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Abstract: The shear strength parameters of conglomerate soils are crucial to the stability analysis
of foundation support when excavating and supporting ultra-deep foundation pits in the highland
alluvial lacustrine layer. The difference in water content of conglomerate soils in different regions will
directly affect the values of shear strength parameters. At the same time, more research on the shear
strength of conglomerate soils under different water contents is required. In this study, a series of
large-scale direct shear tests were carried out on the round gravel soil in the plateau alluvial-lacustrine
deposit, and the round gravel soil’s shear strength curves under natural and saturated conditions
and water content were obtained. The influence of different water content on the shear strength
characteristics of the round gravel soil was discussed, and the shear strength parameters of the
round gravel soil with different water content were used in the numerical simulation of ultra-deep
foundation pit excavation and support. The stress and deformation laws of the foundation pit support
were analyzed. The results show that the peak strength of the round gravel soil in the natural water
content state appears between 30% and 45% of the shear displacement, while the peak strength in the
saturated water content state appears around 45–55% of the shear displacement. The shear strength
tends to be stable or slightly weakened with the increase of the shear displacement. The angle of
internal friction and cohesion of round gravel soil in the natural water content state is greater than
those in the saturated water content state. The simulation of the foundation excavation support
shows that the shear strength parameter of the round gravel soil influences the force deformation
of the support structure. The higher the water content of the round gravel soil, the more the shear
strength parameter affects the soil displacement. The research results can provide some reference for
optimizing project design parameters.

Keywords: plateau alluvial-lacustrine deposits; round gravelly soil; large scale direct shear test; shear
strength parameters; numerical simulation

1. Introduction

Plateau alluvial strata are formed by the joint action of river alluvium and lake marsh
sedimentation. Generally, they consist of rounded gravels with high foundation strength
and are often used for urban construction sites [1–5]. Influenced by geological activities on
the Yunnan-Guizhou Plateau, rounded gravel strata are widely distributed in Kunming [6]
and buried at a shallow depth. Influenced by the formation conditions, time, and geo-
graphical area of round gravel soil, the maximum particle size of round gravel soil reaches
60–80 mm, and the poor grading, strong permeability, and interparticle clay composition
lead to the strength of round gravel soil are larger than general soil [7–12]. To a certain
extent, these characteristics make round gravel soils have strong engineering applications,
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leading scholars at home and abroad to focus more on engineering applications or theoret-
ical studies. In contrast, research on shear strength parameters of round gravel soils has
yet to receive more attention [13–15]. With the urban construction of Kunming city, more
and more projects are built on round gravel strata. The shear strength and stress-strain
characteristics of round gravel soils usually need to be considered in the design calculation
of foundation pits. At the same time, there are few relevant studies on round gravel soils,
resulting in most foundation pits in the design calculation can only be taken according
to empirical values, which seriously affects the stability of foundation pit construction.
Especially nowadays, foundation pit projects are developing in the direction of super large
and deep. During design calculation, a slight deviation of soil shear strength parameters
greatly impacts foundation pits’ stability. According to statistics, the annual failure rate of
foundation pits in China reaches more than 10–15%, which causes huge economic losses to
China and threatens the safety of residents and urban construction, mainly due to the lack
of experience in design and construction. Therefore, it is necessary to conduct a systematic
study on the shear strength of round gravel soil parameters for systematic research to avoid
the experience of errors leading to safety accidents in foundation pit construction.

With the continuous in-depth research on the physical and mechanical properties of
coarse-grained soils by scholars at home and abroad, round gravel soils have also been
widely studied. In terms of experimental shear properties of round gravel soil, Tang
Kaishun et al. [16] conducted a large triaxial compression test on round gravel soil in the
Nanning area under different compaction conditions and analyzed and compared the effect
of compaction on shear strength parameters of round gravel soil under various levels of
surrounding pressure. The results showed that the shear strength of round gravel soil was
positively correlated with compaction and significantly improved compared with empirical
engineering values. Ma Shaokun et al. [17,18] conducted a large drained dynamic triaxial
test on round gravel soil in a saturated state. They analyzed the variation of cumulative
strain, stress-strain hysteresis loop, and pore pressure of the round gravel soil under
different relative compactness, dynamic stress amplitude, and the number of vibrations.
Stark et al. [19] investigated the effect of particle shape on the internal friction angle of
beach gravel soils by direct shear experiments on beach gravels. The results showed that
elliptical gravels have a greater effect on the internal friction angle of beach gravel soils, and
increasing the content of elliptical particles in gravel soils can significantly increase their
internal friction angle magnitude. Enomoto et al. [20] investigated the strength, deformation
properties, and small strain properties of undisturbed well-graded gravel soils by a series
of medium and large triaxial and unconfined compression tests. The results showed that
the shear modulus might be large when the small strain properties of gravel soils are
determined by the dynamic method in the laboratory. The dynamic method converges to
the static method test results when the wavelength is significantly larger than the mean
diameter. Secondly, when gravel soil’s dry density and homogeneity coefficient exceeded
certain values, the dynamic and static shear modulus values of in-situ and remodeled soils
increased with the increase of dry density. For the study of the intrinsic model of round
gravel soils. Chen Chen et al. [21] proposed a modified Duncan-Chang intrinsic model for
round gravel soil based on the unified disturbance degree function based on the disturbance
state theory with the relative density Dr as the disturbance parameter. Saberi et al. [22]
established a new elastic-plastic intrinsic model for gravel soil based on double surface
plasticity and critical state geomechanics. To analyze the piling characteristics of round
gravel, Liu Gang et al. [23] proposed a construction method of particle ellipsoid model for
round gravel, established an ellipsoid model database, and derived the piling characteristics
of round gravel through numerical piling tests and comparative analysis with the results of
cylinder piling tests. As for the research on the engineering application of round gravel
soil, Ou Xiaoduo et al. [24] used ABAQUS to simulate the deep foundation excavation of
round gravel-mudstone strata and analyze the effect of deep foundation excavation on
the double-row pile support structure. Ni Xiaorong et al. [25] studied the applicability of
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long-spiral bored piles in round gravel strata. They proposed a new construction process
of secondary pressurized piles for construction problems.

In summary, scholars at home and abroad have studied the strength, deformation, and
other properties of round gravel soil influencing factors and have achieved certain research
results. However, most research focuses on the engineering application of round gravel
formation. Little attention is paid to the influence of water on the mechanical properties
of round gravel soil, and the research results need to be more comprehensive. Due to the
special geographical location and formation conditions of alluvial plateau strata, the shear
strength characteristics of round gravel soil in the formation are different from those in
other regions. They are greatly affected by the change in moisture content. At the same
time, scholars at home and abroad have paid less attention to the physical and mechanical
characteristics of round gravel soil affected by moisture content. Therefore, based on the
foundation pit project of the 14th water purification plant in Kunming, this study carried
out a large-scale direct shear experiment on the round gravel soil of the alluvial plateau
layer, obtained the shear strength parameters of round gravel, and analyzed the change law
of the shear resistance characteristics of round gravel soil under different moisture cuts.

2. Experimental Study of Shear Property Parameters of Round Gravel Soil
2.1. Testing Instruments

The experiment uses a DHJ-30 type coarse-grained soil stacked ring shear experimental
machine, see Figure 1. the experimental machine adopts the plate frame structure with a
host size of 2000 × 800 × 1400 mm. The equipment shear box is square outside and round
inside, the size of Φ300 × 300 mm, the maximum axial pressure is 300 kN (normal stress
4.3 MPa), the maximum horizontal thrust is 300 kN, force sensor resolution is 0.1 kN. It can
realize stress and strain type shear, in which the shear moving speed is 0.001~5 mm/min.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 24 
 

 

deep foundation excavation on the double-row pile support structure. Ni Xiaorong et al. 
[25] studied the applicability of long-spiral bored piles in round gravel strata. They pro-
posed a new construction process of secondary pressurized piles for construction prob-
lems. 

In summary, scholars at home and abroad have studied the strength, deformation, 
and other properties of round gravel soil influencing factors and have achieved certain 
research results. However, most research focuses on the engineering application of round 
gravel formation. Little attention is paid to the influence of water on the mechanical prop-
erties of round gravel soil, and the research results need to be more comprehensive. Due 
to the special geographical location and formation conditions of alluvial plateau strata, 
the shear strength characteristics of round gravel soil in the formation are different from 
those in other regions. They are greatly affected by the change in moisture content. At the 
same time, scholars at home and abroad have paid less attention to the physical and me-
chanical characteristics of round gravel soil affected by moisture content. Therefore, based 
on the foundation pit project of the 14th water purification plant in Kunming, this study 
carried out a large-scale direct shear experiment on the round gravel soil of the alluvial 
plateau layer, obtained the shear strength parameters of round gravel, and analyzed the 
change law of the shear resistance characteristics of round gravel soil under different 
moisture cuts. 

2. Experimental Study of Shear Property Parameters of Round Gravel Soil 
2.1. Testing Instruments 

The experiment uses a DHJ-30 type coarse-grained soil stacked ring shear experi-
mental machine, see Figure 1. the experimental machine adopts the plate frame structure 
with a host size of 2000 × 800 × 1400 mm. The equipment shear box is square outside and 
round inside, the size of Φ300 × 300 mm, the maximum axial pressure is 300 kN (normal 
stress 4.3 MPa), the maximum horizontal thrust is 300 kN, force sensor resolution is 0.1 
kN. It can realize stress and strain type shear, in which the shear moving speed is 0.001~5 
mm/min. 

 
Figure 1. DHJ-30 indoor large direct shear experiment machine. 

2.2. Experimental Soil Samples 
2.2.1. Round Gravel Soil Particle Size Composition 

The experimental soil sample was selected from the round gravel soil of the founda-
tion pit project of fourteen water quality purification plants in Panlong District, Kunming, 
at a depth of 14 m. The lithology of the stratum is alluvial round gravel, dark gray, blue, 

Figure 1. DHJ-30 indoor large direct shear experiment machine.

2.2. Experimental Soil Samples
2.2.1. Round Gravel Soil Particle Size Composition

The experimental soil sample was selected from the round gravel soil of the foundation
pit project of fourteen water quality purification plants in Panlong District, Kunming, at
a depth of 14 m. The lithology of the stratum is alluvial round gravel, dark gray, blue,
saturated, slightly dense mainly, and locally medium dense, and the photo of the sampling
point is shown in Figure 2.
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Due to the disturbance of soil samples during sampling and transportation, the experi-
mental process needs to reshape the soil samples, the specimen reshaping needs to sieve the
retrieved soil samples, and the sieving process is executed according to the Geotechnical
Experimental Methods Standard (GB/T50123-2019) [26]. According to the experimental
requirements and equipment limitations, the experiments cannot be tested for super-size
particles with particle sizes greater than 60 mm, so the soil sample gradation needs to be
processed. Referring to the provisions of the geotechnical experimental method standard,
when the content of super-size particles is greater than or equal to 5% of the total content,
the equal mass substitution method is used. When the content of super-size particles is less
than 5% of the total content, the rejection method is used. From the sieving experiment,
it can be seen that the soil material of Kunming’s fourteen water purification plants has
less than 5% of soil particles larger than 60 mm in size. The rejection method is used to
scale down the soil gradation on site, and the results of the sieving experiment are shown
in Table 1.

Table 1. Experimental soil particle size composition rejection reduction treatment results.

Gradation Type Percentage of Mass Smaller Than a Certain Particle Size/%
>60 mm 60~40 mm 40~20 mm 20~10 mm 10~5 mm 5~2 mm <2 mm

Prototype gradation 0.48 7.39 25.61 21.62 13.73 11.01 20.16
Scaled gradation 7.43 25.73 21.72 13.80 11.06 20.26

Based on the results of particle gradation, the mass percentage of round gravel soil
under different particle size grades is calculated, and the particle size grading curve is
drawn. In this study, the cumulative curve of the particle size distribution of round gravelly
soil after screening scale treatment is shown in Figure 3. It can be seen from Figure 3 that
there are particles of all sizes of round gravelly soil in the 14th water purification plant in
Kunming, indicating that there are fine particles in the coarse particles of Kunming No. 14
Water Purification Plant for filling.

2.2.2. Maximum Dry Density Experiment of Round Gravel Soil

Since the density of the experimental soil sample must be strictly controlled during the
remolding process, it is necessary to measure the maximum dry density and the optimum
moisture content of the round gravel soil, and the heavy compaction instrument is used for
the experiment. During the experiment, take out particles larger than 40 mm and get their
percentage P, and then compact the part of round gravel soil smaller than 40 mm. After
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the experiment, the maximum dry density and the best water content obtained from the
experiment need to be corrected (applicable to the content of particles larger than 40 mm
is less than 30%). Calculate the dry density of each point according to the experimental
results, take the dry density as the ordinate and the water content as the abscissa, and draw
the relationship curve between the dry density and the water content. The ordinate and
abscissa of the peak point on the curve are the maximum dry density and the best water
content, respectively. The results are shown in Table 2.
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Table 2. Results of round gravel soil compaction experiments.

Soil Sample
Number

Design Water
Content
ω (%)

Weight of
Cylinder and

Soil (g)

Weight of
Solid Barrel (g)

Combat
Cylinder

Volume (cm3)

Wet Density
ρ (g/cm3)

After
Experiment

Water Content
ω (%)

1 5 7653 3080 2159 2.12 8.5
2 7 7973 3080 2159 2.27 10.9
3 9 7913 3080 2159 2.24 12.2
4 11 7867 3080 2159 2.22 13.3
5 13 7833 3080 2159 2.20 15.1

The dry density and the water content curves are shown in Figure 4, which shows
that the dry density increases with moisture content and then decreases. In contrast, the
maximum dry unit weight and optimal moisture content correspond to the fitted curve’s
top, consistent with the dry density of fine-grained soil [27,28]. Wang et al. [29,30] found
that the dry density of gravelly calcareous sand increased with increasing water content
when the water content was greater than 8%. Although both are coarse-grained soils, the
dry density shows a different variation pattern, mainly due to the fact that when the water
content of gravelly calcareous sand exceeds 8%, the capillary suction between soil particles
is weakened. Particle movement intensifies while particles’ relative fragmentation rate
increases, but it is always smaller than the relative fragmentation rate of dry calcareous
gravelly sand, resulting in the increase of dry density with the increase of water content.
In comparison, the round gravelly soil has already reached the liquefaction limit when
the water content reaches 11%. If the water content increases, the specimen becomes
liquefaction, and the dry density decreases.
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The results show that the optimum moisture content of round gravel soil is 11%, the
maximum dry unit weight is 2.04 g/cm3, and the corresponding wet density is 2.26 g/cm3.
Since the maximum dry density cannot be reached in the field for round gravel soil, in
order to make the experimental specimens closer to the actual engineering site, the wet
density corresponding to 0.87 of the maximum dry density is taken as 1.97 g/cm3 for the
indoor direct round gravel soil with reference to a large amount of relevant literature. The
soil sample was prepared for the indoor direct shear experiment.

2.3. Experimental Methods and Procedures
2.3.1. Experimental Methods

The soil samples collected in the field were air-dried and sieved in the experiment.
The soil material was weighed according to the particle gradation of round gravel soil after
scale reduction and mixed evenly after spraying an appropriate amount of water according
to the natural moisture content of 13.1%, divided into three parts equally, and loaded into
the bogging bucket, enclosing for 24 h. Control the wet density of round gravel soil to
1.97 g/cm3, the sample was loaded and compacted in layers, the inter-layer hair scraping
treatment was required, and strictly control the filling density of the sample. For the direct
shear experiment of round gravel soil under saturated conditions, after filling samples,
water was added to the test chamber to cover the shear box, and the shear test shall be
conducted after 24 h saturation. The experimental loading was strain-controlled, and the
straight shear test was performed by fast shear, as shown in Figure 5.

2.3.2. Experimental Procedure

(1) Loading sample: according to the determined density, gradation, and moisture content
of the filler, weigh the soil material in three parts, mix and blend, and load into the
shear box in layers of compaction, each time loading to 1/3 of the total height of the
shear box, until the control height, after completion, level the surface.

(2) Vertical loading: according to this experiment to determine the load level (low pres-
sure: 100, 200, 300, 400 kPa) using servo motor control loading, stable pressure
after observing the vertical displacement and event change curve until the stability
standard control in the stability standard control at 0.002 mm/min.

(3) Horizontal shear: after the soil sample vertical loading stability, according to the same
strain rate horizontal shear, the shear rate of 1 mm/min, while observing the exper-
imental machine data acquisition system until the specimen damage. Experiment
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until the soil sample horizontal shear displacement reaches 15% of the diameter of the
specimen when the end of shear.

(4) The specimen damage determination: when the horizontal stress table readings fall,
no longer rise or rise very little, the deformation change is large, that has been shear
damage. If none of the above, when the shear deformation reaches 15% of the diameter
of the shear box, stop the shear experiment. After the experiment, clear the soil on the
shear box, analyze the shear surface characteristics, and take pictures.
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2.4. Test Results and Analysis
2.4.1. Shear Stress-Shear Displacement Curve Change Characteristics Analysis

Figure 6 shows the round gravel soil’s fast shear stress-shear displacement curves in
the natural water content state. As can be seen from the figure, the shear stress of the round
gravel soil of the 14th water purification plant of Kunming City increases with the increase
of shear displacement and then tends to be stable or decreases to a smaller extent, with the
peak shear value appearing between 30% and 45% of the shear displacement. It can be seen
that the curve jumps at some points, mainly since the initial density of the sample is small,
and the shrinkage is continuous during shearing, resulting in the increase of compactness
and strength and the increase of shear stress. Due to large interlocking particles of gravel
in the sample, the overturning friction between the large particles of gravel requires a large
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horizontal thrust as the shearing proceeds, resulting in a rapid rise of shear stress. After
the overturning, since the overturning friction resistance between coarse and fine grains is
small, the shear stress decreases slightly while the shear plane is still in a tight state, and
the shear stress continues to increase until reaching the peak. Low load specimen shear
stress with the increase in shear displacement always maintains an increasing trend. With
the increase in vertical load, this trend gradually weakened, combined with the end of
the experiment shear surface. The difference in the distribution of large particles near the
shear plane may cause this. The shear stress is high if there are many large particles in the
shear plane.
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Figure 6. Shear displacement-shear stress curve for natural moisture content of round gravel soil.

In order to investigate the difference between the natural and saturated moisture
content states of the round gravel soil, direct shear experiments were designed to be
conducted under the saturated moisture content conditions of the round gravel soil. The
shear displacement-shear stress relationship curve after shearing is shown in Figure 7.
As seen in Figure 7, the shear stress of saturated gravel soil increases with the shear
displacement and then stabilizes. The shear stress of saturated gravel soil is smaller than
that of the natural state compared with the shear stress-shear displacement curve of the
natural state. The shear surface morphology of round gravel soil specimens in a saturated
water content state has no large particle fragmentation phenomenon. The reason is that the
saturated state specimens with high water content, due to the lubricating effect of water
molecules and the soil, are looser between the soil, resulting in reduced friction between
soil particles; the soil particles directly overturn each other during shear.

2.4.2. Characterization of Shear Strength Parameters

According to the geotechnical test specification, the peak or stable value on the relation-
ship curve between shear stress and horizontal displacement is taken as the shear strength.
When there is no obvious peak, the shear stress at the horizontal displacement reaches
1/15~1/10 specimen diameter and is taken as the shear strength. Therefore, according to
Figures 6 and 7, the peak shear stress is taken as the shear strength during this experiment.
The relationship between the shear strength and the positive stress is linearly fitted by
combining the Moore-Coulomb strength criterion. The results are shown in Figure 8.
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From Figure 8, it can be seen that the cohesion and internal friction angle of the
saturated moisture content of the round gravel soil are smaller than those of the natural
moisture content, which is since the water content of the saturated round gravel soil is
larger than that of the natural state. The lubricating effect of the free water on the surface of
the soil particles is enhanced, resulting in the weakening of the occlusal force between the
particles and the weakening of the frictional effect, and the smaller horizontal thrust can
make the soil produce larger shear displacement. The strength parameters of the round
gravel soil in the natural and saturated state are shown in Table 3 from Figure 8.

Table 3. Shear strength parameters of round gravel soil.

The Angle of Internal Friction ϕ
(◦) Cohesive Forces c (kPa)

Natural moisture content of round gravel soil 31.9 8.56
Saturated moisture content of round gravel soil 30.5 7.37
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3. Engineering Application Study on Shear Strength Parameters of Round Gravel Soil
3.1. Project Overview

The construction project of Kunming 14th, Water Purification Plant is a fully buried
underground sewage treatment plant located in Panlong District, Kunming City, Yunnan
Province, at the northern end of the Kunming Dianchi faulted basin. The shape of the basin
is irregular, but generally it is longer from north to south and narrower from east to west,
which is consistent with the structural trend. The ground elevation is between 1901.89 and
1907.57 m, and the maximum elevation difference is about 5.68 m. As shown in Figure 9, the
stratigraphic structure within the depth of the pit survey mainly consists of the Quaternary
artificial accumulation (Q4ml) layer: artificial fill; the Quaternary alluvium (Q4al + pl)
layer: clay, round gravel, and powder; and the Quaternary marsh phase sediment (Q4h)
layer: peaty soil and organic soil. The gravels are composed of chert, sandstone, and a
small amount of basalt and quartz, rounded to subrounded, with good rounding, and filled
with a small amount of silt and clay between grains, with poor cementation, and locally
produced with thin laminated pebbles. Round gravel 3© has a grain size of 1.0–4.0 cm,
a small amount of 5.0–6.0 cm, and a gravel content of 50–70%. Round gravel 4© has a
grain size of 1.0–4.0 cm, with a small amount of 5.0–6.0 cm and a gravel content of 50–60%.
Round gravel 5© grain size 0.5 cm~4.0 cm, a small amount of 5.0~6.0 cm, gravel content
about 50~60%. Round gravel 6© Grain size 0.5 cm–3.0 cm, a small amount of 4.0–5.0 cm,
gravel content about 50–65%. Round gravel 7© grain size 0.5 cm~2.5 cm, a small amount
of 4.0~6.0 cm, gravel content of about 50~60%. Round gravel 8© grain size 0.5~2.0 cm, a
small amount of 3.0~4.0 cm, gravel content about 55~65%. Regionally, it belongs to the
Jinsha River system and Dianchi basin, and the surface water body is more developed. The
groundwater type in the site is mainly upper stagnant water and diving, and the water
level burial depth is between 0.8 and 1.5 m.
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The pit covers an area of 65,800 m2, and the depth of pit support is 14~33 m. The pit is
divided into four sections, one of which includes the intake pump room and aeration and
sand sink. The modeling object is the intake pump room, with a design depth of 33 m, plan
size of 32 m long and 25 m wide, perimeter length of 114 m, and area of 800 m2. 1200 mm
diaphragm wall + reinforced concrete internal bearing and anchor cable support form is
used for the enclosure structure. The wall height is 43.75 m and 67.5 m, and the width is
5.10~6.00 m, the length of the single reinforcement cage is 44.25 m and 68 m, and the depth
of continuous wall embedded in the subgrade is 22.8~42.1 m according to the geological
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condition. As Figures 10 and 11 show the section of the pit of the inlet pump room and the
internal bearing structure, respectively.
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3.2. Pit Modeling and Parameter Selection
3.2.1. Computational Models

The width of the standard section of the foundation pit is 24.5 m, the length is 32.2 m,
and the excavation depth is 29.4 m. the maximum length of the diaphragm wall is 70 m.
The minimum length is 44 m. In order to reduce the influence of the simulated boundary
conditions on the simulation process, the boundary is taken six times the excavation depth
of the foundation pit. The model size is 180 m × 120 m × 120 m. as the construction depth
of the diaphragm wall 2 is −8.7 m, the overall Foundation pit excavation to −8.7 m before
starting into the pump room pit construction. Therefore, in this simulation pit excavation
from −8.7 m to start, diaphragm wall 1 to the boundary to retaining wall simulation,
calculation model as shown in Figure 12, simplification will not have a large impact on the
accuracy of the calculation and the essence of the calculation. The model grid of the 3D
finite element model of the foundation pit is mixed, the total number of cells of the overall
foundation pit model is 77,202, and the total number of nodes is 47,899. The calculation
uses displacement boundary conditions; in the left and right boundaries of the model, the
displacement in the X direction is fixed, and in the front and back boundaries of the model,
the displacement in the Y direction is fixed. Moreover, at the bottom of the model, the
displacement in three directions is fixed. In the modeling process, the soil and diaphragm
wall are simulated by solid units, the internal bearing and lattice columns are simulated
by beam units, and implanted trusses simulate the prestressed anchor cables. Figure 13
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shows the schematic diagram of the calculation model of the foundation support structure
of the intake pump room. As shown in Figure 13, the diaphragm wall, internal bearing,
and anchor cable together form the foundation support system. The three arrangements in
the calculation model are shown in Figure 10.
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3.2.2. Calculation Parameters Selection

Based on the large direct shear experiment of round gravel soil, the cohesion and
internal friction angles in the natural and saturated states were determined to be 31.9◦,
8.56 kPa, and 30.5◦, 7.37 kPa, respectively, and the other soil parameters referred to in the
modeling calculations were determined based on the Detailed Geotechnical Investigation
Report of the Fourteenth Water Quality Purification Plant of Kunming City and related
literature [31–33]. Since the support structures such as diaphragm walls, anchor cables, and
internal bearings are in an elastic stress state, the soil in the model is an ideal elastoplastic
medium. The soil model widely used in actual engineering is the Mohr-Coulomb elasto-
plastic model. Therefore, the Mohr-Coulomb principal model is used in the calculation.
The mechanical calculation parameters of the soil are shown in Table 4, and the structural
and mechanical parameters are shown in Table 5.
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Table 4. Mechanical parameters of reference soil layers calculated by numerical simulation.

Number Name of Soil Type
Volumetric

Weight
(kN/m3)

Cohesive
Forces (kPa)

The Angle of
Internal

Friction (◦)
Poisson’s Ratio

Elastic
Modulus

(MPa)

1 Miscellaneous fill 18.7 19.5 8.5 0.28 7
2 Peat soil 13.2 20 6 0.40 12.1

3 Round gravelly soil
(natural) 19.4 8.56 31.9 0.46 196.67

4 Round gravelly soil
(saturated) 19.4 7.37 30.5 0.46 196.67

5 Silty clay 19 40 12 0.30 16

Table 5. Structural mechanical calculation parameters.

Components Elastic Modulus
(MPa) Poisson’s Ratio Volumetric Weight

(kN/m3)

Diaphragm wall 31,500 0.3 26
Anchor cable 195,000 0.3 78.5

Wai purlin 31,500 0.3 26
Interior bearing 31,500 0.3 26
Lattice column 31,500 0.3 26

Compaction grouting 25,000 0.3 26
Retaining wall 31,500 0.3 26

3.3. Results Analysis
3.3.1. Analysis of the Evolution Law of Foundation Pit and Surrounding Soil Displacement

In order to better analyze the surface settlement around the inlet pump room pit
and the uplift of the pit bottom, the vertical displacement of the soil body is analyzed by
selecting the short-side midline section of the diaphragm wall. As shown in Figure 14,
the soil body is elevated 15 m below the pit bottom. It gradually decreases downward
in a semicircle with the center of the pit bottom. The equilateral triangle centered on the
lattice column has a small sinkage of 0.5 m from the center to the edge line. The soil in
the middle of the two lattice columns has a large uplift. The maximum uplift reaches
8.68 cm under the saturation shear strength parameter and 7.95 cm under the natural
shear strength parameter. The difference between the two reaches 7.3 mm, indicating that
the shear strength parameter influences the soil’s vertical displacement in excavating the
foundation pit. Therefore, the shear strength parameter of the soil needs to be accurately
determined in the calculation of the foundation pit design. Otherwise, it will easily lead
to the excavation process of the foundation pit and the soil at the bottom of the pit will
bulge too much and make the pit unstable. There is no sinking of the soil in a certain range
around the excavation of the foundation pit, but there is a slight uplift. However, the uplift
value is negligible. The soil outside the 5~15 m range of the diaphragm wall is affected by
the excavation and sinks, and the sinking distance of the surrounding soil is close to the
maximum settlement distance of 1.83 mm under the two parameters. The displacement is
small and will not affect the surrounding buildings and roads.

Since the surface vertical displacement variation pattern under the conditions of two
shear strength parameters of round gravel soil is consistent, the displacement variation
curve under the conditions of natural shear strength parameters of round gravel soil is
selected for analysis in this study, as shown in Figure 15. As can be seen from Figure 15,
the soil at the edge of the foundation pit sinks after the end of excavation step 1. With
the increased distance from the diaphragm wall, the sinking of the surrounding surface
gradually decreases. The surrounding surface starts to rise outside the range of 40 m from
the diaphragm wall. Furthermore, the soil around the foundation pit within 40 m is uplifted
in the second step of excavation to the end. With the increase of excavation depth, the soil
uplift around the foundation pit gradually increases. From the end of excavation step 2 to
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the end of the excavation, the uplift of the surrounding surface soil gradually decreases
with the increase of distance from the diaphragm wall, and the decrease rate gradually
increases with the increase of excavation depth. The main reason for the bulging of the soil
around the foundation pit is that the foundation pit is excavated deeper, and the self-weight
of the original soil is unloaded rapidly, so the bulging of the foundation is larger and drives
the bulging of the surrounding surface soil.
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Figures 16 and 17 show the displacement clouds of the surface and the soil at the
bottom of the pit in X and Y directions around the end of the foundation pit excavation
under natural and saturated shear strength parameters of round gravel soil, respectively.
From Figure 16, it can be seen that after the end of the pit excavation, the soil’s horizontal
displacement at the pit bottom is locally larger, which is located on both sides of the lattice
column, respectively. The maximum horizontal displacement is 15.7 mm, mainly due
to the combined effect of the lattice column and excavation unloading. Affected by the
reinforcement area of the pit bottom, the horizontal displacement of the pit bottom soil
is slightly larger at the edge of the long side but smaller than the two sides of the lattice
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column. The horizontal displacement of the soil body under the saturated shear strength
parameter of round gravel soil is slightly larger than that under natural conditions; the
maximum is 17.7 mm.
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As shown in Figure 17, the maximum horizontal displacement of the subsoil of the
foundation pit is located in the middle of the lattice column, and the horizontal displace-
ment in the Y direction is slightly smaller than that in the X direction, which is mainly
affected by the size and shape of the foundation pit. The horizontal displacement of the
surrounding ground surface is very small and will not affect the surrounding buildings.

The horizontal displacement change curve under the natural shear strength parameter
of round gravel soil is selected for analysis in this study, as shown in Figure 18. The mid-
point of the foundation pit edge on the short side of diaphragm wall 1 and diaphragm wall
2 is taken as the monitoring point. As seen from the figure, during the first two excavation
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steps, the soil body on the side of diaphragm wall 1 is displaced into the pit. The horizontal
displacement gradually decreases with the increase of burial depth. As the excavation
progresses, the horizontal displacement gradually changes to the displacement outside the
pit. Since the pit excavation unloads, the lower soil body extrudes the diaphragm wall to
the pit so that the diaphragm wall above the initial excavation surface shows a trend of
outward displacement, and the soil body is then displaced. Diaphragm wall 2 is displaced
to the foundation pit’s inner side, with the burial depth increasing gradually; the curve at
−25 m appears to turn, mainly by the influence of stratigraphic changes.
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3.3.2. Analysis of Displacement Variation Law of Diaphragm Wall

The excavation process of the foundation pit will change the equilibrium state of the
original soil, and the geotechnical body tends to an unstable state from the stable state in
its natural state. As the main support structure, the underground diaphragm bears the
role of water interception, seepage control, load bearing, and earth retaining and has a
significant impact on maintaining the stability of the foundation pit. Excessive deformation
of the diaphragm wall may cause wall damage or pit collapse. Therefore, the diaphragm
wall displacement must be controlled within the specification requirements. As shown
in Figures 19 and 20, the horizontal displacements of the diaphragm wall in the X and Y
directions are shown. It can be seen from Figure 19 that when the round gravel stratum
is in a state of natural and saturated moisture content, its shear strength parameters have
little influence on the horizontal displacement of the diaphragm wall during the excavation
of the foundation pit. Under the two-parameter conditions, the horizontal displacement of
the diaphragm wall in the X direction is larger in the area below −29.4 m on the long side
of the diaphragm wall. Under saturated conditions, the maximum horizontal displacement
of the diaphragm wall in the X direction is 3.92 mm, which is far less than the standard
warning value.

As shown in Figure 20, the horizontal displacement of the diaphragm wall along the
Y-direction is larger in the range of the third inner support to the fifth inner support on the
short side and the area below the pit bottom, with a mushroom-shaped distribution pattern.
The maximum horizontal displacement in the Y-direction under the two parameters is
0.1 mm different, and it is also larger under the saturated condition, with a maximum
displacement of 3.48 mm. it can be seen that the horizontal displacement under the two
round gravel soil. The horizontal displacement under the shear strength parameter is
close, and the displacement values are small and within the specification warning range,
which indicates that the diaphragm wall better supports the foundation pit of the intake
pump room.
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Select the midpoint of four diaphragm walls for analysis. Figure 21 shows the hori-
zontal displacement curve of the diaphragm wall in X and Y under natural shear strength
parameters of round gravel soil. As shown in Figure 21a, during the foundation pit ex-
cavation, the horizontal displacement of the long sides of diaphragm wall 2 at different
burial depths is symmetrically distributed. Since the excavation depth of the first layer is
shallow in the simulation process, the impact on the deep diaphragm wall is small, and
the displacement decreases with the increase of the burial depth. During the excavation
of the second layer to the fifth layer, it can be seen that the horizontal displacement of the
diaphragm wall at the buried depth of 22.5 m has a big change trend. After excavating
the second layer, the horizontal displacement of the diaphragm wall suddenly decreases
from the buried depth of 22.5 m to the bottom of the pit. In contrast, the excavation of the
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third layer to the fifth layer continues to maintain an increasing or stable change trend,
mainly due to each layer’s excavation depth and the stratum’s influence. From Figure 21b,
it can be seen that the horizontal displacement of the top of wall 1 of the diaphragm wall
gradually moves out of the pit during the excavation process, mainly due to the effect of
the anchor cable in tension and the change of soil pressure behind the wall. It can be seen
that with the increase of excavation depth, the horizontal displacement of the diaphragm
wall gradually increases.

Sustainability 2023, 15, x FOR PEER REVIEW 18 of 24 
 

 

vation, the horizontal displacement of the long sides of diaphragm wall 2 at different bur-
ial depths is symmetrically distributed. Since the excavation depth of the first layer is shal-
low in the simulation process, the impact on the deep diaphragm wall is small, and the 
displacement decreases with the increase of the burial depth. During the excavation of the 
second layer to the fifth layer, it can be seen that the horizontal displacement of the dia-
phragm wall at the buried depth of 22.5 m has a big change trend. After excavating the 
second layer, the horizontal displacement of the diaphragm wall suddenly decreases from 
the buried depth of 22.5 m to the bottom of the pit. In contrast, the excavation of the third 
layer to the fifth layer continues to maintain an increasing or stable change trend, mainly 
due to each layer’s excavation depth and the stratum’s influence. From Figure 21b, it can 
be seen that the horizontal displacement of the top of wall 1 of the diaphragm wall grad-
ually moves out of the pit during the excavation process, mainly due to the effect of the 
anchor cable in tension and the change of soil pressure behind the wall. It can be seen that 
with the increase of excavation depth, the horizontal displacement of the diaphragm wall 
gradually increases. 

  
(a) (b) 

Figure 21. Horizontal displacement variation curve of diaphragm wall: (a) horizontal displace-
ment in X direction; (b) horizontal displacement in Y direction. 

Figure 22 shows the vertical displacement cloud of the diaphragm wall. As can be 
seen from the figure, the closer to the short side of the diaphragm wall 2, the greater the 
vertical displacement. The maximum vertical displacement is located in the wall near the 
fifth interior bearing on the short side of the diaphragm wall 2, with a maximum vertical 
displacement of 10 mm. It is larger under natural moisture content and shear strength 
parameter of round gravel soil, but the difference is only 0.1 mm. The top of the dia-
phragm wall in the foundation pit has a vertical displacement monitoring alarm value of 
10–20 mm. However, the results show that the displacement of the top of the wall does 
not reach the alarm value, which shows that the diaphragm wall is stable. 
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Figure 22 shows the vertical displacement cloud of the diaphragm wall. As can be
seen from the figure, the closer to the short side of the diaphragm wall 2, the greater the
vertical displacement. The maximum vertical displacement is located in the wall near the
fifth interior bearing on the short side of the diaphragm wall 2, with a maximum vertical
displacement of 10 mm. It is larger under natural moisture content and shear strength
parameter of round gravel soil, but the difference is only 0.1 mm. The top of the diaphragm
wall in the foundation pit has a vertical displacement monitoring alarm value of 10–20 mm.
However, the results show that the displacement of the top of the wall does not reach the
alarm value, which shows that the diaphragm wall is stable.

3.3.3. Analysis of Displacement Variation Law of Diaphragm Wall

The diaphragm wall is a structure used to block the soil’s lateral pressure on the pit’s
side wall, maintain the pit wall’s stability, and ensure the shape of the pit excavation. Its
stability is related to the smooth construction of the pit project and the safety of nearby
buildings. If the pile structure is damaged or overstressed, it will affect the completion of
the pit project and even threaten the safety of the engineering staff. Figures 23 and 24 show
the maximum and minimum principal stresses of the diaphragm wall under the above two
parameters, respectively. As can be seen from Figure 23, the minimum principal stresses
in the diaphragm wall are mainly tensile stresses, and stress concentrations occur at the
corners of the diaphragm wall between the third and fifth interior bearing. It can be seen
that the inner side of the diaphragm wall is subject to compressive stress, the outer side of
the wall is subject to tensile stress, and the tensile stress outside the wall is three times the
compressive stress inside the wall. The maximum value of the minimum principal stress is
3.48 MPa. As shown in Figure 24, the maximum principal stress in the diaphragm wall is
mainly compressive. The maximum compressive stress is located at the corner of two sides
of the diaphragm wall between the third and fifth interior bearing. The compressive stress
here is relatively concentrated, with a maximum of 6.1 MPa, which is 0.2 MPa higher than
the calculated value under the natural shear strength parameter of round gravel soil. The
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main stress of the diaphragm wall has an obvious boundary at a depth of the foundation
pit bottom, mainly since the excavation of the foundation pit leads to the redistribution of
the soil stress behind the wall. However, the stress is small, indicating that the diaphragm
wall has a good supporting effect and that the foundation pit is stable.
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3.3.4. Analysis of the Variation Law of Interior Bearing Axial Force

As one of the main support structures of the intake pump room pit, the internal
support bears the role of dispersing the force deformation of the underground diaphragm
wall, and its force deformation significantly impacts the pit’s stability. Figure 25 shows
the axial force diagram of the interior bearing after the end of the pit excavation under the
above two shear strength parameters. Figure 25 shows that the axial force of the diagonal
brace in the fourth interior bearing is larger due to the large horizontal displacement of the
diaphragm wall at that place after the excavation of the foundation pit is finished. As the
excavation depth gradually increased, the maximum value of the interior bearing axial force
gradually moved down to the fourth interior bearing since the horizontal displacement
of the diaphragm wall gradually moved down to the fourth interior bearing. Under the
natural shear strength parameter condition, the maximum axial force of the interior bearing
from the first excavation to the bottom of the pit is 0.15 MN, 0.59 MN, 1.66 MN, 2.74 MN,
6.3 MN. The saturated shear strength parameters of round gravel soils under the maximum
axial force of interior bearing are 0.15 MN, 0.65 MN, 1.85 MN, 2.95 MN, 6.53 MN. It can
be seen that the maximum axial force of interior bearing axial force of the first four layers
of soil excavation is small. The axial force of the interior bearing after excavating the last
layer changes more. However, it is within the specification design range, indicating that
the interior bearing has a good effect.

3.3.5. Anchor Cable Axial Force Variation Characteristics Analysis

The anchor cable can transfer the earth pressure on the support pile to the deep soil
through the anchor cable’s axial force, so the analysis of the axial force of the anchor cable
is important for analyzing the foundation deformation. Figure 26 shows the axial force of
prestressed anchor cable under natural and saturated shear strength parameters of round
gravel soil. The maximum value of the anchor force is 262.9 kN in the free section of
the second row of anchor ropes under saturated conditions and 261.9 kN under natural
conditions, and the anchor force in the anchor section is gradually dispersed to the soil
around the anchor end by the force transfer of mortar. Hence, the anchor force in the anchor
section is smaller. Under the natural shear strength parameter condition, the maximum
change of anchor cable axial force during excavation is 257 kN, 258 kN, 259 kN, 260 kN,
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262 kN, and under the condition of saturation, the shear strength parameter is 258 kN,
259 kN, 260 kN, 261 kN, 263 kN. The reason is that this simulation mainly starts from
the top of the wall of diaphragm wall 2, and the prestressed anchor cable only exists
in diaphragm wall 1, which is higher than the simulation depth of the pit. Hence, the
excavation simulation has little effect on the anchor cable force.
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kN, 260 kN, 261 kN, 263 kN. The reason is that this simulation mainly starts from the top 
of the wall of diaphragm wall 2, and the prestressed anchor cable only exists in diaphragm 
wall 1, which is higher than the simulation depth of the pit. Hence, the excavation simu-
lation has little effect on the anchor cable force. 

Figure 25. Axial force cloud diagram of interior bearing system: (a) natural moisture content shear
strength parameters; (b) saturated moisture content shear strength parameters.
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4. Conclusions

In this paper, based on a comprehensive analysis of the site geological conditions, the
shear strength characteristics of round gravel soils and their parameter variation laws were
analyzed by reshaping the soil samples retrieved from the site and conducting large-scale
direct shear experiments on round gravel soils with natural and saturated moisture content.
The research results were applied to the numerical simulation of foundation excavation to
obtain the following conclusions.

(1) The shear strength characteristics of plateau alluvial-lacustrine alluvial round gravel
soil under different water content conditions are studied and analyzed through large-
scale direct shear tests. Under different water content conditions, the variation law
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of shear stress-shear displacement of round gravel soil is slightly different. At low
water content, with the increase of shear displacement, the particles of round gravel
soil are sheared, and the shear surface contacts closely until shear failure, and the soil
strength slightly increase. However, the shear resistance curve of round gravel soil
with high water content gradually weakened with the increasing confining pressure.

(2) Large-scale direct shear experiments of round gravel soil show that the cohesion of
round gravel soil in the natural state is 8.56 kPa, and the angle of internal friction is
31.9◦. In the saturated state, the cohesion of round gravel soil is 7.37 kPa, and the
angle of internal friction is 30.5◦. With the increased water content, the round gravel
soil’s cohesive force and internal friction angle decrease significantly.

(3) The numerical simulation results of foundation pit excavation show that after the
completion of construction, the pit bottom is subject to the joint influence of the
reinforcement area and lattice columns. There is a large uplift, and the surrounding
surface soil also shows a bulge within a certain range. Hence, further strengthening
the monitoring and reinforcement of the surrounding structures is necessary. The
stress deformation of the supporting structure is small, far less than the design value.
With the increase of the conglomerate soil’s internal friction angle and cohesion, the
foundation support and soil deformation decreased, indicating that increasing the
shear strength parameter of the conglomerate soil can effectively reduce the founda-
tion deformation. The construction can be carried out by selecting conglomerate strata
with different water content in practical engineering to achieve, reduce the project
cost and improve the project economy.
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