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Abstract: Thermochemical conversion technology for sewage sludge (SS) management has obvious
advantages compared to traditional technologies, such as considerable volume reduction, effective
pathogen elimination, and potential fuel production. However, few researchers conducted com-
parative research on the greenhouse gas (GHG) emission performances of these technologies. This
paper evaluates the lifecycle carbon footprints of three SS thermochemical conversion technologies,
including hydrothermal liquefaction (HTL) (Case 1), pyrolysis (Case 2), and incineration (Case 3)
with software OpenLCA and Ecoinvent database. The results show that Case 1 has the smallest
carbon footprint (172.50 kg CO2eq/t SS), which indicates the HTL process has the best GHG emission
reduction potential compared to other SS disposal routes. The biggest contributor to the carbon
footprint of SS thermochemical conversion technologies is indirect emissions related to energy con-
sumption. So the energy consumption ratio (ECR) of the three cases is calculated to assess the energy
consumption performances. From the perspective of energy conversion, Case 1 shows the best per-
formance with an ECR of 0.34. In addition, element balance analysis is carried out to deeply evaluate
the carbon reduction performance of the three cases. This study fills the knowledge gap regarding
the carbon footprints for SS thermochemical conversion technologies and provides a reference for
future technology selection and policymaking against climate change in the SS management sector.

Keywords: sewage sludge; carbon footprint; energy consumption; thermochemical conversion

1. Introduction

To deal with global climate change and limit temperature increase, as agreed upon
in the Paris Agreement [1,2], China is taking action to fulfill its goal of carbon neutrality
by 2060. With rapid urbanization and population growth, the continuous increase in
sewage sludge (SS) production from wastewater treatment plants (WWTPs) has become
a big challenge to meeting greenhouse gas (GHG) reduction goals. SS is considered the
vital byproduct of WWTPs, mainly containing primary sludge and waste-activated sludge
when the activated sludge process is used. It was estimated that each person produced
0.1–30.8 kg SS per year on average [3–5]. In China, the SS yield related to WWTPs had
increased to up to 105 t/day [6]. Considering the consistent economic growth and increase
in population and urbanization, a continued rising trend for SS production is expected in
the future.

In general, SS is a mixture of microorganisms and zoogloea granules. The moisture
content of SS usually exceeds 90 wt% after treated by clarifier and thickener [7]. Due to the
characteristic of SS, it takes a massive amount of energy to remove the water and make it
favorable for further processing. For a WWTP, the operation associated with SS treatment
and disposal may make up more than 50% of its operating expenses and contribute to 40%
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of its GHG emissions [8]. To meet the target of carbon neutrality for the globe and for China,
understanding the GHG emission performances of sludge management technologies is
crucial to decision making within the wastewater treatment sector.

Anaerobic digestion, aerobic composting, and landfill were methods that were once
applied widely for SS treatment and disposal. However, harmful pollutants such as
pathogenic agents, heavy metals, and pharmaceuticals in SS can not be destroyed and
removed completely with the above disposal routes, which causes problems for human
health and the environment. Complete elimination of pathogens is especially important in
the context of the global COVID-19 epidemic. These methods also take a long time and a
large area of land space to decompose the organic matter in SS [9–18]. Another drawback
of these methods is the waste of carbon. It is widely known that during microorganism
degradation in landfill and agricultural application processes, the carbon in SS is converted
to carbonaceous gas that dissipates in the atmosphere, and causes odor and GHG emission.
Even in the anaerobic digestion process, only 20–30 wt% of the carbon in SS is recycled as
CH4 to substitute energy consumption; the remaining 70–75 wt% is converted to CO2 and
is emitted into the environment [7].

The thermochemical conversion technology for SS management has obvious advan-
tages compared to the above-mentioned traditional technologies. Through the conversion
of carbon in SS to fuel gas, bio-oil, and biochar, this method achieves not only considerable
volume reduction but also effective pathogen elimination, potential fuel production, and
unstructured GHG emission mitigation [19,20]. With the increasing number of wastew-
ater treatment infrastructures around the world, thermochemical conversion of SS has
been deemed one of the most promising technologies to handle a growing volume of
SS [19,21–24].

A growing number of investigations on thermochemical conversion of SS have been
reported. SS incineration technology is quite mature and widely used around the world.
Chen et al. [18] carried out the environmental, energy, and economic assessment of the
co-incineration of municipal solid waste and SS in China. In addition, hydrothermal liq-
uefaction (HTL), gasification, and pyrolysis of SS are still in the lab or pilot scale, and the
configuration and running parameters need to be further optimized [7,25,26]. Meanwhile,
the energy efficiency, economic efficiency, and environmental impacts of SS thermochemical
conversion technologies received more attention. Life cycle assessment(LCA) has been
applied extensively as an useful tool for economic and environmental benefits evalua-
tion [27–29]. However, most of the research focused on energy recovery efficiency or costs,
while little comparative research was conducted on the GHG emission performances of
different SS thermochemical conversion routes.

To fill this knowledge gap, three SS thermochemical conversion technologies, including
HTL, pyrolysis, and incineration were compared based on their carbon footprints, energy
consumption, and element balances using the methodology of life cycle assessment(LCA),
energy consumption ratio (ECR),and material flow analysis (MFA) in this study. The results
provide a scientific basis for technology selection and policy planning of SS management to
reduce climate change.

2. Materials and Methods
2.1. Case Study Descriptions

Thermochemical conversion technologies can be sorted into two groups based on
their requirements for feedstock moisture content. Usually, a feedstock with a moisture
content below 10wt% can be treated through incineration and pyrolysis processes. How-
ever, the pre-drying step for reducing the moisture content in wet feedstock requires a
large quantity of energy, which greatly affects the GHG emissions related to energy con-
sumption. In contrast, the hydrothermal method can deal with wet feedstock without
the energy-consuming step of drying and produce similar products [30]. Therefore, three
cases were selected: Case 1 (HTL), which represents non-pre-drying technologies, Case 2
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(pyrolysis), and Case 3 (incineration). Cases 2 and 3 represent pre-drying technologies in
different degrees.

In WWTPs of China, the mixture of primary sludge and waste-activated sludge is
commonly thickened and dewatered to a moisture content of 80wt% or so, and then the
dewatered sludge is transported to a specialized plant for subsequent processing and final
disposal. Hence, dewatered sludge with a moisture of 80 wt% was used as the uniform
feedstock in all three cases.

Case 1. Sludge slurry was processed via HTL at 340 ◦C for 20 min. Then the reactor
was cooled to room temperature and the products of fuel gas, water, bio-oil, and solid
phase were collected and separated for weighing. The gas product was discharged into the
atmosphere without extra treatment. The bio-oil was recovered as an alternative energy
source, and the solid was landfilled. The aqueous phase was sent back to the reactor for
cyclic utilization.

Case 2. SS was pre-dried to a moisture content of 7 wt%, while the rest of the wastew-
ater was collected and sent back to the WWTP for treatment. Then, the dried sludge was
sent to a fluidized bubbling bed reactor for pyrolysis. The reactor was heated to 500 ◦C
with nitrogen as the fluidization gas. After the reactor cooled to room temperature, the
bio-oil and biochar yields were determined by weighing, and the gas yield was calculated
from the difference. All the products were collected for substituting fossil energy.

Case 3. As is known to all, SS with a moisture content of 40 wt% shows almost the
same combustion characteristics as those with a moisture content of 10 wt%, but requires
less energy, and economic and environmental cost [18,31,32]. In case 3, the moisture content
in SS was removed through a heating process, while the rest of the wastewater was collected
in a sewage tank and sent back to the WWTP. Semi-dried sludge with a moisture content of
40 wt% was sent to the circulating fluidized bed incinerator for power generation. Diesel
was added in the ignition stage to make the SS burn. To help the SS burn steadily in the
incinerator, coal was added as auxiliary fuel to offset the low heating value of SS. The
incinerating process converted the moisture and combustible composition in SS to flue
gas, which followed the system and entered the flue gas purification system (with CaO)
with a bag filter to remove the acid gases and dust, etc. In the end, the non-combustible
compositions in SS were delivered to landfill.

2.2. Methodology for Carbon Footprint Accounting

The LCA provides a scientific and useful tool for quantitatively evaluating resource
consumption and environmental emission of different products and technologies dur-
ing a period or for their whole lifetime [33]. The carbon footprint accounting of the SS
thermochemical conversion technologies followed the theory and procedure of the LCA.
The definition of carbon footprint in this study was the summation of direct GHG emis-
sions in the sludge treatment unit and the indirect GHG emissions caused by energy and
chemical consumptions within the system boundary. The GHGs calculated in the study
included CO2, CH4, and N2O. For comparison, the latter two kinds of gases were con-
verted by global warming potentials (GWPs) of 28 and 265 respectively into carbon dioxide
equivalents (CO2eq).

This part of the study aimed to estimate and compare the carbon footprint of the
three chosen SS thermochemical conversion cases. A further goal was to identify the most
important contributor to GHG emissions.

OpenLCA, created by GreenDelta, is an open-source LCA software used for creating
the model for each case in the research. Ecoinvent, an European reference Life Cycle
Database of the Joint Research Center, was used as the background database and is widely
applied in previous studies. IPCC 2013 (GWP100) was selected as the impact assessment
method in OpenLCA. The next sections detail the setting of the functional unit and system
boundary as well as the interpretation of inventorydata and results.
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2.2.1. Functional Unit

Different from the LCA of a product, the functional unit in a waste disposal LCA
is usually defined as the input for the system. In this study, the functional unit was the
disposal of 1 t dewatered SS with a moisture content of 80 wt%. In the life cycle inventory,
all the consumption, production, and emission data were adapted per functional unit (t SS).

2.2.2. System Boundary

Figure 1 indicates the system boundaries of the three cases. The system boundary
started from SS drying (if necessary) and ended at the output of useful products from the
thermochemical conversion process. Previous research results showed that the environ-
mental impacts of the construction and demolition phases were much less than those of the
operation period [34–36], and were not accounted for in this study. The GHG emissions
related to the energy consumption of SS dewatering from moisture of 95 wt% to 80 wt%
and transportation from the WWTP to the sludge disposal plant were attributed to the
WWTP, which was not included in this assessment. The GHG emission in the wastewater
plant was not considered since it was assumed to be the same for all the cases.
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Within the defined system boundary of the three cases, SS, energy (electricity, coal,
and diesel) and chemicals (e.g., CaO, H2O, etc.) were considered as input; energy products
(fuel gas, bio-oil, biochar, and electricity), GHGs and other contaminants were output.
Direct GHG emissions from sludge treatment (e.g., CH4 emission from HTL), indirect
emissions from the production and transportation of chemicals, electricity, and auxiliary
fuel consumption during operations were included in the carbon footprint calculation and
evaluation. For convenient comparison, the substitution effects of the energy products are
evaluated by converting them to an equivalent amount of heat or electricity. At the end
of the process for Cases 1 and 3, the solid residuals, such as biochar, were delivered to a
sanitary landfill, but the energy consumption and related GHG emissions were not taken
into account in this paper [37,38].

It is worth noting that due to its biogenic origin, GHG inventory by Intergovernmental
Panel on Climate Change (IPCC) does not contain the direct CO2 emissions from the SS
treatment and disposal process. However, many researchers found that carbon derived
from fossils can take up to approximately 20 wt% of total carbon in wastewater. Part of
this fossil carbon is transformed into sludge. Neglect of direct CO2 emissions causes an
under estimation of the carbon footprint for SS treatment and disposal [39–41]. Therefore,
direct CO2 emissions were still not accounted for in the carbon footprint but listed in
the inventory.

2.2.3. Uncertainty Analysis

The data used in this analysis were from existing lab studies and projects. For compar-
ison, some assumptions were made. Uncertainties always exist due to the variability and
availability of these data. In general, the original research did not evaluate the uncertainties
of the data and results. To further test the accuracy of this study, the data was assumed to
follow a normal distribution, and the accounting results were modeled for 100 iterations
using a Monte Carlo simulation [42].

2.3. Energy Consumption

Thermochemical conversion processes are usually energy-intensive processes because
they need to heat raw materials to a high temperature. In order to describe the relationship
between energy products (fuel gas, bio-oil, biochar and et al.) and energy consumption, an
indicator called the energyconsumption ratio (ECR) was brought in [43–45]. The definition
of ECR is as follows:

ECR = EI/EP, (1)

where EI is the energy input of thermochemical conversion processes (MJ/t) and EP is the
energy production during the processes (MJ/t).

EP is estimated by the higher heating value (HHV) of energy products and their yields
(Y). Taking into account the rate of energy loss and heat recovery, the energy required for
the thermochemical conversion processes is:

EP = CP × m × dT × (1 − Rh )/Rc, (2)

where m is the mass of the SS (t), Cp is the specific heat capacity of the SS (kJ/t K), dT is the
temperature increase before and after conversion (K, assuming the initial temperature is
298 K), Rh is the heat recovery rate (assuming to be 0.5), and Rc is the combustion efficiency
(assumed to be 0.7).

According to [31,46] and by applying Kopp’srule, ECR was calculated using the
following equations.

For the HTL conversion process:

ECRHTL = [Wi Cpw + ( 1 − Wi ) Cps]× dT × m × ( 1 − Rh ) / Y × HHV × Rc, (3)
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where Wi (%) is the moisture content of SS before the HTL process, Y(t) and HHV (kJ/t) are
the energy products’ yield and higher heating value, respectively, Cpw is the specific heat
capacity of water (4.18 kJ/kg/K), and Cps is the specific heat capacity of sludge, which can
be calculated by:

Cps = 0.709 α + 14.304/2 β + 1.04/2 γ + 0.71 δ + 0.918/2 ε, (4)

where α, β, γ, δ, εrepresent the mass fractions of C, H, N, S, and Oof the SS respectively, and
0.709, 14.304, 1.04, 0.71, 0.918 are the heat capacities of those elements at 298 K (kJ/kgK).

For the pyrolysis conversion process:

ECRpyro = [Wv × Cpw × 75 + Wv Lvap+ ( 1 − Wv ) Cps × dT] × m ( 1 − Rh)/Y × HHV × Rc, (5)

where Lvap is the latent heat of volatilization for water in SS (2260 kJ/kg) and Wv (%) is the
moisture content that isneeded to evaporate prior to conversion.

For incineration conversion in this study:

ECRInci = ∑mi Qi / Y × HHV, (6)

where mi is the mass of auxiliary fuels (kg) and Qi is the heat value of auxiliary
fuels (kJ/kg).

ECR < 1 indicates that more energy is recovered by-products than energy input in the
process; otherwise, more energy is required than is recovered.

2.4. Element Balance Analysis

The carbon and nitrogen element balance analysis was carried out based on the
elemental composition of sludge and products. C, H, N, S, and O in SS, bio-oil, and biochar
samples were analyzed using an elemental analyzer. Fuel gas composition was determined
using gas chromatography. Water phase samples were analyzed for total organic carbon
and total nitrogen content based on standard methods [7,18,28].

3. Results
3.1. Carbon Footprint
3.1.1. Life Cycle Inventory

The technical parameters of energy consumption, material consumption, products
yield, and pollutant emissions were obtained from the literature. For ease of calculation
and comparison, some assumptions were made in the life cycle inventory analysis. All
the input and output data are displayed in Table 1. Please note that although the direct
CO2 emissions of Cases 1 and 3 are listed, the carbon footprint in the next section does not
include them. This is because this research followed IPCC guidelines, which consider direct
CO2 emission from SS disposal as biogenic and not counted towards GHG emissions.

3.1.2. Carbon Footprint

As Figure 2 displays, the HTL, pyrolysis, and incineration processesfor SS have a total
carbon footprint of 172.50, 322.23, and 242.02 kg CO2eq/t SS, respectively. Compared with
regular sludge disposal technologies (sanitary landfill of 317.518 kg CO2eq/t SS, building
materials application of 247.922 kg CO2eq/t SS, anaerobic digestion with land application
of 190.038 kg CO2eq/t SS, and aerobic composting with land application of 146.276 kg
CO2eq/t SS), thermochemical conversion processes emit similar or smaller amounts of
GHG [50]. It is worth noting that these results for traditional SS disposal routes were cal-
culated on a dry sludge basis; the GHG emission associated with SS/biosolid dewatering
and drying was not included. As we all know, the drying process takes a huge amount of
energy, about 1.808 GJ/t SS (80 wt% of moisture content), equivalent to a GHG emission of
164.17–473.04 kg CO2eq [51,52]. If counted as part of emissions, the thermochemical conver-
sion technologies for SS show great potential for carbon reduction.
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Table 1. Life cycle inventories of SS disposal processes.

Item Unit
Case 1
(HTL)

[7,47–49]

Case 2
(Pyrolysis)

[27,28]

Case 3
(Incineration)

[18,27]

Energy input
Electricity kWh/t SS 251.8729 393.5651 No electricity added

Heat MJ/t SS No heat needed No heat needed 462
Auxiliary fuel

Coal ton/t SS No auxiliary fuel added No auxiliary fuel added 0.513
Diesel kg/t SS 0.055

Chemicals input
H2O ton/t SS

No chemical added No chemical added
5

CaO kg/t SS 6
Direct gas emissions

CO2 kg/t SS 31.8492 No gas directly emitted 54.5
CH4 kg/t SS 0.162 No CH4 directly emitted

Energy output
Electricity kWh/t SS No electricity produced No electricity produced 53
Fuel gas MJ/t SS No fuel gas produced 1086.8 No fuel gas produced

Biochar MJ/t SS Biochar was landfilled
without energy recovery 488 Biochar was landfilled

without energy recovery
Bio-oil MJ/t SS 2669.16 1250.64 No bio-oil produced
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As the reason described in Section 3.1.1., the SS incineration process actually emitted
242.02 plus 54.5 kg CO2eq/t SS, which was very close to the carbon footprint of the SS
pyrolysis process. This is consistent with the fact that auxiliary fuel was converted into
CO2 through the incineration process. As for the reason why pyrolysis and incineration
have similar carbon footprints and larger footprints than the HTL process, it is due to the
fact that SS drying takes a huge amount of energy and HTL is more energetically favorable
for handling feedstock with a high moisture content [30].

Direct emission reflects the carbon emission effect in situ. Direct emission of the three
cases amounted to 4.54, 0, and 0 kg CO2eq when 1 t dewatered sludge was disposed of.
Case 2 showed the best carbon reduction potential compared to cases 1 and 3 with no GHG
emission directly into the environment. This is because the carbon in SS had been recovered
in the form of energy or fixed in biochar through pyrolysis conversion, instead of in the
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form of fugitive emissions or partly fugitive emissions into the atmosphere in case 2 and
case 3.

However, for the three cases, more of the carbon footprints were derived from indirect
emissions as Figure 2 demonstrates. Indirect emissions amounted to 286.46, 447.67, and
302.30 kg CO2eq, respectively, which were related to energy and chemical consumption
during the conversion process. It is easy to understand that thermochemical conversion
processes are energy-intensive processes and need much energy to break sludge particles
into small molecules. Case 2 demanded more energy than case 1 because the conversion
process needed to pre-dry the feedstock to remove water content and heat sludge to a
higher temperature to purchase valuable products. Indeed, the three cases recovered energy
during the thermochemical conversion processes when sludge was disposed of, which
could offset the total emissions of 118.51, 125.44, and 60.29 kg CO2eq, respectively. However,
the recovered energy was not enough to offset the energy input and the related GHG
emissions. For the local place, the carbon footprint of sludge disposal could be cut down
through the pyrolysis process. From a fulllife cycle and global perspective, the carbon
footprint had not been reduced; it was just moving from sludge disposal plants to power
stations, chemical plants and et al. It does not mean that the thermochemical conversion
process is of no benefit at all. Concentrated discharge of GHG in one place is easier to
manage and treat than disorganized discharge in many places. Some measures can be
taken to minimize the GHG emission of power stations, chemical plants and et al., such as
energy efficiency improvements and carbon capture. Accordingly, the GHG emission of
the downstream process can be reduced.

Meanwhile, a sensitivity analysis was carried out by modifying the relevant input
and output from 90% to 110% to check its impact on the carbon footprint. Input energy,
direct emission, and recovered energy were chosen as the variables. Figure 3 presents the
sensitivity analysis result of the three cases.The higher the slope of the line, the higher
the sensitivity.

From Figure 3, it can be seen that for the three cases, the carbon footprint was most
sensitive to input energy, and the recovered energy took second place. The carbon foot-
print was least sensitive to direct emissions. This result was consistent with the previous
discussion.

3.1.3. Carbon Footprint under Green Electricity

As illustrated above, GHG emissions derived from energy consumption are the major
contributor to the total carbon footprint for SS thermochemical conversion processes.
Most energy consumption during the thermochemical conversion process is in the form
of electricity. In order to figure out how the energy source affects its GHG emission
characteristic, some scenarios were assumed and the carbon footprints were analyzed. Four
scenarios of the electricity sector carbon reduction rate, i.e., 20%, 50%, 70%, and 100%, were
examined. The results are demonstrated in Figure 4.

A decreasing trend of indirect emissions, as well as net emissions with carbon reduc-
tion by the electricity sector, was observed in Cases 1 and 2. When the electricity sector
cut down carbon emissions by 70%, Cases 1 and 2 almost reached carbon neutrality. Case
3 had a constant indirect emission and carbon footprint due to the auxiliaryfossil energy
utilization in the incineration process, such as coal and diesel. This part of the GHG emis-
sions could not be offset by carbon reduction in the electricity sector. Therefore, the carbon
emission characteristics of sludge thermochemical conversion may be strongly affected
by its energy resources. With the rapid development of clean energy, thermochemical
conversion technology will release great potential in carbon reduction for SS management.



Sustainability 2023, 15, 4170 9 of 16

Sustainability 2023, 15, 4170 9 of 17 
 

improvements and carbon capture. Accordingly, the GHG emission of the downstream 
process can be reduced. 

Meanwhile, a sensitivity analysis was carried out by modifying the relevant input 
and output from 90% to 110% to check its impact on the carbon footprint. Input energy, 
direct emission, and recovered energy were chosen as the variables. Figure 3 presents 
the sensitivity analysis result of the three cases.The higher the slope of the line, the 
higher the sensitivity. 

 
(a) 

 
(b) 

Sustainability 2023, 15, 4170 10 of 17 
 

 
(c) 

Figure 3. Sensitivity assessment for Case 1 (a), Case 2 (b), and Case 3 (c). 

From Figure 3, it can be seen that for the three cases, the carbon footprint was most 
sensitive to input energy, and the recovered energy took second place. The carbon foot-
print was least sensitive to direct emissions. This result was consistent with the previous 
discussion. 

3.1.3. Carbon Footprint under Green Electricity 
As illustrated above, GHG emissions derived from energy consumption are the 

major contributor to the total carbon footprint for SS thermochemical conversion pro-
cesses. Most energy consumption during the thermochemical conversion process is in 
the form of electricity. In order to figure out how the energy source affects its GHG 
emission characteristic, some scenarios were assumed and the carbon footprints were 
analyzed. Four scenarios of the electricity sector carbon reduction rate, i.e., 20%, 50%, 
70%, and 100%, were examined. The results are demonstrated in Figure 4. 

 
Figure 4. Carbon footprint of the three cases with different electricity carbon reduction rates. 

A decreasing trend of indirect emissions, as well as net emissions with carbon re-
duction by the electricity sector, was observed in Cases 1 and 2. When the electricity 
sector cut down carbon emissions by 70%, Cases 1 and 2 almost reached carbon neutral-

Figure 3. Sensitivity assessment for Case 1 (a), Case 2 (b), and Case 3 (c).



Sustainability 2023, 15, 4170 10 of 16

Sustainability 2023, 15, 4170 10 of 17 
 

 
(c) 

Figure 3. Sensitivity assessment for Case 1 (a), Case 2 (b), and Case 3 (c). 

From Figure 3, it can be seen that for the three cases, the carbon footprint was most 
sensitive to input energy, and the recovered energy took second place. The carbon foot-
print was least sensitive to direct emissions. This result was consistent with the previous 
discussion. 

3.1.3. Carbon Footprint under Green Electricity 
As illustrated above, GHG emissions derived from energy consumption are the 

major contributor to the total carbon footprint for SS thermochemical conversion pro-
cesses. Most energy consumption during the thermochemical conversion process is in 
the form of electricity. In order to figure out how the energy source affects its GHG 
emission characteristic, some scenarios were assumed and the carbon footprints were 
analyzed. Four scenarios of the electricity sector carbon reduction rate, i.e., 20%, 50%, 
70%, and 100%, were examined. The results are demonstrated in Figure 4. 

 
Figure 4. Carbon footprint of the three cases with different electricity carbon reduction rates. 

A decreasing trend of indirect emissions, as well as net emissions with carbon re-
duction by the electricity sector, was observed in Cases 1 and 2. When the electricity 
sector cut down carbon emissions by 70%, Cases 1 and 2 almost reached carbon neutral-

Figure 4. Carbon footprint of the three cases with different electricity carbon reduction rates.

3.1.4. Uncertainty Analysis

Uncertainty analysis was conducted by modifying the relevant inputs or outputs of
the analyzed cases. For illustration, Figure 5 presents the uncertainty analysis result of the
carbon footprint based on changes in energy inputs, direct emissions, and energy outputs.
The uncertainties of the carbon footprints are exhibited as standard deviation bars.

It can be seen that the uncertainty of input energy in Case 3 was the largest. Thismay
be due to the three kinds of input energy. Their impacts on the results may be added and
amplified, while the other two cases had only one kind of input energy. Uncertainties of
the other cases were below 30%, which indicates that the results are highly credible.

3.2. Energy Consumption

Based on the definition and calculation method, an ECR ratio > 1 indicates that the
whole process is a net energy consumer, while an ECR ratio < 1 means that the process
produces more energy than it consumes. In previous research, ECR was applied in order to
study the efficiency of the thermochemical process for wet biomass, such as algal feedstock.
The HTL and pyrolysis processes resulted in 0.44–4 and 0.92–1.24 of ECR based on the
different kinds of algae and the experimental conditions. It can be seenfrom the results in
Table 2 that Case 1 and Case 2 had positive energy consumption ratios when this calculation
method was used, which indicated that the systems were net energy producers. The HTL
and pyrolysis processes showed more favorable energy conversion efficiency when SS
was used as feedstock. From the view of energy conversion, HTL and pyrolysis process
have feasibility for SS disposal. Case 1 had a relatively higher efficiency because it did
not need to pre-dry the feedstock, which reduced the energy needed to evaporate the
extra water content. The heating temperature was also relatively low compared with the
pyrolysis process.

Table 2. ECR ratio of the three cases.

Case 1-HTL Case 2-Pyrolysis Case 3-Incineration

EI(kJ) 906,742 1,416,834 11,190,150
EP(kJ) 2,669,160 2,825,440 190,800
ECR 0.34 0.50 58.65
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Since feedstock moisture is crucial to the efficiency of the thermochemical process,
the impacts of moisture on ECR were studied. According to previous research, the ECR
ratio increased with moisture content in the HTL reactor. This is because water has a
high specific heat capacity and the energy demand grows sharply when moisture content
increases. However, the product yield is not impacted by a feedstock loading increase
with the same proportion of water [53]. Therefore, ECR decreases if the feedstock loading
increases, due to an increase in energy products obtained. The impact of moisture on ECR
is shown in Figure 6, which indicates that an increase in moisture results in an increase in
ECR and hence a decrease in energy conversion efficiency.
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The ECR ratio of Case 3 indicates that the system consumed more energy than it
produced. This is probably attributed to the high water concentration and low heating
value of SS, which makes it need a large quantity of auxiliary fuel to be combusted.

3.3. Element Balance Analysis

The transport of carbon and nitrogen and their distribution in output streams is
important, as this influences not only the quality of the products but also the GHG emission
performance. For instance, it is desirable for a process to concentrate most of the carbon
and nitrogen in the products that can be reused instead of wasting them during processing.

Figure 7 presents the carbon and nitrogen conversion ratio during the HTL, pyrolysis,
and incineration processes of SS. For case 1, bio-oil recovered around 60 wt% of carbon and
36 wt% of nitrogen in the SS. 10 wt% of carbon and 8.5 wt% of nitrogen migrated to the
solid phase. The great majority of nitrogen content in the initial feedstock (around 58 wt%)
was found in the water phase, while its carbon content was lower (about 20 wt%). The rest
of the carbon, about 10 wt%, was converted into CO2 and CH4 in the gas stream, while no
nitrogen was found in the gas phase.

Case 2 was shown to recover 54 wt% of carbon through bio-oil, 33.78 wt% by fuel gas,
and 12.22 wt% through biochar. For nitrogen, the majority was transferred into bio-oil at
77.65 wt%, followed by bio-char at 22.35 wt%. Once again, no nitrogen was found in the
gas phase.

For case 3, most of the carbon and all of the nitrogen migrated to flue gas. Only a very
small part of the carbon is found in the fly ash and slag [54]. Through the sludge incineration
process, the carbon in the sludge was converted to CO, CO2, PCDD (polychlorinated
dibenzopdioxin), and PAHs (Polycyclic Aromatic Hydrocarbons) et al., while the nitrogen



Sustainability 2023, 15, 4170 13 of 16

was converted to NOx and N2O. This means that SS incineration may cause secondary
pollution and that the flue gas needs to be processed carefully.
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In the sludge anaerobic digestion process, only 50 wt% of volatile solid can be con-
verted to biogas, and biogas contains 65 wt% CH4 and 35 wt% CO2. The carbon recovery
rate is no more than 25 wt% [55–57]. Compared with anaerobic digestion, 60 wt% carbon
efficiency to bio-oil in the HTL process and 100 wt% carbon to valuable products in the
pyrolysis process is very appealing.

The wastewater of the HTL process needed to be further processed since there was
still a large quantity of carbon and nitrogen to be recovered. Integration of anaerobic
digestion and HTL is a promising and economic approach. It was reported that around
60 wt% of organics in HTL waters from algae and modeled food waste was removed
through anaerobic digestion [58,59]. The molecular composition of HTL wastewater from
SS and its transformation during anaerobic digestion were studied and will contribute to
the development of efficient methods for HTL wastewater treatment in the future [60].

Meanwhile, the integration of HTL and microalgae could be a promising avenue.
There is some research that explores carbon and nutrient capture by microalgae to valorize
wastewater of biomass HTL process [61]. However, little research on the valorization of
refractory wastewater from the SS HTL process was reported, maybe due to its complex
components and inhibiting effect on biomass growth. Additionally, the gas phase of HTL
is mainly composed of CO2, which should be collected and recycled when in large-scale
application. Therefore, valorizing the wastewater and gas of SS HTL to recover carbon and
other nutrients is an important step, not only clearly beneficial for carbon reduction, but
also good for energy recovery.

It should be noted that this analysis is based on dry sludge, and does not account
for carbon and nitrogen loss with leachate from the sludge drying process, which may
influence the results.

4. Conclusions

This paper analyzed the carbon footprints, energy consumption, and element balances
of SS thermochemical conversion technologies. HTL, pyrolysis, and incineration processes
of SS result in carbon footprints of 172.50, 322.23, and 242.02 kg CO2eq/t SS, respectively.
The input energy is identified as a major GHG contributor, and significant differences
were observed in the energy consumption (906.742, 1416.834, and 11190.150 MJ/t SS,
respectively). HTL and pyrolysis technology of SS are environmentally friendly and a
strategic alternative to mitigate GHG emissions, especially in the scenario of green electricity
as an input energy. HTL shows the best carbon reduction potential with the least carbon
footprint compared to traditional SS disposal routes and the other two thermochemical
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conversion technologies. HTL also has the most favorable ECR ratio, which means that
it is feasible from the view of energy conversion efficiency. For future research, the need
for an effective approach to recover carbon in the water and gas phase of the HTL process
is urgent.

This research demonstrates clearly the potential for thermochemical conversion tech-
nologies to fight against global warming. It provides a useful reference for technology
options and policy-making in the SS management sector through quantitative information.
It could serve as a material and methodological reference for other studies dealing with SS
management and carbon footprint analysis.
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