartments. The collection and interpretation of granular
electricity consumption data would justify and facilitate any of these approaches. It is the
intent here to explore the potential benefits if such reductions could be achieved, not to
develop specific policies that would be effective to reach these outcomes.
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Extrapolating the results obtained from residents in the Smart Housing Test Bed to
all 689 (per year) apartment residents at Clarkson University helps to show the potential
broader impacts of these changes. We estimate that the apartments on campus consume
~75 MWh electricity per year, with 28 MWh of those in bedrooms (analysis details are
included in the supplemental materials, SM-4). This represents just 0.3% of the main
campus’ total electricity consumption. Of the four potential policy or intervention outcomes,
they could potentially save 4.4 (no refrigerators) to 15 (reduce apartment daily electricity)
MWh electricity per year. Focusing on the bedroom reduction in electricity could save
9–10 MWh/y. These savings are not additive as reductions in any one of these would affect
other measures too.

In the context of one university, these savings are small. However, there are also
potential co-benefits for the students living in these apartments. Through any energy con-
servation interventions or policies used to achieve these reductions, these young adults will
learn the consequences of their electricity use potentially both through external motivation
prompts (fines or bills) or internal motivation through feedback, messaging, and social
norming [8]. Any retention of these motivating factors could carry into their post-collegiate
lives where additional savings could accrue.

The key findings of this work can be generalized well beyond this particular test bed.
The general nature of the results, which show that there is a wide range in the magnitude
and variability in how individual residents use electricity, are likely typical of other sit-
uations where the residents are not directly responsible for paying their electricity bills
and thus do not have a financial motivation to adopt more conservative behaviors. Other
groups in comparable situations include young people in many mid-latitude, developed
countries, multi-family dwellings, army barracks and other group living environments. In
these cases, we can expect a small fraction of individuals who consume a disproportionately
large fraction of the electricity resource, but with very different use behaviors and patterns
among them.

While generalizability may extend to the broader population, this paper does not
address cross-cultural differences in different countries. For instance, European or Asian
cultures may have a greater inherent willingness to conserve energy than students in the
United States and may consume less electricity than shown here.

5. Discussion

In this study, individual electricity consumption is quantified at a highly granular
level. Previous studies have focused only on electricity use at the apartment or household
level but have not provided insights on individual electricity use among members living in
the same house. Our analysis shows that bedrooms are the area in student apartments that
present the highest electricity use and high variability among individuals. The understand-
ing of individual electricity use at the bedroom level provides insights into different type of
users, their patterns of consumption and impacts of appliances on individual electricity use.
These findings provide opportunities to design policies and interventions that specifically
address these types of patterns and behaviors such that energy conservation and efficiency
goals can be more successfully implemented.

The analysis of 312 users resulted in identification of 4 types of users: misers, moderate,
hogs and super hogs. The unequal distribution of electricity use among type of users shows
that 18% of users are responsible for 48% of electricity consumption overall. This is
consistent with the Pareto Principle analogy that states that for many phenomena about
80% of the consequences are produced by 20% of the causes [39].

The analysis of the impact of mini-fridges on electricity use highlights the need to
better identify and assess the role of appliances on electricity use. Asensio and Delmas [24]
emphasize that electricity use linked with appliances and electronics have been rising in
recent years. Furthermore, their study found that the two major contributions to electricity
use at the household level are linked with plug load at 36% and refrigerator use at 19%.
Likewise, Ref. [40] draws attention to the need to identify and target specific appliances
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based on contribution to electricity use. Thus, it is relevant to understand the dynamics
around the use of electronics among individual members of the house to provide insights
for setting better strategies towards energy conservation.

From a policy perspective, the use of granular data that provides information of
electricity use at the individual level can help to improve policies that use information-
based strategies to promote energy conservation. Individual profiles can assess users’
characteristics with more precision to better design and improve the impact of interventions
for specific subpopulations [20] that rely on information strategies to promote energy
conservation. Even though our study analyzes the impact of only one major appliance,
future studies can work on understanding other energy-intensive appliances such as high-
powered electronics to understand the appropriate focus of interventions and whether
interventions should be more efficient if they target a one-shot specific action such as
upgrading refrigerators or if it is necessary to target the development of daily habits such
unplugging electronic equipment when not in use.

From a supply and demand management perspective, understanding specific profiles
can help to target users that have significant contributions to peak load [22]. Asensio
and Delmas [24] emphasize the importance of load shifting behavior from peak hours
to off-peak hours to increase reliability in the power grid system and reduce the risk of
blackouts, brownouts, and other failures. Several of the papers discussed here mostly use
mathematical algorithms to identify particular energy use activities, hourly load profiles,
and individual behavior. They generally do not have substantial databases of measured
electricity use data to verify their approaches (e.g., [19]) or truly understand the nature of
incentives that would help to shift or decrease peak loads. In contrast, our measurement
and use of granular data at the individual level can provide insights into electricity use,
including variability among residents’ magnitude of use and peak hours.

This study showed the value of granular electricity data for understanding and quan-
tifying key variables that differentiate individual electricity use behaviors, but it is not
without limitations. Individual energy use in this study assumed that circuit-level data for
single bedrooms in student apartments are a good proxy to study individual electricity
use. Figure 7 illustrates the value of using bedroom data to assess individual electricity use
behavior relative to the aggregated apartment-level data. These three apartments are repre-
sentative of many living situations where individuals within apartments have very different
personal electricity use behaviors. Information for all apartments is included in the sup-
plemental materials (SM-5). For the second and third apartments (apt. quartiles 2 and 3),
the presence of individuals in the super hog cluster (#4) would not have been identified if
only the apartment’s overall quartile was used as a measure of the behavior of all residents.
In contrast, using only the bedroom data to assess behavior of individuals in the first
apartment (quartile 4) did not capture their likely high electricity use measured in the
common living areas. The two individuals with the * designations had low bedroom use
but in an apartment with high use in common areas. While the use of only bedroom data is
an acknowledged limitation of the work presented in this paper due to its lack of inclusion
of electricity use in other living areas, a relatively small number of individuals (26 students;
8.3% of the 312 total) were identified who were likely falsely identified as electricity use
misers.
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work has focused on measurement in simpler situations (e.g., offices) or use of mathemat-
ical algorithms to disaggregate data into component parts. Our measured data for a large 
number of residents provides an opportunity to test and validate these modeling ap-
proaches. 

The general trends that we see in student usage are likely generalizable to broader 
populations who also are not directly motivated by the receipt and payment of monthly 
electricity bills. While this is an untested proposition, the trends of high variation in usage 
magnitude and hourly variation (for instance, late evening peak, midday peak, or constant 
high-usage) are very likely a trend that we might see more broadly with other young rel-
atively affluent adults who are in situations where they do not directly see or pay utility 
bills. 

Future work based on the smart housing testbed correlates these individual electric-
ity use characteristics with their respective responses to a survey of energy use attitude 
and motivations to examine additional underlying reasons for high-use behavior among 
some residents. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1. Table S1. Individual Bedroom and Days per Resident Data. Table S2. Daily 
bedroom electricity use for each cluster. Table S3. Correlation Matrix for variables included in PCA. 

* 
* 

Figure 7. Bedroom and apartment per capita electricity use for 15 students living in three separate
apartments. The cluster assignment for each individual (1 = misers through 4 = super hogs) is
compared to the quartile assigned to the apartment total electricity use (2 = 25th–50th percentile
though 4 = 75th–100th percentile). The median electricity use is shown for the individual (blue bars
are a fraction of the maximum, 6.0 kWh/d); the apartment common living areas (green bars relative
to the maximum, 2.31 kWh/d/person) and the overall apartment total electricity use (orange bars
relative to maximum, 5.75 kWh/d/person). The * identifies two individuals for whom the bedroom
electricity use might not be a good proxy for their individual electricity use behavior due to the very
high electricity use in the common area.

6. Conclusions

The present research contributes to the scientific understanding of residential indi-
vidual electricity consumption. Our results demonstrate that high users who consume a
disproportionate fraction of the total electric energy can be divided into distinct subgroups
based on variation in the magnitude of their hourly load profiles, with some high users
showing small hourly variability and other high users with significant variability in electric-
ity use). Residents’ lack of information about their electricity use creates a gap between the
degree to which people acknowledge the need for resource efficiency practices and their
actual conservation actions [10,11]. Thus, this basic knowledge about the dimensionality of
users, which has not previously been published, can be leveraged to better target or align
intervention and policy to specific types of users and behaviors. Previous work has focused
on measurement in simpler situations (e.g., offices) or use of mathematical algorithms to
disaggregate data into component parts. Our measured data for a large number of residents
provides an opportunity to test and validate these modeling approaches.

The general trends that we see in student usage are likely generalizable to broader
populations who also are not directly motivated by the receipt and payment of monthly
electricity bills. While this is an untested proposition, the trends of high variation in
usage magnitude and hourly variation (for instance, late evening peak, midday peak, or
constant high-usage) are very likely a trend that we might see more broadly with other
young relatively affluent adults who are in situations where they do not directly see or pay
utility bills.

Future work based on the smart housing testbed correlates these individual electricity
use characteristics with their respective responses to a survey of energy use attitude and
motivations to examine additional underlying reasons for high-use behavior among some
residents.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/su15054171/s1. SM-1. Basic Descriptive Statistics, Table S1. Individual
Bedroom and Days per Resident Data; Table S2. Daily bedroom electricity use for each cluster.
SM-2. PCA analysis, Table S3. Correlation Matrix for variables included in PCA; Table S4. KMO
and Bartlett’s test statistics; Table S5. PCA Communalities; Table S6. PCA Total variance explained.
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SM-3. SPSS Results Cluster analysis, Table S7. Clusters Defined; Figure S1 Hierarchical clustering—
validation of clusters. SM-4. Details—analysis of annual savings if policy outcomes achieved, Table S8.
Details—analysis of annual savings if policy outcomes achieved. SM-5. Analysis – Value of individual
measures and bedrooms as proxy for individual use, Figure S2e Median electricity use of all residents
organized by apartment. SM-6. Demographic characteristics dataset, Table S9. Distribution of student
majors in dataset.
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