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Abstract: According to the UN (United Nations) data released in 2018, the growth in the world’s
population in urban areas is increasing every year. This encourages changes in cities that are
increasingly dynamic in infrastructure development, which has an impact on social, economic, and
environmental conditions. On the other hand, this also raises the potential for new problems in urban
areas. To overcome potential problems that occur in urban areas, a smart, effective, and efficient
urban monitoring system is needed. One solution that can be implemented is the Smart City concept
which utilizes sensor technology, IoT, and Cloud Computing to monitor and obtain data on problems
that occur in cities in real time. However, installing sensors and IoT throughout the city will take
a long time and be relatively expensive. Therefore, in this study, it is proposed that the Mobile
Crowdsensing (MCS) method is implemented to retrieve and collect data on problems that occur
in urban areas from citizen reports using their mobile devices. MCS implementation in collecting
data from the field is relatively inexpensive and does not take long because all data and information
are sent from citizens or the community. The data and information that has been collected from the
community are then integrated and visualized using the Digital Geotwin-based platform. Compared
to other platforms, which are mostly still based on text and GIS in 2D, the advantage of Digital
Geotwin is being able to represent and simulate real urban conditions in the physical world into
a virtual world in 3D. Furthermore, the use of the Digital Geotwin-based platform is expected to
improve the quality of planning and policy making for stakeholders. This research study aims to
implement the MCS method in retrieving and collecting data in the form of objects and problem
events from the field, which are then integrated into the Digital Geotwin-based platform. Data
collected from MCS are coordinate data and images of problem objects. These are the contributions
of this research study: the first is to increase the accuracy in determining the coordinates of a distant
object by adding a parameter in the form of the approximate coordinates of the object. Second, 3D
visualization of the problem object using image data obtained through the MCS method and then
integrating it into the Digital Geotwin-based platform. The results of the research study show a fairly
good increase in accuracy for determining the coordinates of distant objects. Evaluation results from
the visualization of problem objects in 3D have also proven to increase public understanding and
satisfaction in capturing information.

Keywords: mobile crowdsensing; digital twin; smart city; geospatial localization; 3D model
reconstruction; visualization; dashboard monitoring

1. Introduction

The world population growth in urban areas is increasing every year. According to
data released by the UN (2018), the population of urban areas in 2025 will reach 4.7 billion
people. This causes the development of urban infrastructure to be more dynamic. However,
on the other hand, it increases the potential for new problems in the city [1–10]. Therefore,
a smart and effective city monitoring system is needed to overcome them. Smart City is a
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smart solution for monitoring various dynamics and problems in urban areas by utilizing
IoT, sensors, and Cloud Computing [10–13]. Although the use of sensors and IoT is quite
effective in collecting data and carrying out city monitoring, installing and deploying
sensor equipment throughout the city requires a lot of time and is relatively expensive. As
a substitute for sensors and IoT, a new sensing paradigm has emerged, namely Mobile
Crowdsensing (MCS).

There are many terms and definitions of MCS [14–20]. However, what best fits the
context of writing this paper is the definition of Guo et al. [17]. MCS is “a new sensing
paradigm that empowers ordinary citizens to contribute data sensed or generated from their mobile
devices, aggregates, and fuses the data in the cloud for crowd intelligence extraction and people-
centric service delivery”. Data and information that has been collected from the field are
then combined with the cloud for data collection, data storage, and data processing. This
makes MCS increasingly popular as a replacement for the use of static and traditional
sensors. MCS can combine the advantages of traditional information technology with
mobile communications to provide cost-effective and high-quality services to various
fields [21]. The most prominent characteristics of MCS are the utilization of mobile devices
(e.g., smartphones) and community participation. In addition, MCS can support increasing
the active role of the community in participating in urban planning and management
according to UN SDGs [22].

Currently, smartphones are equipped with various types of sensors such as cameras,
microphones, GPS systems, accelerometers, temperature monitoring sensors, and so on.
This makes MCS have more value compared to the use of traditional sensors (e.g., Wireless
Sensor Network/WSN), which usually only have one type of sensor. The comparison
between MCS and WSN and the MCS taxonomy are clearly described in the paper [23].

MCS has been widely applied in various fields such as environmental monitoring;
transportation; urban dynamic sensing; location services; health; and so on [18,24–45].
However, this paper will focus on an in-depth study of the implementation of MCS for a
Digital Geotwin-based city monitoring system [46] using data in the form of the coordinate
location of problem objects in the field, and the construction of these objects in 3D form.

Digital Twin is one of the technologies that play an important role in the development
of the Smart City concept [47–50]. Digital Twins can improve city management and
operations to become smarter and more sustainable cities [51]. According to [52], a Digital
Twin is defined as a virtual representation of a physical object or process capable of
gathering information from the real world to represent, validate, and simulate the behavior
of the current and future physical twin. The Digital Twin consists of three main parts,
namely its physical form, digital form, and the connection between both of them [48]. In
simple terms, Digital Twin can be interpreted as a “digital twin” of a physical entity that
exists in the real world [53].

Based on the level of integration between the Digital Twin and the real world, the
Digital Twin is classified into three classes, namely Digital Model; Digital Shadows; and
Digital Twins [54]. Digital Model is a digital version of a pre-existing or planned physical
object, and there is no automatic exchange of data between the physical object and the
digital model, so any changes to the physical object will not affect the digital. Digital
Shadow is described as a digital representation of an object that has a one-way flow of
data between the physical object and the digital object. Changes in physical objects can
cause changes to digital objects, but not vice versa. Meanwhile, a system can be called a
Digital Twin if, between physical objects and digital objects, there is an exchange of data
automatically and it is fully integrated in both directions. Changes that occur in physical
objects can automatically cause changes in digital objects and vice versa. In this research
study, the Digital Twin system is limited to the Digital Shadow integration level. In addition,
this research study places more emphasis on the use of technology that utilizes spatial data
and focuses on geodetic aspects so that the term “Digital Twin” in the developed platform
will add an element of “geo” to become “Digital Geotwin” [46].



Sustainability 2023, 15, 3942 3 of 27

To build a Digital Twin of a city, at least a 3D model and coordinates for the location of
the physical objects of the city are needed [55–57]. This is one of Digital Twin’s advantages,
namely being able to provide 3D visualization of data and information collected from
the field so as to provide a more real experience [51]. Visualization of city models in
3D can improve analysis, interaction, and model human activities more intuitively and
efficiently [57–59]. In the research [60], Digital Twin is used to create visualizations of data
collected in the field. Likewise, research studies conducted by [31] utilize the Digital Twin
as a means to better understand spatiotemporal information in the field so as to produce
the right decisions.

Currently, there are many research studies that examine platforms that involve the
community as well as community reports in monitoring and evaluating urban manage-
ment [32,61,62]. Unfortunately, not all of them have a 3D visual display that is implemented
into the Digital Geotwin platform. In addition, the location coordinates sent are the co-
ordinates of the mobile device, not the coordinates of the problem object. This causes
the officers to find it difficult to determine the location of the object of the problem in
question from the community. Therefore, the objectives of this study are described as
follows: (1) utilizing data and community reports from MCS to determine the location of
the coordinates of problem objects more accurately and build a 3D model of the object;
(2) integrate the problem objects into a platform based on Digital Geotwin.

2. Materials and Methods
2.1. Research Areas

This research was conducted in Bandung city, West Java, Indonesia (Figure 1). This
city was chosen as the research location because it adequately represents the characteristics
of a big city. Bandung city is the capital of West Java province. The area of Bandung city is
167.31 km2. The population of Bandung city in 2020 has reached 2.5 million people [63].
From the city profile, it can be assumed that Bandung city has a fairly high potential
for urban dynamics change. In addition, Bandung city has now implemented the Smart
City concept and a maturity level assessment has been carried out [64]. In terms of data
availability, Bandung city is one of the cities that has sufficient geospatial data in 3D form
to be used and developed into a Digital Geotwin.
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2.2. Data

The data needed in this research study are divided into 2 (two) categories. The first
category is data from mobile devices owned by citizens. The data collected from citizens
through MCS must include at least the following: (1) photo or image data of problem
objects of interest that occur in the field; (2) citizen coordinate data generated from their
mobile device’s GPS sensor; (3) data of the approximation coordinates of the target object
taken from Google Maps; (4) magnetic north compass direction indicating the angle of
the object of the problem; (5) textual information explaining the event or object of the
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problem. The additional information based on text serves to clarify the reported incident
and describe the contents of the photos taken.

The second category is geospatial data. Geospatial data have a very important role in
building of 3D city models [65]. Conceptually, geospatial data are in the form of spatial
objects and can also be represented in geometric symbols [66]. The spatial data used consists
of spatial objects such as buildings; building height data; and road/transport networks in
vector. In addition, spatial data in raster form (e.g., satellite imagery) are also used in this
study. Detailed description of the data types and the uses of the data can be seen in Table 1.

Table 1. Data requirements and specifications.

Data Data Type Objects/Functions Technology

Mobile Device Data

Photo/ Image Raster
Reconstruction of 3D models

Camera Sensors
Determination of the problem object

User/Citizen coordinates Vector Determination of the location of the
coordinates of the problem object

Mobile GNSS (Global Navigation
Satellite System) Sensors

Approximate Coordinates Vector Determination of the location of the
coordinates of the problem object Google Maps

Compass directions Vector Determination of the location of the
coordinates of the problem object

Magnetometer Sensors
Accelerometer Sensors

Geospatial Data

Buildings Vector Reconstruction of 3D object models
for Digital Geotwin Aerial Photo/LIDAR

Building height Vector Reconstruction of 3D object models
for Digital Geotwin Aerial Photo/LIDAR

Road/Transport Network Vector Reconstruction of 3D object models
for Digital Geotwin Aerial Photo/LIDAR

2.2.1. Mobile Device Data

Mobile device data are data generated from sensors embedded in mobile devices.
Mobile device data used in this research study are photos; user coordinates (citizens
who report); compass direction; and the approximation coordinates of the problem object
to be reported. The approximate coordinates of the problem object are obtained from
Google Maps.

Photo data obtained from MCS are used to build a 3D model of the object. From
the photos collected earlier, a 3D model reconstruction process was carried out using the
cloud-based SfM (Structure for Motion) algorithm [67–72]. Furthermore, GPS coordinate
data from the mobile user’s device, approximate coordinates, and compass directions
are used to calculate the coordinates of the problem object. More detailed explanation is
described in Section 2.3.

2.2.2. Geospatial Data

Next, the data needed to implement this research is geospatial data. This data are
obtained from the Geospatial Information Agency in Indonesia, whose function is to carry
out government tasks in the field of geospatial information. Geospatial data are produced
from survey and mapping technology (e.g., FU; Lidar; Laser Scanning) [73]. Geospatial
data such as buildings/structures; road networks; terrain; utility networks are the main
components used to build Digital Geotwin [48]. These data are the static base objects of a
city to be represented as 3D city model in a Digital Geotwin [74].
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2.3. Methodology

Figure 2 illustrates the proposed MCS implementation framework for a Digital
Geotwin-based monitoring system. This framework aims to monitor problems that occur
in cities by utilizing data sent or reported by citizens using mobile devices. In this research
study, problem objects are defined as things that are hazardous, or an anomaly that occurs
in urban areas. Examples of such kinds of objects are garbage accumulation, broken/hollow
roads, tilted electric poles, illegal parking, traffic jams, etc. Apart from hazardous things or
anomalies that occur in cities, this system can actually be used to update city geospatial
databases [75]. If there is a new object or building, an indicative update can be carried out
on the database.
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After getting the data, they are then stored and processed in the cloud. Cloud systems
are used because they can increase IT functionality and capacity without having to add
software, personnel, investment for additional training, and new infrastructure [76]. The
data processing process is generally divided into 2 (two) parts: the first is the process of
determining the location of the coordinates of the problem object. The specified location
coordinates are the coordinates of the problem object, not the coordinates of the user or
citizens. Second is the process of building a 3D model of the object. Reconstruction of
3D models using a 3D model collaborative system [67]. Therefore, it takes more than one
photo. However, it would be better if the photos collected covered all angles and parts
of the problem object in the field. The 3D model collaborative development system was
chosen because it is assumed that photos of problem objects in the field will be sent by
more than one person. Sometimes, one problem object is reported by several people.

The coordinate location and 3D model of the problem object that has been obtained
are then integrated and visualized into the Digital Geotwin platform. In this research study,
Digital Twin level 2 was used [52]. Digital Geotwin is built from geospatial data, which
are building objects, building height information, road or transportation networks, and
terrain. Then, Digital Geotwin is used as a 3D map base for the Smart City platform or
dashboard [77], so that monitoring can be carried out to support a better planning and
decision-making system for stakeholders.

2.3.1. Digital Geotwin Development

Digital Twin has a maturity level from 0 to 5 (Table 2). In this research study, the
Digital Twin that was built is at level 2 (two), in which there is a relationship between the
3D city model and static data in the field but not in real-time [52]. The 3D City Model is the
main basis for building a city’s Digital Twin.
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Table 2. Maturity levels for Digital Twin [52].

Level Principle Usage

0 Physical world capture (e.g., point cloud,
photogrammetry, drones, etc.) Brownfield (existing) as-built survey

1
2D map/system or 3D model
(e.g., object-based, with no metadata or
building information models)

Design/asset optimization and
coordination

2 Connect model to static data, metadata,
and building information model

4D/5D simulation, design/asset
management, BIM stage 2

3 Enrich with real-time data (IoT, sensors) Operational efficiency

4 Two-way data integration and interaction Remote and immersive operations;
controlling the physical from the digital

5 Autonomous operations and maintenance Complete self-governance with total
oversight and transparency

The development of 3D city models needs to pay attention to LOD (Level of Detail).
In 2012, the Open Geospatial Consortium defined 5 (five) levels of LOD, namely LOD0 to
LOD4 (Figure 3). The LOD concept is focused on several thematic classes, but is mainly
implemented for spatial data of buildings [78]. LOD0 is the shape of the footprint and
polygon of the building object in 2 (two) dimensions. LOD1 is the result of extrusion of the
LOD0 model in a simple prismatic form that already has high dimensions or 3D. LOD2 is a
model of a building with a simplified roof. LOD3 is a model of a building that has a more
detailed architecture with windows and doors, and is more complex than the previous
LOD. LOD4 is a more complete version of LOD3, which has included room information
and features.
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The LODs used in this study in developing the Digital Geotwin platform are LOD1 and
LOD2. According to the explanation previously described in Section 2.2.2, the geospatial
data used consists of building objects, building heights, and transportation road networks.
All geospatial data are in vector form. Digital Geotwin development was developed
through Blender tools with the CityGML [56,79,80]. A more detailed explanation regarding
the building of Digital Geotwin will be explained in Section 3.1.

2.3.2. Determination of the Coordinate Location of the Problem Object from MCS

The majority of current MCS-based coordinate location determinations are extracted
from user coordinate data using GNSS sensors embedded in mobile devices [15,35,81], so
that the coordinates obtained are the coordinates of the user or citizens. In fact, citizens
collect data at locations far from the object of interest. Illustrations can be seen in Figure 4.
In many cases, for reasons of safety and to avoid danger, citizens take and collect data on
problem objects in the field from a considerable distance. For example, problem objects
such as electric poles that are prone to collapse, broken traffic lights or potholes in the
middle of the road, flooding, etc. Therefore, a process and method are needed to determine
the location of the coordinates of problem objects whose data are taken from a distance
but still have a good accuracy value. To clarify and be consistent in the use of words, the
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term used for problem objects whose coordinate data are taken from a distance is called
“distant object”.
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There are several research studies related to determining the coordinates of distant
objects. Research conducted by [82] proposes determining the location of the coordinates
of distant objects using a method called the OPS (Object Positioning System), which is built
from a combination of triangulation and trilateration methods equipped with computer
vision techniques and multi-modal sensor information. Another study was conducted
by [25], who used participatory sensing-based mobile phones.

The process of determining the coordinates of distant objects in this research study
consists of several parts, which are the conversion of the geographic coordinate system into
the UTM coordinate system, the determination of the equation of the line obtained from
the users’ mobile coordinates and the compass direction, and the addition of parameters in
the form of Google Maps-based approach. From the intersection of these line equations,
a number of coordinate data will be generated. The distribution of several coordinates
resulting from the intersection of the lines earlier is obtained, then the mean-shift algorithm
is applied [83–87] to obtain the final coordinates of the distant object. The workflow to
determine the coordinates of distant objects is shown in Figure 5. The detailed process and
mathematic model of the geospatial localization are explained in Appendix A.
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The method of determining the coordinates of distant objects in research [25] will be
adopted for this research study, but with additional parameters in the form of approxi-
mation coordinates from Google Maps to speed up the calculation process and improve
accuracy. To this day, Google Maps has been widely used in various fields, especially
geospatial data in the form of locations/coordinates, satellite imagery, maps, etc. [88–93].

2.3.3. Reconstruction of 3D Model of Problem Object from Image Data

Over the last decade, the development of camera technology on mobile phones has
significantly improved in terms of image resolution, sharpness, and color accuracy. This
has led to increased utilization of photo/image data generated from mobile phone camera
sensors to construct 3D models using photogrammetric techniques [69,72,94,95]. Even
currently, the level of use is increasing from 3D models to mixed reality [96]. The geometric
evaluation results for positional accuracy and 3D model development using a mobile phone
camera yield good and acceptable values [97,98]. Many research studies have utilized 3D
models from photographic data produced by mobile phones in various fields. An example
is research from [69] on the sets of standards for the acquisition process to accurately
visualize in 3D form and display museum or cultural heritage objects using a camera.
Reconstruction of 3D models using mobile phones is also used in the health sector to create
3D heads of small children to examine skull deformities in more detail [99]. The use of
mobile phone cameras for building 3D models has been widely used and is the best choice
at a relatively low cost. In the context of this research, the construction of 3D models of
urban problem objects is made so that they can be integrated and visualized into the Digital
Geotwin platform.

The 3D model reconstruction process in this study uses a collaborative system us-
ing photos/images from MCS. Currently, there have been many studies conducting
research to create 3D models from a collection of photos obtained from crowdsourc-
ing [43,67,68,100,101]. In this study, the 3D model development process adopts a work-
flow [101] based on Cloud Computing. The process flow of the 3D model development
work adopted in this study can be seen in Figure 6.
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The first step is to collect photos that refer to the same problem object. For example, if
there are reports of damaged and potholed road objects in a location, these photos will be
collected from various citizens’ reports. It is assumed that there is more than one report
from citizens about the damaged and potholed roads, so various photos are obtained from
various shooting angles. From these photos, the photo poses were reconstructed using the
SfM algorithm to produce sparse 3D point clouds. Next, a dense point cloud, commonly
known as Multi-view Stereo (MvS) algorithm, is performed. The dense point cloud has
a rough appearance and texture, so editing needs to be performed to make the 3D model
look smoother. After that, mesh generation, also called polygon surface formation, was
carried out so that the surface of the 3D model was close to the original. The final step is
editing and optimizing the surface texture of the 3D model. The results of this 3D model
have dimensions and sizes that match the scale size of the original shape/object. The stages
of constructing a 3D model in detail can be seen in Figure 6 as follows.

3. Results
3.1. Digital Geotwin Development

Survey and mapping technology is needed to build a Digital Geotwin from a city. This
technology is a fundamental technology, which is used to generate geospatial data, both
in 2D and 3D, from an object in urban areas. These urban objects can be in the form of
buildings/structures, road networks, topography, and urban spatial structures [48]. These
objects are then integrated into the Smart City platform system so that they can represent
the physical world of the city in the digital world with dimensions and sizes that match the
scale. The representation of the physical world into the virtual world in the form of Digital
Geotwin can make it easier for stakeholders to carry out an inferential analysis. From
the analysis, new insights emerge. After getting insight, stakeholders can make decisions
quickly and accurately [102].

Digital Geotwin development into the Smart City platform utilizes the geospatial data
described in Section 2.2.2. The geospatial data used are vector data in (.shp) format. The
tools used for data processing use Blender software. The objects in Digital Geotwin are
built in LOD 1, but some important buildings are built in LOD 2, which is more detailed.
The results of the Digital Geotwin building can be seen in Figure 7 as follows.
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3.2. Results of Determining Distant Object Coordinates

After collecting data in the form of user/citizen coordinates, compass directions, and
approximation coordinates of distant objects through MCS, a calculation process is then
carried out to determine the estimated coordinates of the location of the distant object. In
conducting experiments, we used three definitive benchmarks as distant objects. We use all
these benchmarks as objects to validate them with calculated coordinates. The benchmark
is a monument where definitive coordinates have been calculated. Benchmark locations are
around ITB (Bandung Institute of Technology). The benchmark is named with the codes
ITB092; ITB059A; and ITB075A.

Furthermore, from each of these benchmark objects, we retrieve data in the form of
GNSS coordinates from the mobile device, compass angle, approximate coordinates, and
photos. However, the photos of these benchmark objects are specifically not included in
the process of calculating the coordinates of distant objects. Photo data were used for the
construction of 3D models. Each of our benchmarks was divided into three categories
based on the distance of the user/observer to the distant object. The first category is 10 m
away. The second category is 20 m away. The third category has a distance of 30 m. We
chose these distances with the assumption that the average person takes a photo of an
object from the range of 10 m to 30 m. If the photo is taken from a distance that is too far, it
will be difficult to identify objects, especially objects that are relatively small in size.

Each category was collected four times from various angles. The data collection
was performed using a Samsung Galaxy S10+ mobile device and GPS Map Camera Lite
applications that can record photos, mobile device coordinates, and compass directions
simultaneously [103]. In Figure 8, you can see an example of the results of data retrieval
from benchmark objects using the application. Next, the approximate coordinate data
are retrieved from Google Maps as an additional parameter when the coordinate value
estimation process is carried out.

The mobile device coordinate data and compass directions that have been taken are
then made into straight-line equations so that each category has four line equations. There
are six combinations of intersection points resulting from the four line equations. From
these six line equations, we obtain six X and Y coordinates. The detailed process can be
seen in Appendix A.

The total number of coordinate points for each line intersection is six coordinate points,
and then one approximation coordinate of the benchmark object taken from Google Maps
is added. Hence, the number of coordinate data processed is seven coordinate points.
Furthermore, to determine the final coordinate estimation, a calculation process was carried
out using the mean-shift algorithm with a kernel bandwidth of 30. An example of the
results can be seen in Figure 9 as follows.

From the picture above, the results of the estimated position of the coordinates of
the benchmark object, which has a “+” sign, can be seen. The x-axis represents the x or
Easting coordinates in the UTM projection coordinate system. The y-axis represents the
y or Northing coordinates in the UTM projection coordinate system. The green circles
totaling seven in the graph are the coordinate points of the intersection of the combination
of line equations and the coordinates of the results of the approach. Based on this, it can be
assumed that the coordinates of the objects are in the middle of the points of intersection of
the coordinates and the approximate coordinates (the “+” sign). By using the mean-shift
algorithm, the mean value of the cluster can be determined. This mean value is the final
estimate of the coordinates of the distant object. The table below is the result of the final
calculation of the coordinates of the distant object. Table 3 shows the estimated result of the
ITB092 (benchmark) distant object coordinates. Table 4 shows the estimated result of the
ITB059A (benchmark) distant object coordinates. And, Table 5 shows the estimated result
of the ITB075A (benchmark) distant object coordinates.
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Table 3. Estimation of ITB092 Distant Object Coordinates.

Object
Benchmark

Observer to
Object

Distance (m)

Compass
Angle (◦)

Coordinate Mobile Device
(UTM) Estimation Coordinates (UTM)

East North East North

#ITB092

Data-1 10 261 788569.431 9237324.370 788564.158 9237322.625

Data-2 10 302 788567.816 9237319.350

Data-3 10 339 788563.289 9237316.021

Data-4 10 66 788554.437 9237320.285

Data-1 20 263 788577.282 9237324.367 788567.779 9237318.499

Data-2 20 294 788574.958 9237314.383

Data-3 20 331 788567.081 9237309.012

Data-4 20 60 788547.799 9237314.216

Data-1 30 264 788583.136 9237324.171 788571.183 9237317.062

Data-2 30 308 788582.003 9237309.314

Data-3 30 330 788571.419 9237302.782

Data-4 30 49 788542.414 9237306.670

Table 4. Estimation of ITB059A Distant Object Coordinates.

Object
Benchmark

Observer to
Object

Distance (m)

Compass
Angle (◦)

Coordinate Mobile Device
(UTM) Estimation Coordinates (UTM)

East North East North

#ITB059A

Data-1 10 24 788592.843 9237292.080 788599.541 9237304.373

Data-2 10 275 788604.835 9237302.504

Data-3 10 185 788597.207 9237312.300

Data-4 10 102 788590.129 9237304.857

Data-1 20 24 788588.561 9237285.338 788596.534 9237305.937

Data-2 20 274 788611.462 9237301.634

Data-3 20 181 788598.182 9237324.151

Data-4 20 105 788579.973 9237306.771

Data-1 30 27 788587.938 9237279.729 788596.257 9237295.732

Data-2 30 252 788614.883 9237308.851

Data-3 30 182 788597.685 9237325.220

Data-4 30 111 788572.774 9237311.704
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Table 5. Estimation of ITB075A Distant Object Coordinates.

Object
Benchmark

Observer to
Object

Distance (m)

Compass
Angle (◦)

Coordinate Mobile Device
(UTM) Estimation Coordinates (UTM)

East North East North

#ITB075A

Data-1 10 291 788362.230 9237365.817 788350.454 9237367.109

Data-2 10 345 788359.726 9237359.007

Data-3 10 64 788347.256 9237363.226

Data-4 10 93 788342.485 9237368.918

Data-1 20 296 788371.293 9237359.768 788346.945 9237371.119

Data-2 20 316 788363.573 9237350.492

Data-3 20 66 788341.037 9237356.798

Data-4 20 103 788336.780 9237368.962

Data-1 30 303 788377.837 9237357.465 788340.141 9237360.596

Data-2 30 343 788369.585 9237343.519

Data-3 30 62 788332.985 9237351.497

Data-4 30 96 788326.458 9237365.999

3.3. Results of 3D Model Reconstruction

To build a 3D model of a problem object that occurs in a city, photo/image data of the
problem object are needed. The object photo data was taken from citizen reports using the
camera sensor on their phone. The photos of problem objects in the field that have been
collected from MCS are then processed for data processing to build a 3D model.

The photo data processing was carried out using the PIX4Dcatch software [104]. This
software is designed for iOS and Android devices and can transform data in the form
of photographs in 2D into 3D objects that have real-time coordinates (geolocation) using
photogrammetry [105]. Data retrieval was performed by scanning the problem object using
the camera sensor to take photos and the GNSS sensor on the mobile device. The scanning
process is actually taking pictures of objects frame by frame simultaneously. The condition
for taking photos of the problem object must have several of the same parts so that the
matching/stereo process can be carried out.

In this experiment, we took four examples of problem objects, which are (1) non-formal
areas; (2) roads that are damaged and have potholes; (3) potholed sidewalks/pavement;
and (4) broken sidewalks/pavement. We chose these objects because these phenomena
occur a lot in the city of Bandung. In addition, MCS is an efficient method for monitoring
this phenomenon. We use applications and software from PIX4D to construct 3D models of
these problem objects. In Table 6, you can see photos of the problem objects and information
about the number of photos taken to construct the 3D model in this study.
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Table 6. Photo and number of photo of problem objects.
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The results of the 3D model reconstruction of the problem objects can be seen in the
image below. Figure 10 is a 3D model of the non-formal area around the ITB campus,
precisely in Tamansari Village. The non-formal area has an inadequate environment and is
a slum area. Within the area, there are very dense settlements, narrow roads, and buildings
that are unfit for habitation that have low construction quality and a lack of access to
infrastructure [106]. These problems will certainly affect the aesthetics of the city so that it
becomes inappropriate. Therefore, the stakeholders’ or the government’s role is needed to
immediately fix and improve the quality of buildings in slum areas according to a good
urban spatial plan. With citizen reports and then visualizing them in 3D form, it is hoped
that the handling and improvements related to this non-formal area can be followed up on
quickly and precisely.
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Figure 10. Three-dimensional model of non-formal area model in point cloud: (1) front view; (2) seen
from a horizontal angle; (3) rear view; (4) seen from a vertical angle.

In Figure 11, you can see the 3D model of the damaged and potholed road. Damaged
roads and potholes are one of the problems that often occur in Bandung city. According to
data released by BPS in 2018, the total length of damaged roads in Bandung city reached
81.82 km [107]. With the visualization of the 3D model, the calculation of the area of
damaged and potholed roads can be calculated directly so that planning and budgeting
can be carried out immediately, which will then be followed up on for repairs. This will
certainly make it easier to monitor roads throughout Bandung City and provide efficiency
in terms of time, effort, and cost.
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Figure 11. Three-dimensional model of broken and potholed roads: (1) front view; (2) right side view;
(3) top view; (4) left side view.

Figures 12 and 13 are images of damaged and potholed sidewalks located near Ban-
dung Institute of Technology. In Figure 12, it can be seen that the sidewalk has a hole
right on the access road for people with disabilities. This certainly has the potential to be
hazardous and raises the risk of pedestrians falling into holes when crossing the sidewalk.
Likewise, in Figure 13 is an image of a sidewalk that has been damaged and broken so that
it endangers pedestrians and disrupts the aesthetics of the city. By using the MCS method,
information on infrastructure damage such as this can be quickly received by stakeholders.
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Figure 12. Three-dimensional model of the perforated/potholed pavement: (1) front view; (2) top
view; (3) bottom view; (4) side view.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 14 
 

 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

Figure 12. Three-dimensional model of the perforated/potholed pavement: (1) front view; (2) top 
view; (3) bottom view; (4) side view. 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

Figure 13. Three-dimensional model of broken pavement: (1) front view; (2) side view; (3) rear 
view; (4) top view. 

  
Figure 14. Three-dimensional model of the pothole (left image); calculation of the area of the road 
damaged/potholes (right image). 

As previously explained, the 3D reconstruction and visualization of problem objects 
in the city can help stakeholders see sidewalk conditions closer and more intuitively to 
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(4) top view.

As seen in Figure 14 below, the left image is a 3D visualization of a damaged and
potholed road. The right image is the calculation of the area of the hollow road area using
the software’s polygon tools, which will immediately produce the area value. There are
two sections of the damaged road area, which are approximately 0.82 m2 and 0.73 m2. This
information on the area of the damaged road can be used to plan the follow-up action and
its budget for road improvement for stakeholders.
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damaged/potholes (right image).

As previously explained, the 3D reconstruction and visualization of problem objects
in the city can help stakeholders see sidewalk conditions closer and more intuitively to
actual conditions on the ground. In addition, with 3D visualization, stakeholders can also
calculate the length, width, and depth of the holes on the pavement, so they can make
decisions quickly and accurately. More details can be seen in Figure 15 below.
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Figure 15. Three-dimensional model shape and dimension calculation of the sidewalk potholes:
(1) visualization of the 3D shape of the perforated sidewalk model; (2) calculating the length and
width of the hole; (3) calculation of the depth of the pavement pits.

Figure 15 above shows an image of the 3D shape of the perforated pavement model
from the top view and the calculation of the length, width, and depth of the perforated
pavement. The length of the sidewalk hole is 63.8 cm. The width of the sidewalk hole is
63.2 cm, while the depth of the hole is 60.8 cm. This information can assist stakeholders in
making better plans and decisions so as to improve the quality of life in urban communities.

3.4. The Result of Integration with the Digital GeoTwin Platforms

After constructing a 3D model of the problem object, then the 3D object is integrated
into the Digital Geotwin platform. The integration was carried out by entering the coordi-
nate values obtained from the determining process of the coordinates of distant objects in
the problems discussed in Section 3.1. The results of integrating 3D model objects into the
Digital Geotwin platform can be seen in Figure 16 below.



Sustainability 2023, 15, 3942 18 of 27

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 14 
 

actual conditions on the ground. In addition, with 3D visualization, stakeholders can also 
calculate the length, width, and depth of the holes on the pavement, so they can make 
decisions quickly and accurately. More details can be seen in Figure 15 below. 

 
(1) 

 
(2) 

 
(3) 

Figure 15. Three-dimensional model shape and dimension calculation of the sidewalk potholes: (1) 
visualization of the 3D shape of the perforated sidewalk model; (2) calculating the length and width 
of the hole; (3) calculation of the depth of the pavement pits. 

Figure 15 above shows an image of the 3D shape of the perforated pavement model 
from the top view and the calculation of the length, width, and depth of the perforated 
pavement. The length of the sidewalk hole is 63.8 cm. The width of the sidewalk hole is 
63.2 cm, while the depth of the hole is 60.8 cm. This information can assist stakeholders in 
making better plans and decisions so as to improve the quality of life in urban communi-
ties. 

3.4. The Result of Integration with the Digital GeoTwin Platforms 
After constructing a 3D model of the problem object, then the 3D object is integrated 

into the Digital Geotwin platform. The integration was carried out by entering the coor-
dinate values obtained from the determining process of the coordinates of distant objects 
in the problems discussed in Section 3.1. The results of integrating 3D model objects into 
the Digital Geotwin platform can be seen in Figure 16 below. 

 
 

Figure 16. The result of the integration of 3D model of problem object into the Digital Geotwin plat-
form. Figure 16. The result of the integration of 3D model of problem object into the Digital Geotwin

platform.

By integrating the problem object, stakeholders can better understand the condition of
the problem holistically, and can know the position and orientation of the problem object
more intuitively. For example, the location of the problem, the conditions around the object
of the problem, what is the impact on the surrounding environment, what is the solution,
whether it needs to be followed up on immediately or not, estimating how much it will
cost to solve the problem, how to evaluate it in the future and various other analyses.

4. Evaluation
4.1. Evaluation of Determining the Coordinates of Distant Objects

The evaluation process in this study was carried out by comparing the value of the
distance error between the proposed method of determining the coordinates of distant
objects and the distance error value of the previous research [25]. However, in this study,
no adjustments were made to the compass direction and magnetic declination at each
geographical location using the International Geomagnetic Reference Field Model. A
comparison of the results of coordinates and distance error values between previous
research methods and the method proposed in this study is presented in Table 7 as follows.

Table 7. Comparison of estimated coordinates of experimental distant objects.

Object

Definitive
Coordinates

Observer
to Object
Distance

(m)

Methods in Previous
Studies Distance

Error (m)

Proposed Methods
Distance
Error (m)UTM Coordinate

System
UTM Coordinate

System
UTM Coordinate

System

E (East) N (North) E (East) N (North) E (East) N (North)

#ITB092 788558.993 9237325.283 10 788565.140 9237322.273 6.84 788564.158 9237322.625 4.90

20 788570.024 9237316.090 14.36 788567.779 9237318.499 8.39

30 788575.175 9237313.273 20.15 788571.183 9237317.062 11.85

#ITB059A 788595.217 9237303.210 10 788601.413 9237304.494 6.33 788599.541 9237304.373 4.48

20 788597.912 9237306.780 4.47 788596.534 9237305.937 3.03

30 788596.976 9237288.260 15.05 788596.257 9237295.732 7.55

#ITB075A 788353.712 9237371.251 10 788350.138 9237365.535 6.74 788350.454 9237367.109 5.27

20 788345.413 9237370.460 8.34 788346.945 9237371.119 6.77

30 788335.739 9237355.794 23.71 788340.141 9237360.596 17.25
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To find out the results of the comparison of the distance error values in the two
methods above, the Paired T-Test was used. Based on the statistical test Paired t-Test using
SPSS software [108,109], the output was obtained through a table of comparison results
as follows.

Table 8 below shows the summary results of the descriptive statistics of the two
methods. The mean value of the previous method is 11.7767 m, while the mean value of
the proposed method is 7.6911 m. Furthermore, in Table 8, the results of the paired sample
test were presented from the distance error values of the two methods.

Table 8. Paired sample statistics.

Mean N Std. Deviation Std. Error Mean

Pair 1
PREVIOUS 11.7767 9 6.84204 2.28068

PROPOSED 7.6911 9 4.38095 1.46032

Table 9 shows the significant value/ Sig. (2-tailed) between the two data samples with
a confidence interval of 95%. If the value of Sig. (2-tailed) ≤ 0.05, then there is a significant
difference between the coordinate calculation results using the previous research method
and the coordinate calculation results using the proposed method. Conversely, if the value
of Sig. (2-tailed) ≥ 0.05, then there is no significant difference between the two methods.

Table 9. Paired sample test.

Paired Differences
t df

Sig.
(2-Tailed)

Mean Std.
Deviation

Std. Error
Mean

95% Confidence Interval of
the Difference

Lower Upper

Pair 1 PREVIOUS-
PROPOSED 4.08556 2.97336 0.99112 1.80003 6.37108 4.122 8 0.003

The Sig. (2-tailed) value in the table is 0.003, which is smaller than 0.05. Based on these
results, it can be concluded that there is a significant difference in the distance error value
after implementing the newly proposed method. The mean value in the table shows that
there is an average increase in the accuracy value of (+) 4.08556 m.

The result of the evaluation above proves that the proposed method can increase the
accuracy of the coordinates of distant objects. Google maps coordinates have the same
coordinate system reference as the object. In addition, coordinates from Google maps have
better GNSS quality than the GNSS quality of mobile devices. This makes the result of
determining object coordinates much better than the previous method.

4.2. Evaluation of the Utilization of 3D Models in the Digital Geotwin Platform

To evaluate the integration of the 3D problem object model into the Digital Geotwin
platform, we use a questionnaire to quantitatively assess the results of 3D utilization. Based
on this, we assess three aspects, which are the comparative aspect; satisfaction aspect; and
usability aspects [59]. In the aspect of comparison, we compare maps or visualizations in
2D with visualizations in 3D. In the second aspect, we measure the aspect of respondents’
satisfaction by using 3D maps/visualization regarding comfort, convenience, and detailed
information obtained. In the third aspect, we evaluate the use of features that can be
generated from 3D visualization and 3D factual dimension measurement functions. To
access the questionnaire, follow the link at [110].

The total number of respondents who filled out the questionnaire was 42 (forty-
two) people. The results of the questionnaire from the comparative aspect show that the
majority of respondents stated “strongly agree” and “agree”, with an accumulation of
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83%, that the use of maps and 3D visualization is better than 2D visualization. A total
of 10% of respondents said they were unsure or “neutral”. Meanwhile, 2% and 5% of
respondents stated “disagree” and “strongly disagree”, respectively. More details can be
seen in Figure 17.
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From the aspect of satisfaction, as many as 67% of respondents stated that they
were satisfied with the visualization and utilization of the 3D model, namely that the
visualization of the 3D model provided satisfaction in terms of comfort, convenience, and
detailed information obtained. A total of 22% of respondents stated they were in doubt or
“neutral”. Meanwhile, 6% stated “disagree”, and 5% stated “strongly disagree”. The results
of the questionnaire assessment regarding the satisfaction aspect can be seen in Figure 18.
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In Figure 19, the results of the respondents on the usability aspect can be seen. The
accumulated total of 83% of respondents stated “strongly agree” and “agree” that the use
of 3D models can be useful in city management and support better planning and policy
making. A total of 9% of respondents said they were unsure or “neutral”. The remaining
3% and 5% stated “disagree” and “strongly disagree”.
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5. Conclusions

From the results and evaluations of the research studies that have been conducted, it
can be concluded that the implementation of a monitoring system for urban problems can
be carried out by utilizing MCS (Mobile Crowdsensing), which is integrated with Digital
Geotwin technology. Urban problems such as damaged roads, potholes on sidewalks, and
so on can be identified quickly and can be acted upon immediately. MCS is a method
of collecting data and information (sensing) that involves the community/citizens using
mobile devices. The MCS method has developed quite rapidly in recent times because
of the many advantages it has when compared to traditional sensors. The advantages of
the MCS method in conducting city monitoring systems include the following: (1) the city
does not need to install and distribute many sensors in every corner of the city, because the
public and society are dynamic and have a high level of mobilization; (2) it has very broad
reach and coverage; (3) the number of sensors and computational capabilities is higher,
because it uses mobile devices to collect data and information; (4) it has a wide choice of
platforms and applications compared to traditional sensors; (5) it is more efficient in the
aspects of time, effort, and cost.

The combination of the MCS method and Digital Geotwin technology can produce a
better monitoring system for urban problems. By using the MCS method, information can
be obtained in the form of the coordinate position of the problem object along with the 3D
model of the object. The reconstruction of 3D objects is not only limited to visualization;
dimensional measurements of the object can also be carried out. Furthermore, data in the
form of position coordinates and 3D shapes resulting from MCS can be integrated into the
Digital Geotwin platform. Digital Geotwin Technology is able to represent 3D objects and
city conditions virtually, so that it will be easier for stakeholders to carry out a monitoring
system for urban problems.

In this paper, research is focused on two things. The first is determining the coordinate
position of the problem object that occurs in urban areas from a distance (distant object)
using a mobile device. Second, the construction of 3D models of urban problem objects
(such as potholed sidewalks, damaged roads, garbage dumps, etc.) using camera sensors
from citizens/community mobile devices using the MCS method and then integrated into
the Digital Geotwin.

The results of the evaluation of the statistical tests for determining the coordinates of
distant objects in urban problems show quite good results, namely an average increase in
accuracy of about 4 (four) meters. Meanwhile, the evaluation results of the development
and utilization of 3D models in representing urban problem objects show better results in
three aspects. The first aspect is the comparative aspect. This comparative aspect compares
the visualization of objects based on 2D maps with the visualization of objects based on 3D.
The results of the questionnaire show that more than 80% of respondents agreed that 3D
visualization is better than 2D visualization. The second aspect is the satisfaction aspect.
The satisfaction aspect is measured by the convenience, comfort, and interest of respondents
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in visualization in 3D. The results show that more than 60% of respondents are satisfied
with the use of and visualization in 3D. The third aspect is the usability aspect; more than
80% of respondents agreed that the use and visualization of 3D objects help stakeholders in
planning development, making policies, managing cities, and providing more detailed and
more intuitive information.
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Appendix A

To find the equation of a line in the process of determining the coordinates of a distant
object, two pieces of data are needed, which are (1) compass direction with magnetic north
and (2) GPS coordinates of the user’s mobile device. The formulation used to create the
equation of the line is as follows.

y = m(x − a) + b (A1)

m = tan(Φ) (A2)

where
y : Northing (UTM Coordinate System)
x : Easting (UTM Coordinate System)
a : Easting from mobile device (UTM Coordinate System)
b : Northing from mobile device (UTM Coordinate System)
m : Gradient
Φ : Compass angle

Equation (A1) is the formulation used to find the equation of the line for each point
or position taken by the user using their mobile device. Meanwhile, Equation (A2) is
the formula for finding the gradient value of the line equation. The gradient value is
obtained from the angle of the compass direction taken by the user/citizen. After obtaining
several line equations, the point of intersection between one line equation and another
is determined. In this research, four line equations were used so that there were six
combinations of intersecting coordinate points. To determine the number of combinations,
you can use the combination formula as follows.

nCr =
n!

(n − r)!r!
(A3)

where
C : Combination
n : Amount of data
r : The amount of data to be combined
! : Factorial symbol

The next step was to enter the coordinate value resulting from the intersection of
the line and the approximate coordinate value from Google Maps into the mean-shift
algorithm to determine the final estimated value. The mean-shift algorithm is an average
shift method carrying out a simple iterative procedure that shifts each data point to the
average of the surrounding data points [84]. This algorithm was used to determine the
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density gradient estimation. In this study, Kernel Density Estimation (KDE) was used to
estimate the non-parametric density [83,86].

f (x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(A4)

where
K : Gaussian Kernel used
n : Amount of data
h : Bandwidth or window radius

In general, the mean-shift formulation used can be seen in formulation (A4) above.
The bandwidth value used in this study was 30.

References
1. Gössling, S. Integrating E-Scooters in Urban Transportation: Problems, Policies, and the Prospect of System Change. Transp. Res.

Part D Transp. Environ. 2020, 79, 102230. [CrossRef]
2. Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a Specific Urban Water

Management—Sponge City. Sci. Total Environ. 2019, 652, 147–162. [CrossRef] [PubMed]
3. Nowakowski, P. A Proposal to Improve E-Waste Collection Efficiency in Urban Mining: Container Loading and Vehicle Routing

Problems—A Case Study of Poland. Waste Manag. 2017, 60, 494–504. [CrossRef]
4. Liu, H.; Jia, Y.; Niu, C. “Sponge City” Concept Helps Solve China’s Urban Water Problems. Environ. Earth Sci. 2017, 76, 473.

[CrossRef]
5. Cui, J.X.; Liu, F.; Janssens, D.; An, S.; Wets, G.; Cools, M. Detecting Urban Road Network Accessibility Problems Using Taxi GPS

Data. J. Transp. Geogr. 2016, 51, 147–157. [CrossRef]
6. Broere, W. Urban Underground Space: Solving the Problems of Today’s Cities. Tunn. Undergr. Sp. Technol. 2016, 55, 245–248.

[CrossRef]
7. Christine Haaland; Cecil Konijnendijk van den Bosch Challenges and Strategies for Urban Green-Space Planning in Cities

Undergoing Densification: A Review. Urban For. Urban Green. 2015, 14, 760–771. [CrossRef]
8. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and

Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]
9. Chuantao, Y.I.N.; Zhang, X.; Hui, C.; Jingyuan, W.; Daven, C.; Bertrand, D. A Literature Survey on Smart Cities. Sci. China Inf. Sci.

2015, 58, 1–18. [CrossRef]
10. Jalali, R.; El-Khatib, K.; McGregor, C. Smart City Architecture for Community Level Services through the Internet of Things. In

Proceedings of the 2015 18th International Conference on Intelligence in Next Generation Networks, ICIN 2015, Paris, France,
17–19 February 2015; pp. 108–113. [CrossRef]

11. Jiang, D. The Construction of Smart City Information System Based on the Internet of Things and Cloud Computing. Comput.
Commun. 2020, 150, 158–166. [CrossRef]

12. Laufs, J.; Borrion, H.; Bradford, B. Security and the Smart City: A Systematic Review. Sustain. Cities Soc. 2020, 55, 102023.
[CrossRef]

13. Kim, T.-H.; Ramos, C.; Mohammed, S. Smart City and IoT. Future Gener. Comput. Syst. 2017, 76, 159–162. [CrossRef]
14. Li, G.; Zheng, Y.; Fan, J.; Wang, J.; Cheng, R. Crowdsourced Data Management: Overview and Challenges. In Proceedings of the

2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017; pp. 1711–1716.
15. Tong, Y.; Zhou, Z.; Zeng, Y.; Chen, L.; Shahabi, C. Spatial Crowdsourcing: A Survey. VLDB J. 2020, 29, 217–250. [CrossRef]
16. Capponi, A.; Fiandrino, C.; Kantarci, B.; Foschini, L.; Kliazovich, D.; Bouvry, P. A Survey on Mobile Crowdsensing Systems:

Challenges, Solutions, and Opportunities. IEEE Commun. Surv. Tutorials 2019, 21, 2419–2465. [CrossRef]
17. Guo, B.; Yu, Z.; Zhou, X. From Participatory Sensing to Mobile Crowd Sensing. In Proceedings of the 2014 IEEE International

Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), Budapest, Hungary, 24–28
March 2014; pp. 593–598.

18. Chatzimilioudis, G.; Konstantinidis, A.; Laoudias, C. Crowdsourcing with Smartphones. IEEE Internet Comput. 2012, 16, 36–44.
[CrossRef]

19. Ganti, R.K.; Ye, F.; Lei, H. Mobile Crowdsensing: Current State and Future Challenges. IEEE Commun. Mag. 2011, 49, 32–39.
[CrossRef]

20. Christin, D.; Reinhardt, A.; Kanhere, S.S.; Hollick, M. A Survey on Privacy in Mobile Participatory Sensing Applications. J. Syst.
Softw. 2011, 84, 1928–1946. [CrossRef]

21. Kong, X.; Liu, X.; Jedari, B.; Li, M.; Wan, L.; Xia, F. Mobile Crowdsourcing in Smart Cities: Technologies, Applications, and Future
Challenges. IEEE Internet Things J. 2019, 6, 8095–8113. [CrossRef]

22. United Nations Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 10 October 2022).
23. Boubiche, D.E.; Imran, M.; Maqsood, A.; Shoaib, M. Mobile Crowd Sensing—Taxonomy, Applications, Challenges, and Solutions.

Comput. Human Behav. 2019, 101, 352–370. [CrossRef]

http://doi.org/10.1016/j.trd.2020.102230
http://doi.org/10.1016/j.scitotenv.2018.10.168
http://www.ncbi.nlm.nih.gov/pubmed/30359798
http://doi.org/10.1016/j.wasman.2016.10.016
http://doi.org/10.1007/s12665-017-6652-3
http://doi.org/10.1016/j.jtrangeo.2015.12.007
http://doi.org/10.1016/j.tust.2015.11.012
http://doi.org/10.1016/j.ufug.2015.07.009
http://doi.org/10.1016/j.isprsjprs.2019.04.015
http://doi.org/10.1007/s11432-015-5397-4
http://doi.org/10.1109/ICIN.2015.7073815
http://doi.org/10.1016/j.comcom.2019.10.035
http://doi.org/10.1016/j.scs.2020.102023
http://doi.org/10.1016/j.future.2017.03.034
http://doi.org/10.1007/s00778-019-00568-7
http://doi.org/10.1109/COMST.2019.2914030
http://doi.org/10.1109/MIC.2012.70
http://doi.org/10.1109/MCOM.2011.6069707
http://doi.org/10.1016/j.jss.2011.06.073
http://doi.org/10.1109/JIOT.2019.2921879
https://sdgs.un.org/goals
http://doi.org/10.1016/j.chb.2018.10.028


Sustainability 2023, 15, 3942 24 of 27

24. Guo, B.I.N.; Wang, Z.H.U.; Yu, Z.; Wang, Y.U.; Yen, N.Y.; Huang, R.; Zhou, X. Mobile Crowd Sensing and Computing: The Review
of an Emerging Human-Powered Sensing Paradigm. ACM Comput. Surv. (CSUR) 2015, 48, 1–31. [CrossRef]

25. Kotovirta, V.; Toivanen, T.; Tergujeff, R.; Huttunen, M. Participatory Sensing in Environmental Monitoring—Experiences. In
Proceedings of the 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing IMIS 2012,
Palermo, Italy, 4–6 July 2012; pp. 155–162. [CrossRef]

26. Haltofová, B. Implementation of Geo-Crowdsourcing Mobile Applications in e-Government of V4 Countries: A State-of-the-Art
Survey. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 2017, 11, 568–572.

27. Ariya Sanjaya, I.M.; Supangkat, S.H.; Sembiring, J. Citizen Reporting Through Mobile Crowdsensing: A Smart City Case of
Bekasi. In Proceedings of the 2018 International Conference on ICT for Smart Society: Innovation Toward Smart Society and
Society 5.0, ICISS 2018, Semarang, Indonesia, 10–11 October 2018; pp. 11–14. [CrossRef]

28. Calle-Jimenez, T.; Luján-Mora, S. Using Crowdsourcing to Improve Accessibility of Geographic Maps on Mobile Devices. In
Proceedings of the ACHI 2015: The 8th International Conference on Advances in Computer-Human Interactions, Lisbon, Portugal,
22–27 February 2015; pp. 150–154.

29. Jones, P.; Layard, A.; Speed, C.; Lorne, C. MapLocal: Use of Smartphones for Crowdsourced Planning. Plan. Pract. Res. 2015, 30,
322–336. [CrossRef]

30. Ch’ng, E.; Cai, S.; Zhang, T.E.; Leow, F.T. Crowdsourcing 3D Cultural Heritage: Best Practice for Mass Photogrammetry. J. Cult.
Herit. Manag. Sustain. Dev. 2019, 9, 24–42. [CrossRef]

31. Ham, Y.; Kim, J. Participatory Sensing and Digital Twin City: Updating Virtual City Models for Enhanced Risk-Informed
Decision-Making. J. Manag. Eng. 2020, 36, 04020005. [CrossRef]

32. Hamrouni, A.; Member, S.; Ghazzai, H.; Frikha, M.; Massoud, Y. A Spatial Mobile Crowdsourcing Framework for Event Reporting.
IEEE Trans. Comput. Soc. Syst. 2020, 7, 477–491. [CrossRef]

33. Kim, H.; Ham, Y. Participatory Sensing-Based Geospatial Localization of Distant Objects for Disaster Preparedness in Urban Built
Environments. Autom. Constr. 2019, 107, 102960. [CrossRef]

34. Abbondati, F.; Antonio, S.; Veropalumbo, R.; Dell, G. Surface Monitoring of Road Pavements Using Mobile Crowdsensing
Technology. Measurement 2021, 171, 108763. [CrossRef]

35. Cecilla, J.M.; Cano, J.; Hernandez-Orallo, E.; Calafate, C.T.; Manzoni, P. Mobile Crowdsensing Approaches to Address the
COVID-19 Pandemic in Spain. IET Smart Cities 2020, 2, 58–63. [CrossRef]

36. Li, X.; Goldberg, D.W. Computers, Environment and Urban Systems Toward a Mobile Crowdsensing System for Road Surface
Assessment. Comput. Environ. Urban Syst. 2018, 69, 51–62. [CrossRef]

37. Chen, H.; Guo, B.; Member, S.; Yu, Z.; Member, S. CrowdTracking: Real-Time Vehicle Tracking Through Mobile Crowdsensing.
IEEE Internet Things J. 2019, 6, 7570–7583. [CrossRef]

38. Zhao, X.; Wang, N.; Han, R.; Xie, B. International Journal of Disaster Risk Reduction Urban Infrastructure Safety System Based on
Mobile Crowdsensing. Int. J. Disaster Risk Reduct. 2018, 27, 427–438. [CrossRef]

39. Marakkalage, S.H.; Sarica, S.; Pik, B.; Lau, L.; Viswanath, S.K.; Balasubramaniam, T.; Yuen, C.; Member, S.; Yuen, B.; Luo, J.; et al.
Understanding the Lifestyle of Older Population: Mobile Crowdsensing Approach. IEEE Trans. Comput. Soc. Syst. 2019, 6, 82–95.
[CrossRef]

40. Marjanovic, M.; Grubeša, S.; Žarko, I.P. Air and Noise Pollution Monitoring in the City of Zagreb by Using Mobile Crowdsensing.
In Proceedings of the 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM),
Split, Croatia, 21–23 September 2017. [CrossRef]

41. Peng, Z.; Gao, S.; Xiao, B.; Guo, S.; Yang, Y. CrowdGIS: Updating Digital Maps via Mobile Crowdsensing. IEEE Trans. Autom. Sci.
Eng. 2018, 15, 369–380. [CrossRef]

42. Dhonju, H.K.; Xiao, W.; Shakya, B.; Mills, J.P.; Sarhosis, V. Documentation of heritage structures through geo-crowdsourcing and
web-mapping. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, XLII, 18–22. [CrossRef]

43. Xiao, Z.; Lim, H.; Ponnambalam, L. Participatory Sensing for Smart Cities: A Case Study on Transport Trip Quality Measurement.
IEEE Trans. Ind. Informatics 2017, 13, 759–770. [CrossRef]

44. Cheng, L.; Yuan, Y.; Xia, N.; Chen, S.; Chen, Y.; Yang, K.; Ma, L. ISPRS Journal of Photogrammetry and Remote Sensing Crowd-
Sourced Pictures Geo-Localization Method Based on Street View Images and 3D Reconstruction. ISPRS J. Photogramm. Remote
Sens. 2018, 141, 72–85. [CrossRef]

45. Matarazzo, T.J.; Santi, P.; Pakzad, S.N.; Carter, K.; Ratti, C.; Moaveni, B.; Osgood, C.; Jacob, N. Crowdsensing Framework for
Monitoring Bridge Vibrations Using Moving Smartphones. Proc. IEEE 2018, 106, 577–593. [CrossRef]

46. Lehner, H.; Dorffner, L. Digital GeoTwin Vienna: Towards a Digital Twin City as Geodata Hub. PFG J. Photogramm. Remote Sens.
Geoinf. Sci. 2020, 88, 63–75. [CrossRef]

47. Mohammadi, N.; Taylor, J.E. Smart City Digital Twins. In Proceedings of the 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), Honolulu, HI, USA, 21 November–1 December 2017; pp. 1–5. [CrossRef]

48. Deng, T.; Zhang, K.; Shen, Z.J. A Systematic Review of a Digital Twin City: A New Pattern of Urban Governance toward Smart
Cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [CrossRef]

49. Xia, H.; Liu, Z.; Efremochkina, M.; Liu, X.; Lin, C. Study on City Digital Twin Technologies for Sustainable Smart City Design:
A Review and Bibliometric Analysis of Geographic Information System and Building Information Modeling Integration. Sustain.
Cities Soc. 2022, 84, 104009. [CrossRef]

http://doi.org/10.1145/2794400
http://doi.org/10.1109/IMIS.2012.70
http://doi.org/10.1109/ICTSS.2018.8549976
http://doi.org/10.1080/02697459.2015.1052940
http://doi.org/10.1108/JCHMSD-03-2018-0018
http://doi.org/10.1061/(ASCE)ME.1943-5479.0000748
http://doi.org/10.1109/TCSS.2020.2967585
http://doi.org/10.1016/j.autcon.2019.102960
http://doi.org/10.1016/j.measurement.2020.108763
http://doi.org/10.1049/iet-smc.2020.0037
http://doi.org/10.1016/j.compenvurbsys.2017.12.005
http://doi.org/10.1109/JIOT.2019.2901093
http://doi.org/10.1016/j.ijdrr.2017.11.004
http://doi.org/10.1109/TCSS.2018.2883691
http://doi.org/10.23919/SOFTCOM.2017.8115502
http://doi.org/10.1109/TASE.2017.2761793
http://doi.org/10.5194/isprs-archives-XLII-2-W7-17-2017
http://doi.org/10.1109/TII.2017.2678522
http://doi.org/10.1016/j.isprsjprs.2018.04.006
http://doi.org/10.1109/JPROC.2018.2808759
http://doi.org/10.1007/s41064-020-00101-4
http://doi.org/10.1109/SSCI.2017.8285439
http://doi.org/10.1016/j.jmse.2021.03.003
http://doi.org/10.1016/j.scs.2022.104009


Sustainability 2023, 15, 3942 25 of 27

50. El Saddik, A.; Laamarti, F.; Alja’Afreh, M. The Potential of Digital Twins. IEEE Instrum. Meas. Mag. 2021, 24, 36–41. [CrossRef]
51. Shahat, E.; Hyun, C.T.; Yeom, C. City Digital Twin Potentials: A Review and Research Agenda. Sustainability 2021, 13, 3386.

[CrossRef]
52. Botín-Sanabria, D.M.; Mihaita, S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.D.J.

Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [CrossRef]
53. Sharma, A.; Kosasih, E.; Zhang, J.; Brintrup, A.; Calinescu, A. Journal of Industrial Information Integration Digital Twins: State of

the Art Theory and Practice, Challenges, and Open Research Questions. J. Ind. Inf. Integr. 2022, 30, 100383. [CrossRef]
54. Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8,

108952–108971. [CrossRef]
55. Yan, J.; Zlatanova, S.; Aleksandrov, M.; Diakite, A.A.; Pettit, C.; Building, R.C.; Twins, D. Integration of 3D objects and terrain for

3D modelling supporting the digital twin. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV, 24–27. [CrossRef]
56. Ruohomaki, T.; Airaksinen, E.; Huuska, P.; Kesäniemi, O.; Martikka, M.; Suomisto, J. Smart City Platform Enabling Digital

Twin. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018;
pp. 155–161.

57. Xiaojing, H.; Leong, K.K.; Bo, Y.; Yong, K.T. An Efficient Platform for 3D City Model Visualization. In Proceedings of the 2006
IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 917–920.
[CrossRef]

58. Lv, Z.; Li, X.; Wang, W.; Zhang, B.; Hu, J. Government Affairs Service Platform for Smart City. Future Gener. Comput. Syst. 2018,
81, 443–451. [CrossRef]

59. Lv, Z.; Yin, T.; Zhang, X.; Song, H.; Chen, G. Virtual Reality Smart City Based on WebVRGIS. IEEE Internet Things J. 2016, 3,
1015–1024. [CrossRef]

60. Major, P.; Li, G.; Hildre, H.P.; Zhang, H. The Use of a Data-Driven Digital Twin of a Smart City: A Case Study of Ålesund, Norway.
IEEE Instrum. Meas. Mag. 2021, 24, 39–49. [CrossRef]

61. Aljoufie, M.; Tiwari, A. Citizen Sensors for Smart City Planning and Traffic Management: Crowdsourcing Geospatial Data
through Smartphones in Jeddah, Saudi Arabia. GeoJournal 2022, 87, 3149–3168. [CrossRef]

62. Khedher, I.; Faiz, S.; Gazah, S. R-Safety: A Mobile Crowdsourcing Platform for Road Safety in Smart Cities. In Proceedings of the
2022 8th International Conference on Control, Decision and Information Technologies CoDIT 2022, Istanbul, Turkey, 17–20 May
2022; pp. 950–955. [CrossRef]

63. BPS-Statistics of Bandung Municipality. Bandung Municipality in Figures; BPS Kota: Bandung, Indonesia, 2020.
64. Nuraeni, A.; Munandar, A. Smart City Evaluation Model in Bandung, West Java, Indonesia. In Proceedings of the 2019 IEEE

13th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Piscataway, NJ, USA, 3–4
October 2019.

65. Breunig, M.; Bradley, P.E.; Jahn, M.; Kuper, P.; Mazroob, N.; Rösch, N.; Al-doori, M.; Stefanakis, E.; Jadidi, M. Geospatial Data
Management Research: Progress and Future Directions. ISPRS Int. J. Geo-Inf. 2020, 9, 95. [CrossRef]

66. Sun, K.; Zhu, Y.; Pan, P.; Hou, Z.; Wang, D.; Li, W. Geospatial Data Ontology: The Semantic Foundation of Geospatial Data
Integration and Sharing. Big Earth Data 2019, 3, 269–296. [CrossRef]

67. Poiesi, F.; Kessler, F.B.; Locher, A.; Kessler, F.B.; Nocerino, E.; Kessler, F.B.; Remondino, F.; Kessler, F.B. Cloud-Based Collaborative
3D Reconstruction Using Smartphones. In Proceedings of the 14th European Conference on Visual Media Production (CVMP
2017), London, UK, 11–13 December 2017.

68. Paper, C. 3D Reconstruction with a Collaborative Approach Based on Smartphones and a Cloud-Based. Remote Sens. Spat. Inf. Sci.
2017, XLII-2/W8, 187–194. [CrossRef]

69. Apollonio, F.I.; Fantini, F.; Garagnani, S.; Gaiani, M. A Photogrammetry-Based Workflow for the Accurate 3D Construction and
Visualization of Museums Assets. Remote Sens. 2021, 13, 486. [CrossRef]

70. Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry:
A Review. Curr. For. Rep. 2019, 5, 155–168. [CrossRef]

71. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” Photogrammetry: A Low-Cost,
Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [CrossRef]

72. Tavani, S.; Pignalosa, A.; Corradetti, A.; Mercuri, M.; Smeraglia, L.; Riccardi, U.; Seers, T.; Pavlis, T.; Billi, A. Photogrammetric 3D
Model via Smartphone GNSS Sensor: Workflow, Error Estimate, and Best Practices. Remote Sens. 2020, 12, 3616. [CrossRef]

73. Badan Informasi Geospasial. Available online: https://www.big.go.id/ (accessed on 24 November 2022).
74. Adreani, L.; Colombo, C.; Fanfani, M.; Nesi, P.; Pantaleo, G.; Pisanu, R. Rendering 3D City for Smart City Digital Twin. In

Proceedings of the 2022 IEEE International Conference on Smart Computing (SMARTCOMP), Helsinki, Finland, 20–24 June 2022;
pp. 183–185. [CrossRef]

75. Zhang, H.; Jiang, J.; Huang, W.; Yang, L. Design and implementation of crowdsourcing based China’s national public geospatial
information collection system. Remote Sens. Spat. Inf. Sci. 2019, XLII, 10–14. [CrossRef]

76. Rashid, A.; Chaturvedi, A. Cloud Computing Characteristics and Services A Brief Review. Int. J. Comput. Sci. Eng. 2019, 7,
421–426. [CrossRef]

77. Jing, C.; Du, M.; Li, S.; Liu, S. Geospatial Dashboards for Monitoring Smart City Performance. Sustainability 2019, 11, 5648.
[CrossRef]

http://doi.org/10.1109/MIM.2021.9436090
http://doi.org/10.3390/su13063386
http://doi.org/10.3390/rs14061335
http://doi.org/10.1016/j.jii.2022.100383
http://doi.org/10.1109/ACCESS.2020.2998358
http://doi.org/10.5194/isprs-annals-IV-4-W8-147-2019
http://doi.org/10.1109/IGARSS.2006.236
http://doi.org/10.1016/j.future.2017.08.047
http://doi.org/10.1109/JIOT.2016.2546307
http://doi.org/10.1109/MIM.2021.9549127
http://doi.org/10.1007/s10708-021-10423-4
http://doi.org/10.1109/CoDIT55151.2022.9804123
http://doi.org/10.3390/ijgi9020095
http://doi.org/10.1080/20964471.2019.1661662
http://doi.org/10.5194/isprs-archives-xlii-2-w8-187-2017
http://doi.org/10.3390/rs13030486
http://doi.org/10.1007/s40725-019-00094-3
http://doi.org/10.1016/j.geomorph.2012.08.021
http://doi.org/10.3390/rs12213616
https://www.big.go.id/
http://doi.org/10.1109/SMARTCOMP55677.2022.00046
http://doi.org/10.5194/isprs-archives-XLII-2-W13-1621-2019
http://doi.org/10.26438/ijcse/v7i2.421426
http://doi.org/10.3390/su11205648


Sustainability 2023, 15, 3942 26 of 27

78. Biljecki, F.; Ledoux, H.; Stoter, J. Computers, Environment and Urban Systems An Improved LOD Speci Fi Cation for 3D Building
Models. Comput. Environ. Urban Syst. 2016, 59, 25–37. [CrossRef]

79. Yap, W.; Janssen, P.; Biljecki, F. Free and Open Source Urbanism: Software for Urban Planning Practice. Comput. Environ. Urban
Syst. 2022, 96, 101825. [CrossRef]

80. El Haje, N.; Jessel, J.-P.; Gaildrat, V.; Sanza, C. 3D Cities Rendering and Visualisation: A Web-Based Solution. In Proceedings
of the Eurographics Workshop on Urban Data Modelling and Visualisation (UDMV 2016), Liege, Belgium, 8 December 2016;
pp. 95–100. [CrossRef]

81. Li, Y.; Yi, G. Spatial Task Management Method for Location Privacy Aware Crowdsourcing. Clust. Comput. 2019, 22, 1797–1803.
[CrossRef]

82. Manweiler, J.; Choudhury, R.R. Satellites in Our Pockets: An Object Positioning System Using Smartphones. In Proceedings of
the 10th International Conference on Mobile Systems, Applications, and Services, Windermere, UK, 25–29 June 2012; pp. 211–224.

83. Fukunaga, K.; Hostetler, L. The Estimation of the Gradient of a Density Function, with Applications in Pattern—Recognition.
IEEE Trans. Inf. Theory 1975, 21, 32–40. [CrossRef]

84. Cheng, Y. Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799. [CrossRef]
85. Comaniciu, D.; Meer, P.; Member, S. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal.

Mach. Intell. 2002, 24, 603–619. [CrossRef]
86. Meer, P. Mean Shift Analysis and Applications. In Proceedings of the 7th IEEE International Conference on Computer Vision,

Corfu, Greece, 20–27 September 1999.
87. Miguel, A. A Review of Mean-Shift Algorithms for Clustering. arXiv 2015, arXiv:1503.00687.
88. Dodsworth, E.; Nicholson, A. Academic Uses of Google Earth and Google Maps in a Library Setting. Inf. Technol. Libr. 2012, 31,

102–117. [CrossRef]
89. Pokorný, P. Determining Traffic Levels in Cities Using Google Maps. In Proceedings of the 2017 Fourth International Conference

on Mathematics and Computers in Sciences and in Industry MCSI 2017, Corfu, Greece, 24–27 August 2017; pp. 144–147.
[CrossRef]

90. Dewi, S.S.; Satria, D.; Yusiban, E.; Sugiyanto, D. Prototipe Sistem Informasi Monitoring Kebakaran Bangunan Berbasis Google
Maps Dan Modul GSM. J. JTIK (J. Teknol. Inf. Dan Komun.) 2017, 1, 33–38. [CrossRef]

91. Mishra, S.; Bhattacharya, D.; Gupta, A. Congestion Adaptive Traffic Light Control and Notification Architecture Using Google
Maps APIs. Data 2018, 3, 67. [CrossRef]

92. McQuire, S. One Map to Rule Them All? Google Maps as Digital Technical Object. Commun. Public 2019, 4, 150–165. [CrossRef]
93. Mehta, H.; Kanani, P.; Lande, P. Google Maps. Int. J. Comput. Appl. 2019, 178, 41–46. [CrossRef]
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