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Abstract: Cross-industry synergistic emission reduction has become a new strategy for achieving
a carbon emissions peak and carbon neutrality. To explore the typical spatial distribution and
cross-industry synergy effect of carbon emissions in key industries, this paper analyzes the carbon
emissions of coal and power industries in Jiangsu Province from 2006 to 2020 using the empirical
orthogonal function (EOF) and a panel vector autoregressive (PVAR) model. The results show
that: (1) The distribution of coal resources determines the distribution of carbon emissions in the
coal industry. Carbon emissions in the power industry have two typical distributions: consistent
changes in cities and a “south-north” inverse phase, with a cumulative variance contribution rate of
86.74%. (2) The impulse response of carbon emissions from the coal industry to the power industry
is >0 in the first period. There is a synergistic relationship of carbon emissions from the energy
consumption side to the energy production side. (3) The shock effect of carbon emissions on economic
development is >0. In resource-based cities, economic development explains about 2% of carbon
emission fluctuations in the coal industry and 9.9% in the power industry, which is only 2% in
non-resource-based cities. Carbon emissions would promote economic development. However, the
impact of economic development on them varies significantly by industry and region. These findings
can provide scientific support for developing differentiated measures to carbon emissions reduction
and serve as an important reference role for other regions to promote collaborative carbon emission
reduction in key industries.

Keywords: cross-industry; spatial-temporal evolution; carbon synergy

1. Introduction

With the rapid growth of the global economy, the massive emissions of greenhouse
gases have exacerbated climate warming, which has severely impacted human living
environments [1]. Carbon emission reduction has become the global consensus. China, the
world’s largest developing country and the largest carbon emitter, has committed itself
to a carbon peaking by 2030 and carbon neutrality by 2060 [2–4]. As the most intensive
and active component of human activity, cities are also the primary source of energy
consumption and greenhouse gas emissions such as carbon dioxide, contributing about
85% of direct carbon emissions. They are not only the main driver of the carbon cycle, but
also an important subject to undertake the task of reducing emissions [5,6]. The scientific
analysis of the spatial distribution and temporal evolution of urban carbon emissions serves
as the foundation for rationally developing differentiated carbon-reduction policies.

The work of carbon emission reduction must be carried out gradually and orderly,
and identifying key industries is critical. The resource endowment of “coal-rich, oil-
poor, gas-poor” has made it difficult for China to wean itself off coal. The mining and
washing process of coal consumes a significant amount of fossil energy, accounting for
approximately 6% of the industry’s energy consumption [7]. This has resulted in a large
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amount of carbon dioxide emission during coal production, putting great strain on the
environment. We should pay more attention to the carbon emissions from coal production.
The power industry is the largest carbon emitter in China, which is the first to be included
in the national carbon trading market [8,9]. Its carbon emissions mainly come from thermal
power generation, which is dominated by China’s coal-based energy consumption structure.
Although the supply capacity of clean electricity generation such as wind power and
photovoltaic power generation is increasing, it is difficult to change the state of coal power
as the primary power source in the short term to ensure a stable supply of electricity [10,11].
Therefore, as important supply and consumption sides of the coal supply chain, the coal
industry and power industry should be the focus of carbon reduction efforts.

With the continuous development of society and economy, the awareness of green
development has taken root among the people, resulting in a high demand for good
environmental quality. It has prompted the government to implement carbon-cutting
measures in key industries. Simultaneously, the continued decline of coal reserves has
prompted cities to explore green transformation and propose new requirements for carbon
emission reduction in key industries. It is worth noting that there is a coupling relationship
between the carbon emissions of key industries, and the synergistic effect of carbon emission
reduction across industries should not be overlooked. Giving full play to the synergistic
effect of carbon emission reduction across industries can effectively reduce the cost of
carbon emission reduction while expanding the carbon emission reduction space [12]. This
will be a breakthrough point for future emission reduction efforts. Further exploring the
dynamic interaction of carbon emissions between the coal industry and power industry
and clarifying their synergistic effect may provide new directions for the development
of carbon emissions’ trading markets as well as the formulation and implementation of
carbon emission reduction policies, and make a contribution to industry in the process of
achieving carbon emissions peak and carbon neutrality.

In this context, this study selects 13 cities in Jiangsu province to investigate the dynamic
evolution characteristics and the cross-industry synergistic relationship of carbon emissions
in coal and power industries from 2006 to 2020. To summarize, Jiangsu province is a
good example as it is a microcosm of China, similarly characterized by uneven energy
distribution, environmental pollution, etc. [13]. As a result of rapid industrial development,
Jiangsu province has experienced rapid economic development. However, industrial
sector is an energy-intensive industry, and its rapid development brings a huge demand
for electricity and coal, causing Jiangsu Province’s carbon emissions to consistently rank
among the highest in China [14]. The energy consumption structure in Jiangsu Province is
representative of the country, with coal accounting for 55% of total energy consumption,
which is roughly the same as the national level of 57%. Jiangsu Province currently ranks
first in China in natural gas consumption and offshore wind power, which is a good
foundation of low carbon practices ahead of other provinces and cities [15]. As the only
pilot province in China for the modernization of ecological and environmental governance
system and capacity, Jiangsu Province has proposed the development goal of “building a
carbon peak pioneer area”, which provides the realistic motivation and basic conditions for
promoting low-carbon development in key industries. In general, Jiangsu Province, as a
major energy-consuming and carbon-emitting province, is a key potential area for carbon
emission reduction in China. Its energy saving and emission reduction work are urgent
and feasible.

The marginal contributions of this paper include the following three aspects: (1) Ex-
tending the research perspective to key industries at the city level by calculating and
analyzing carbon emissions’ temporal evolution patterns of the coal industry and power
industry at the city level, which will serve as a foundation for formulating differentiated
carbon emission reduction strategies for cities as well as an extension of existing carbon
emission studies. (2) The application of EOF to address the shortcomings of existing spatio-
temporal evolution research methods, which can only study temporal cross-sectional data,
so as to initially explore the spatial evolution of carbon emissions in key industries over a
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continuous long time series. (3) Effectively identifying the inter-industry transmission rela-
tionships of carbon emissions among key industries. The idea of cross-industry synergistic
carbon emission reduction in key industries is proposed to further explore the potential and
broaden the scope of carbon emission reduction. The findings of this paper will not only as-
sist key industries scientifically develop differentiated carbon emission reduction measures,
but also provide new ideas for carbon emission reduction policy formulation based on the
synergistic effect of carbon emissions between industries, making cross-industry synergistic
emission reduction a new path to achieve carbon emissions peak and carbon neutrality
target. The findings are thus conducive to improving carbon emission reduction efficiency
and expanding the emission reduction space, and have important reference effects for other
industries and regions.

The rest of the paper is organized as follows. Section 2 provides a brief review of
the relevant literature. Section 3 describes the study area overview, research methodology
and data sources. Section 4 presents the results and discussion. Section 5 summarizes the
research and makes policy recommendations.

2. Literature Review

Since the climate issue has gained international attention, scholars at home and abroad
have conducted a large number of studies on carbon emissions. The existing studies
have mainly focused on the measurement of carbon emissions, the spatial and temporal
dynamics and the identification of influencing factors.

The main methods of accounting for carbon emissions are the IPCC method, the
life-cycle approach and the input-output method. The IPCC method is to calculate the total
carbon emissions of a region or industry by multiplying the consumption of various energy
sources with carbon emission factors [16,17]. The life-cycle approach is to quantify the
carbon emissions at different stages by following the principles of life-cycle assessment [18].
For example, Cao et al. [19] divided the life-cycle carbon emissions of machine tools
into four stages: manufacturing, use, transportation, and recycling. Guo et al. [20] used
the HLCA method to estimate carbon emissions from the production phase, use phase,
disposal phase and fuel-cycle of the passenger car industry in China. Jordaan et al. [21]
estimated the life cycle emissions from gas-fired electricity and the abatement potential of
different mitigation options. The life-cycle approach is also widely used in the construction
industry [22,23], agriculture [24], and the new energy sector [25]. The input-output method
employs input-output tables to obtain the energy demand between regions or sectors
through the transformation of the Leontief inverse matrix, and then accounts for the direct
and indirect carbon emissions of regions or sectors based on carbon emission factors, which
are mainly used to investigate the implicit carbon emissions and determine the carbon
emission relationship between regions or sectors [26–28]. However, these methods may
have statistical errors caused by inconsistencies in the statistical caliber of statistics and
calculation methods, so with the development of remote sensing technology, some scholars
have also applied remote sensing data products to the study of carbon emission estimation,
using the DMSP/OLS nighttime light image data inversion simulation to obtain carbon
dioxide emissions [29,30].

Based on carbon accounting, the dynamic evolution of carbon emissions is also
an important part of carbon emissions research [31]. Exploratory spatial data analysis
(ESDA) [32,33] and the Dagum Gini coefficient [34] are commonly used to analyze the
spatiotemporal characteristics of carbon emissions differences. Non-parametric kernel
density estimates [35] and Markov chains [36] are used to explore the dynamic evolution of
carbon emissions and trends in long-term shifts. Standard deviational ellipse (SDE) [37,38],
Thiel’s index [39], and coefficients of variation [40] are also frequently used. However, as
different methods have different analytical focuses, scholars often used multiple methods
in their studies to explore the evolutionary characteristics of carbon emissions from vari-
ous perspectives. For example, Han et al. [41] used ESDA and SDE to reveal the spatial
characteristics of carbon emissions in four energy-rich regions of western China: Shaanxi,
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Gansu, Ningxia, and Inner Mongolia. Li, W. et al. [42] used kernel density estimation and
ESDA to analyze the spatial and temporal evolution trends of carbon dioxide emissions in
Chinese provinces and to determine the spatial autocorrelation of carbon dioxide emissions
in each province. Ke et al. [43] explored the regional differences and evolutionary trends
of urban-level carbon emission intensity in China from 2000–2017 with the Dagum Gini
coefficient, ESDA, kernel density estimation, and the spatial Markov chain.

The factors affecting carbon emissions are complex and diverse. Table 1 summarizes
relevant studies on the factors that influence carbon emissions. In general, scholars mostly
used index decomposition analysis (IDA) [44], structural decomposition analysis (SDA),
and regression models [45,46] to quantitatively analyze the impact of micro or macro factors
on carbon emissions, such as economic level, population size, energy structure, energy
intensity, industrial structure, and so on [47–50]. In addition, Wei et al. [51] analyzed
the GHG emissions caused by China’s power transmission infrastructure construction
during 1990–2017. However, there is significant industry heterogeneity in the direction
and magnitude of each factor’s effect on carbon emissions. For example, Dong et al. [52]
discovered that the proportion of economic value added in agriculture, manufacturing and
transportation was negatively correlated with carbon emissions, while the opposite is true
for the construction, retail and accommodation sectors. Liu et al. [53] found significant syn-
ergistic effects among carbon emissions drivers in energy-intensive industries, manifesting
themselves in long-term trends and short-term fluctuations, but the resulting impact effects
varied considerably, and the six energy-intensive industries also demonstrated significant
heterogeneity under the influence of the drivers. Gao et al. [54] discovered large differences
in the efficiency of direct and implied carbon emissions across 28 industries by analyzing
the carbon emission efficiency of China’s industrial sectors. Shapiro found [55] that in most
countries, import tariffs and nontariff barriers are substantially lower on dirty than on
clean industries.

Table 1. Research on CO2 emissions decomposition methods and influencing factors.

Literature Region/Industry Period Method Influencing Factors

Liu, Jian et al. [56]
The high-emission
sectors in China’s

manufacturing industry
1995–2019 GDIM

Output scale, energy consumption scale,
innovation input scale, output carbon intensity,

energy consumption carbon intensity,
innovation input carbon intensity, innovation

input efficiency, energy intensity

Quan et al. [50]
The total carbon

emissions of the logistics
industry in China

2000–2016 LMDI
Carbon emission coefficient, energy intensity,

energy structure, economic level,
population size

Yan et al. [57] Xinjiang industries’
carbon emissions 1997–2017 SDA

The intensity of energy consumption, the
structure of energy consumption, the structure
of industrial linkages, the structure of demand
industries, the structure of demand categories,

the size of the economy, the size of
the population

Wang, Y. et al. [58]

Beijing-Tianjin-
Hebei, Yangtze River

Delta, Pearl River Delta,
Chengdu-Chongqing,

middle reaches of
Yangtze River, Central

Plains region

2005–2019 GTWR Spatial structure, per capita GDP, industrial
structure, energy intensity

Zhu, C. et al. [59] Carbon emissions of
China’s building sector 1996–2017 STIRPAT

Building construction area, value of the
building unit area, Indirect emissions intensity,
carbon emissions per unit energy consumed,

energy intensity, total factor productivity
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According to a review of the previous literature, the basic units of carbon emission-
related research are national [26,60], provincial [11,61], and urban agglomerations [58]. Agri-
culture [62], the steel industry [63–65], transportation [66,67], the cement industry [68,69],
and the power industry [26,70] are the primary research subjects. Existing research has
developed mature methodologies for quantitatively assessing carbon emissions. They also
offered ideas for clarifying the current situation of carbon emissions and implementing
concrete and effective carbon-reduction measures. However, there are still the following
shortcomings: (1) Due to the difficulty of data collection and statistical errors, most current
studies focus on the carbon emissions of sub-industries at the national or provincial level
or the industry-wide carbon emissions of smaller regions, and there is a lack of industry
carbon emission at the city level. (2) Most studies on the spatial and temporal evolution of
carbon emissions have focused on the characteristics of carbon emissions from a temporal
cross-section, ignoring the time continuity. (3) Research from multiple industries has only
revealed the differences, convergences, and influencing factors of carbon emissions, but
have neglected the inter-industry transmission relationship of carbon emissions, and have
failed to consider the synergy effect of carbon emissions between key industries.

3. Methodology and Data
3.1. Study Area

Located on the eastern coast of mainland China, Jiangsu Province contributes to more
than 10% of China’s economic growth. Figure 1 shows the geographical location and
administrative division in Jiangsu Province. Industrial electricity consumption in Jiangsu
Province has grown at an annual rate of 9% with economic development [71]. The carbon
emissions from electricity generation have become an important part of the reduction of
carbon emissions as a result of the purely thermal power grid [15]. Simultaneously, there
are significant differences in the resource endowments of different cities in Jiangsu Province.
Coal resources are mostly concentrated in Xuzhou in the northwest, with fewer in southern
and central Jiangsu. Therefore, carbon emissions from coal industry vary greatly from city
to city.
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Overall, Jiangsu Province is a large province in terms of energy consumption and
carbon emissions, in addition to being a large economic province [72]. It should play a
role as a model and benchmark in China’s efforts to reduce carbon emissions. Therefore,
taking Jiangsu province as the research object, this paper examines the spatial and temporal
evolution characteristics of carbon emissions from coal industry and power industry at the
city level and the synergistic effect of carbon emissions between industries.

3.2. Method
3.2.1. Empirical Orthogonal Function

Empirical orthogonal function (EOF) is widely used in meteorological research [73].
This method converts the spatio-temporal data set of variables into a spatial model and its
projection in time [74]. It is essentially a principal component analysis, which effectively
identifies the spatial characteristics and evolutionary patterns of continuous-time events
by focusing as much information as possible on a small number of independent spatial
models and the corresponding time series [74,75]. It has the advantage of combining
spatial and temporal evolutionary patterns [76]. Therefore, with the help of Matlab R2019a
software, we employ EOF decomposition to analyze the typical spatial distribution of
carbon emissions in the coal industry and power industry in Jiangsu Province.

X = EOFm×m × PCm×n (1)

In Equation (1), m represents the number of prefecture-level municipalities; n repre-
sents the length of the time series; EOF is the eigenvector, which represents the spatial
modalities, reflecting the characteristics of the spatial distribution of carbon emissions that
do not vary over time; PC represents the time coefficient, representing the model intensity
over time.

3.2.2. PVAR Model

The PVAR model combines the advantages of time series and panel data to identify
dynamic interactions among indicators in panel data and reveal bidirectional causal rela-
tionships between variables [77–79]. In this paper, with the help of Stata 16.0 software and
PVAR2 program package developed by Lian Yujun [80], a PVAR model is constructed with
the carbon emissions of coal industry and power industry and economic development,
which are considered as endogenous variables. Then, we identify the dynamic relationship
between carbon emissions from coal industry and power industry and explore the impact
of economic development through generalized method of moments (GMM), impulse re-
sponse, variance decomposition, and Granger causality. Furthermore, their stability and
time lag also are analyzed.

Yi,t = αi,0 +
p

∑
j=1

αi,pYi,t−j + ηi + γt + µit (2)

In Equation (2), i is the city, t is the length of the study period, p is the lagged order,
Yi,t is the core variable, which in the case of resource-based cities is a three-dimensional
column vector of endogenous variables including carbon emissions from the coal industry,
carbon emissions from the power industry and the level of economic development, and in
the case of non-resource-based cities is a two-dimensional column vector of endogenous
variables including carbon emissions from the power industry and the level of economic
development; αi,0 is the intercept vector, αi,p are the regression coefficients for the lagged
endogenous variables, ηi is the individual effect, γt is the time effect, and µit is the random
disturbance term.
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3.3. Data Sources

The sample period for this research is 2006–2020, which was chosen after a thorough
assessment of the availability and completeness of the data. Firstly, the IPCC method
proposed by the Intergovernmental Panel on Climate Change was used to measure carbon
emissions from the coal industry and power industry, with the following calculation formula:

CE = ∑ ei = ∑ Ti × αi × βi (3)

where CE is the total carbon emissions, i is the type of energy, ei is the carbon emissions
from i, Ti is the raw consumption of i, αi is the standard coal conversion factor for i, and βi
is the carbon emission factor for i.

The energy consumption data were collected from the statistical yearbooks of each city
in Jiangsu, and the missing values were completed by using interpolation and multiplying
the total carbon emissions of each city by the percentage of carbon emissions from the
coal and power industries in Jiangsu Province, which come from China city emission
data and China provincial CO2 emission inventory in CEADs (https://www.ceads.net.cn/
(accessed on 10 October 2022)). Table 2 summarizes the standard coal conversion factors
and carbon emission factors for various energy sources, referring to the IPCC Guidelines
for National Greenhouse Gas Inventories and the China Energy Statistical Yearbook and
existing research literature [41,81].

Table 2. Conversion factors and carbon emission factors for various energy sources of standard.

Types of Energy Carbon
Emission Factor

Standard Coal
Conversion Factor Unit of Measurement

Raw Coal 0.7559 0.7143 kg of standard coal/kg
Washing of refined coal 0.7559 0.9000 kg of standard coal/kg

Other coal washing 0.7559 0.2857 kg of standard coal/kg
Coke 0.855 0.9714 kg of standard coal/kg

Coke oven gas 0.3548 0.5714 kg standard coal/m3

Blast furnace gas 0.4602 0.1286 kg standard coal/m3

Other gas 0.3548 0.1786 kg standard coal/m3

Other Coking Products 0.6449 1.1000 kg of standard coal/kg
Refinery dry gas 0.4602 1.5714 kg of standard coal/kg

Crude Oil 0.5857 1.4286 kg of standard coal/kg
Petrol 0.5538 1.4714 kg of standard coal/kg

Paraffin 0.5714 1.4714 kg of standard coal/kg
Diesel 0.5921 1.4571 kg of standard coal/kg

Fuel oil 0.6185 1.4286 kg of standard coal/kg
Liquefied Petroleum Gas 0.5042 1.7143 kg of standard coal/kg

Other petroleum products 0.586 1.4286 kg of standard coal/kg
Natural gas 0.4483 1.2143 kg standard coal/m3

Heat 0.2600 0.0341 kg of standard
coal/million joules

Electricity 2.5255 0.1229 kg of standard
coal/kWh

In addition, the level of economic development is measured by regional GDP, which
is obtained from the statistical yearbooks of each city. In order to ensure a consistent
time series spanning 15 years, the GDP deflator is used to adjust the nominal GDP of
different years to the real GDP based on 2006. The specific GDP deflator is converted by the
gross regional product of each city from 2006 to 2020 and the gross regional product index
(last year = 100). The vector administrative boundary data are obtained from the National
Earth System Science Data Centre Shared Services Platform (http://www.geodata.cn/data/
(accessed on 1 November 2022)), and the topographic profile data are obtained from the
SRTMDEM 90M resolution raw elevation data from the website of Geospatial Data Cloud
(https://www.gscloud.cn/ (accessed on 5 November 2022)).

https://www.ceads.net.cn/
http://www.geodata.cn/data/
https://www.gscloud.cn/
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4. Results and Discussion
4.1. Results of Carbon Emission Measurement

Figure 2 shows the results of carbon emission measurement in the coal industry. Car-
bon emissions from the coal industry varied greatly between cities. Carbon emission in
Xuzhou increased overall, but fell briefly from 2013 to 2015. Yangzhou’s carbon emissions
increased steadily from 2006 to 2012, then gradually declined from 2013 to 2016. From
2006 to 2008, Yancheng produced only a small amount of carbon emissions. Lianyungang
only had a minor amount of carbon emissions in 2011. Carbon emissions from the coal
industry were 0 in other cities during the study period. Overall, carbon emissions from the
coal industry were concentrated in northern Jiangsu Province, which corresponded to the
distribution of coal resources. This is mainly because of the fact that carbon emissions from
the coal industry are emitted during the coal mining and washing process, and the coal
industry is less developed in cities with limited coal resources. Furthermore, 2012 marked
a clear turning point in the change of carbon emissions in the coal industry, most likely
because cities in Jiangsu Province conscientiously implemented the State Council’s instruc-
tions on further deepening the consolidation and closure of coal mines and strengthening
coal mine safety during the 12th Five-Year Plan period, and carried out in-depth work to
eliminate backward production capacity in the coal industry and reduce the number of
small coal mines.
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Figure 3 depicts the results of carbon emission measurement in the power industry.
From 2006 to 2020, Suzhou, Wuxi and Changzhou showed a small fluctuating upward trend.
Lianyungang, Zhenjiang, Nantong, Xuzhou, Nanjing, Taizhou, Suqian, and Yancheng had
a faster growth rate and a larger rise; Huai’an and Yangzhou showed a trend of first
rising, a small fluctuation, and then falling. In Jiangsu Province, carbon emissions from the
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power industry were higher in northern Jiangsu and the economically developed regions
of southern Jiangsu. This could be because power plants in Jiangsu Province are mostly
thermal, so factors such as fuel resource distribution and power demand planning affect
the location of power plants.
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4.2. The Evolution of the Spatial-Temporal Pattern

To investigate the spatial and temporal evolution of carbon emissions in the coal
industry and power industry in Jiangsu Province during the study period, the carbon
emission annual anomalies of the coal industry and power industry in each city from 2006
to 2020 were first obtained with the help of matlab2021b, and then EOF decomposition
was used to identify the eigenvectors with significant differences and their corresponding
time coefficients. The first eigenvector reflects the average state of the carbon emission
annually anomalies. The remaining eigenvectors represent the variation state of the carbon
emission annual anomalies at different scales. The time coefficients, as the weights of the
eigenvectors, reflect the contribution of different years to this spatial distribution.

As shown in Table 3, the first model variance contribution rate of the coal industry
reaches 100%, which is the main form of the spatial distribution of carbon emissions in
the coal industry. The corresponding variance contribution rates of model 1 and model 2
of the power industry are 75.64% and 11.09%, and the cumulative variance contribution
rate reaches 86.74%, which can fully reveal the typical spatial distribution and temporal
evolution of carbon emissions in the power industry. Therefore, this section analyses the
first model of carbon emissions in the coal industry and the first and second models in the
power industry, respectively.
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Table 3. Contribution of variance and cumulative variance of typical models (%).

Industry Model Variance
Contribution Rate

Cumulative Variance
Contribution Rate

The coal industry 1 100 100

The power industry 1 75.6443 75.6443
2 11.0931 86.7374

For the coal industry, the EOF first model reflects the overall spatial distribution
of carbon emissions (Figure 4a). Xuzhou, Lianyungang, and Yangzhou have positive
eigenvalues. Yancheng has negative values, while the eigenvalues of all other cities are 0
due to the absence of carbon emissions from the coal industry. The distribution of model
eigenvalues matches that of the coal resource. The time coefficients of the first model
(Figure 4b) show clear inter-annual variation with an “N” pattern. The time coefficient
was negative from 2006 to 2009. The absolute value of the time coefficient was the largest
in 2006, which indicates that this type of spatial distribution was most typical for 2006,
with Xuzhou, Lianyungang, and Yangzhou slowing down the growth of carbon emissions
from the coal industry but Yancheng accelerating the growth. From 2010 to 2014, the time
coefficient was positive. The absolute value of the time coefficient was the highest in 2012,
indicating that this type of spatial distribution was typical in 2012 and that the growth
rate of carbon emissions from the coal industry accelerated in Xuzhou, Lianyungang, and
Yangzhou, while it slowed in Yancheng. Then, it was negative in 2015–2016, and turned
positive and continued to rise in 2017, as carbon emissions from the coal industry entered a
new round of spatial cycle development period.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 28 
 

emission annual anomalies at different scales. The time coefficients, as the weights of the 
eigenvectors, reflect the contribution of different years to this spatial distribution. 

As shown in Table 3, the first model variance contribution rate of the coal industry 
reaches 100%, which is the main form of the spatial distribution of carbon emissions in the 
coal industry. The corresponding variance contribution rates of model 1 and model 2 of 
the power industry are 75.64% and 11.09%, and the cumulative variance contribution rate 
reaches 86.74%, which can fully reveal the typical spatial distribution and temporal evo-
lution of carbon emissions in the power industry. Therefore, this section analyses the first 
model of carbon emissions in the coal industry and the first and second models in the 
power industry, respectively. 

Table 3. Contribution of variance and cumulative variance of typical models (%). 

Industry Model Variance Contribution Rate Cumulative Variance Contribution Rate 
The coal industry 1 100 100 

The power industry 
1 75.6443 75.6443 
2 11.0931 86.7374 

For the coal industry, the EOF first model reflects the overall spatial distribution of 
carbon emissions (Figure 4a). Xuzhou, Lianyungang, and Yangzhou have positive eigen-
values. Yancheng has negative values, while the eigenvalues of all other cities are 0 due 
to the absence of carbon emissions from the coal industry. The distribution of model ei-
genvalues matches that of the coal resource. The time coefficients of the first model (Figure 
4b) show clear inter-annual variation with an “N” pattern. The time coefficient was nega-
tive from 2006 to 2009. The absolute value of the time coefficient was the largest in 2006, 
which indicates that this type of spatial distribution was most typical for 2006, with Xu-
zhou, Lianyungang, and Yangzhou slowing down the growth of carbon emissions from 
the coal industry but Yancheng accelerating the growth. From 2010 to 2014, the time coef-
ficient was positive. The absolute value of the time coefficient was the highest in 2012, 
indicating that this type of spatial distribution was typical in 2012 and that the growth 
rate of carbon emissions from the coal industry accelerated in Xuzhou, Lianyungang, and 
Yangzhou, while it slowed in Yancheng. Then, it was negative in 2015–2016, and turned 
positive and continued to rise in 2017, as carbon emissions from the coal industry entered 
a new round of spatial cycle development period. 

 
 

(a) The spatial distribution of first model (b) The change of the first model time coefficient 

Figure 4. The spatial distribution of the EOF first model in the coal industry and the change of its
time coefficients.

The variance contribution of the first model of carbon emissions in the power industry
is 75.64%, far exceeding that of the second model. It reflects the overall spatial distribution
of carbon emissions (Figure 5a). Except for Yangzhou, all other regions have positive eigen-
values, indicating that the trend of carbon emission changes in the power industry from
2006 to 2020 is essentially consistent in space, i.e., the carbon emission level is consistently
increasing or decreasing. The time coefficients for the first model show a consistent upward
trend (Figure 5b). The negative values and decreasing absolute values from 2006 to 2011
indicate that the spatial distribution of such carbon emissions was most typical in 2006,
and its typicality gradually decreased, during which the growth rate of carbon emissions
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in the power industry slowed down, except for Yangzhou. From 2012 to 2020, they all
showed positive values and increasing absolute values, and the typicality of this spatial
distribution tended to strengthen as the growth rate of carbon emissions in the power
industry increased, except in Yangzhou.
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The variance contribution of the second model of carbon emissions in the power
industry is 11.09%, showing a north-south opposing pattern of development (Figure 6a).
The time coefficient of the second model has more inter-annual variation characteristics
than the first model (Figure 6b), with 2011 as the inflection point showing a U-shaped trend.
The time coefficient was positive until 2009, negative from 2010 to 2016, and turned positive
from 2017 to 2020, representing the inter-annual anomalies in carbon emissions. While the
growth rate of carbon emissions accelerated in the north during 2006–2009 and 2017–2020,
it slowed down in the south. The characteristics of spatial distribution became less typical
in the former period and more typical in the latter period. While the growth rate of carbon
emissions slowed down in the north during 2010–2016, it accelerated in the south.
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4.3. Analysis of Carbon Emission Synergies

In this part, 13 cities in Jiangsu Province are classified as resource-based or non-
resource-based cities based on their coal resource endowment, and a PVAR model is
constructed to examine the dynamic synergistic relationship between carbon emissions
from key industries and the impact of economic development. Table 4 shows the classifica-
tion results of resource-based and non-resource-based cities. Since Lianyungang only had
carbon emissions from the coal industry in 2011 and Yancheng only had carbon emissions
from the coal industry from 2006 to 2008, they are classified as non-resource-based cities.

Table 4. Results of cities classification.

Area Name Coverage

Resource-based cities Xuzhou, Yangzhou

Non-resource-based cities Taizhou, Nantong, Nanjing, Suzhou, Wuxi, Changzhou,
Zhenjiang, Lianyungang, Suqian, Huai’an, Yancheng

4.3.1. Panel Data Stationarity and Co-Integration Test

To avoid pseudo-regressions caused by unsteady data in the variables, this part
logarithms the raw data to obtain LnCCE (carbon emissions from the coal industry), LnPCE
(carbon emissions from the power industry), and LnGDP (economic development), and then
uses LLC, IPS, and PP-Fisher unit root tests to conduct the stationarity test for each variable
and its corresponding first-order difference series d.LnCCE, d.LnPCE, and d.LnGDP. As
shown in Table 5, LnCCE, LnPCE, and LnGDP cannot reject the hypothesis that the variables
are non-stationary, and the corresponding first-order difference series are all significantly
stationary at the 10% level, implying that the original data series are homogeneous single
integer series, and further cointegration tests are performed. Table 6 shows that several
statistics, including the Kao test, Pedroni test, and Westerlund test, cannot reject the original
hypothesis of “no cointegration relationship” between the original series of variables,
indicating that there is no long-term equilibrium relationship between the original series of
variables. Therefore, the PVAR model is developed using the logarithmically processed
first-order difference series of carbon emissions from the coal industry and power industry,
as well as economic development data [82].

Table 5. Results of unit root test.

Region Variables LLC
Statistics

IPS
Statistic

PP-Fisher Test Statistics
Conclusion

P Z L * Pm

Non-resource-based cities

LnGDP −1.0521
(0.1464)

0.8841
(0.8117)

13.7713
(0.9094)

1.3684
(0.9144)

1.5128
(0.9322)

−1.2405
(0.8926) Unstable

LnPCE −5.1595 ***
(0.0000)

−2.4004 ***
(0.0082)

15.4110
(0.8440)

1.1599
(0.8769)

1.1122
(0.8647)

−0.9933
(0.8397) Unstable

d.LnGDP −4.9516 ***
(0.0000)

−3.4454 ***
(0.0003)

93.5328 ***
(0.0000)

−6.6462 ***
(0.0000)

−7.7216 ***
(0.0000)

10.7840 ***
(0.0000) Stable

d.LnPCE −8.9316 ***
(0.0000)

−6.1930 ***
(0.0000)

214.1378 ***
(0.0000)

−10.9395 ***
(0.0000)

−17.8714 ***
(0.0000)

28.9659 ***
(0.0000) Stable

Resource-based cities

LnGDP 0.5935
(0.7236)

2.4454
(0.9928)

0.7203
(0.9488)

1.3788
(0.9160)

1.3171
(0.8955)

−1.1596
(0.8769) Unstable

LnPCE −5.0582 ***
(0.0000)

−4.0616 ***
(0.0000)

0.3900
(0.9833)

1.8712
(0.9693)

1.8494
(0.9572)

−1.2763
(0.8991) Unstable

LnCCE −1.2845 *
(0.0995)

0.7122
(0.7618)

0.3733
(0.9846)

1.9040
(0.9715)

1.8866
(0.9599)

−1.2822
(0.9001) Unstable

d.LnGDP −3.0639 ***
(0.0011)

−1.6644 **
(0.0480)

8.6517 *
(0.0704)

−1.6977 **
(0.0448)

−1.6562 *
(0.0600)

1.6446 **
(0.0500) Stable

d.LnPCE −6.6418 ***
(0.0000)

−4.9239 ***
(0.0000)

94.6602 ***
(0.0000)

−9.1341 ***
(0.0000)

−19.2050 ***
(0.0000)

32.0532 ***
(0.0000) Stable

d.LnCCE −3.8637 ***
(0.0001)

−2.1646 **
(0.0152)

20.0436 ***
(0.0005)

−3.4999 ***
(0.0002)

−4.0611 ***
(0.0006)

5.6723 ***
(0.0000) Stable

Notes: ***, ** and * represent significance at the levels of 1%, 5% and 10%, respectively.
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Table 6. Results of the Co-integration test.

Inspection Standards Non-Resource-Based Cities Resource-Based Cities

Kao test

Modified Dickey-Fuller t 0.3373
(0.3679)

−0.9774
(0.1642)

Dickey-Fuller t −0.8716
(0.1917)

−2.8257 ***
(0.0024)

Augmented Dickey-Fuller t −0.9519
(0.1706)

−2.3679 ***
(0.0089)

Unadjusted modified Dickey-Fuller t 0.3980
(0.3453)

−0.9774
(0.1642)

Unadjusted Dickey-Fuller t −0.8259
(0.2044)

−2.8257 ***
(0.0024)

Pedroni test

Modified Phillips-Perron t 2.2186 **
(0.0133)

1.3543 *
(0.0878)

Phillips-Perron t 0.0889
(0.4646)

0.6321
(0.2637)

Augmented Dickey-Fuller t −0.4215
(0.3367)

0.5963
(0.2755)

Westerlund test Variance ratio 0.6786
(0.2487)

−0.2179
(0.4138)

Notes: ***, ** and * represent significance at the levels of 1%, 5% and 10% respectively.

4.3.2. Estimation Results of the PVAR Model

In order to accurately reflect the dynamic relationship between variables and maintain
the validity of parameter estimation, this study uses Akaike information criteria (AIC),
Bayesian information criteria (BIC), and the Hannan-Quinn information criteria (HQIC) to
determine the optimal lag order of the model. According to Table 7, the optimal lag order of
the PVAR model is 1 for both resource-based and non-resource-based cities, and the PVAR
models with first-order lags are constructed for resource-based and non-resource-based
cities, respectively.

Table 7. Optimal lag order selection.

Region Lag AIC BIC HQIC

Non-resource-based cities
1 −4.2956 −3.7278 * −4.0649 *
2 −4.3412 * −3.6480 −4.0597
3 −4.2279 −3.3932 −3.8893

Resource-based cities
1 −0.4591 * 0.2772 * −0.2638 *
2 0.0126 1.2029 0.2930
3 17.1257 18.7687 17.4464

Notes: * represents the optimal lag order corresponding to each information criteria.

Next, the Hermert transformation is applied to the first-order difference series of the
variables to eliminate individual fixed effects of the model and ensure that the transformed
variables and their lags can be orthogonal to form valid instrumental variables. The trans-
formed variables are h_ d.LnGDP, h_ d.LnPCE, and h_ d.LnCCE. The model parameters
are estimated using GMM, and the influence relationship between variables and lagged
terms is presented in Table 8 as a preliminary result. A summary of the GMM estimation
results follows.

1. The first-period lag of economic development has a significant positive effect on itself
in both non-resource-based cities and resource-based cities, with elasticity coefficients
of 0.6378 and 0.5962, respectively. The first-period lag of carbon emissions from the
coal industry has a significant positive effect on itself, with elasticity coefficients of
0.0504. These findings imply that there is a general cumulative effect of time on
economic development and carbon emissions from the coal industry. Therefore, cities



Sustainability 2023, 15, 3881 14 of 27

with a stronger economic foundation and development will continue to be more
resilient to external economic shocks, so economic development planning should be
long-term in order to maximize the positive cumulative effect. In terms of carbon
emissions, the work of reducing them will take time. It is necessary to pay close
attention to the trend of carbon emission changes, break the cumulative effect of
carbon emissions, and be wary of the potential rebound effect in the process of carbon
emission reduction.

2. The first-period lags of carbon emissions from the coal industry in resource-based
cities will have a significant positive effect on economic development, with an elasticity
coefficient of 0.0024, indicating that the economic development of resource-based
cities has resource characteristics and their coal resource endowment is conducive
to the formation of an energy-dependent industrial structure [83]. Carbon emission
reduction policies will have a negative impact on economic development. However,
resource-based economic development is unsustainable, so it is crucial for cities
to transform their development strategies. The government should encourage the
development of diverse industries in order to optimize the industrial structure and
gradually reduce the reliance of economic development on energy source.

Table 8. Estimation results of the PVAR model.

Region Impulse Variables
Response Variables

h_ d.LnGDP h_ d.LnPCE h_ d.LnCCE

Non-resource-based cities
L1. H_ d.LnPCE 0.0027

(0.789)
−0.0217
(0.883) −

L1. H_ d.LnGDP 0.6378 ***
(0.000)

0.0537
(0.940) −

Resource-based cities

L1. H_d.LnCCE 0.0024 *
(0.053)

0.0051
(0.284)

0.0504 *
(0.084)

L1. H_ d.LnPCE −0.0265
(0.509)

−0.0624
(0.667)

−0.7628
(0.388)

L1. H_ d.LnGDP 0.5962 ***
(0.004)

0.3350
(0.647)

7.9199
(0.198)

Notes: *** and * represent significance at the levels of 1% and 10%, respectively.

It should be noted that the application of VAR-type models in economic forecasting
and policy evaluation is conditional. VAR-type models can only successfully forecast
systems that operate according to the laws of the market without government intervention.
Conversely, for systems with government intervention, it is difficult to make successful
forecasts. Structurally, the PVAR model is a dynamic model that does not focus on the
interpretation of the coefficients of the parameters to be estimated, and it is also difficult
to confirm the significance of individual variables. Considering the above limitations of
the PVAR model and the fact that both planned and market prices are implemented in the
Chinese energy market during the sample period, this paper does not conduct in-depth
economic analysis and policy evaluation of the PVAR model parameter estimation results,
but focuses on the dynamic effects of the exogenous perturbations of each variable on itself
and other variables using impulse response function and variance decomposition based on
the PVAR model.

4.3.3. Impulse Response Analysis

The impulse response function can further measure the change in variables caused by
a random perturbation of a variable, reflecting the dynamic interaction between variables
as well as predicting the degree of lag and influence between the variables. However, the
PVAR model’s stability should be tested before performing the impulse response function
analysis. As shown in Table 9 and Figure 7, the inverse of all unit roots is distributed within
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the unit circle, indicating that the first-order PVAR model constructed in this part based
on the panel data of economic development and carbon emissions in the coal and power
industries is robust. It is eligible to continue the impulse response shock and variance
decomposition analysis.

Table 9. Eigenvalue stability condition.

Region
Eigenvalue

Modulus
Real Imaginary

Non-resource-based cities
0.6945 0 0.6945
−0.0238 0 0.0238

Resource-based cities
0.6289 0 0.6289
−0.0195 0.0228 0.0300
−0.0195 −0.0228 0.0300Sustainability 2023, 15, x FOR PEER REVIEW 16 of 28 
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In this section, the time span of the simulation was set to 10 periods, and 200 Monte-
Carlo simulations were run to obtain the non-resource-based cities’ impulse response
diagrams (Figure 8) and resource-based cities’ impulse response diagrams (Figure 9), where
the horizontal coordinates indicate the number of periods of response to the effect of the
shock and the vertical coordinates indicate the degree of response to shocks. There are three
lines in the impulse response plots: the middle line represents the actual impulse response
effect of each endogenous variable in the face of a shock, and the top and bottom lines form
a 95% confidence interval. The impulse response results show that the impulse responses
between the variables all have a good convergence trend. We discovered the following:

1. Carbon emissions from the power industry respond negatively to shocks in the coal
industry, with the highest response in the first period, and then gradually converge to
0 after several periods. Although coal is the primary energy source and electricity is
the secondary energy source, there is a certain energy substitution between coal and
electricity as energy supply sources [84]. When deciding on an energy supply method,
the energy consumption side of the equation will consider the cost of supplying coal
versus electricity and adjust the demand for different energy types [85]. Carbon
emissions from the coal industry are primarily caused by the mining and washing of
coal, so an increase in carbon emissions from the coal industry implies an increase in
the scale of coal production. The increase in coal supply will cause the price of coal
to fall, and energy consumers may choose coal to supply energy to pursue higher
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corporate interests and reduce the electricity demand. In brief, because of energy
substitution, the increase in carbon emissions from the coal industry may reduce
carbon emissions from the electricity industry. Some studies have shown that the
increase of coal price can more effectively convey the negative externalities associated
with coal consumption and indirectly influence the energy consumption patterns of
downstream enterprises through the industrial chain [86,87]. The production and
consumption cost of coal can be raised through the regulating effect of taxes such
as resource tax and environmental tax, which is an effective way to reduce coal
consumption in the short term. It will promote the enterprises to actively alter the
development strategies and decrease their consumption and production of coal in
order to lessen the carbon emissions released throughout the coal production process.

2. The impulse response of carbon emissions from the coal industry to carbon emissions
from the power industry is a negative feedback in the current period and shifts to a
positive direction in the first period. However, the degree of the impulse response
is low. The main reason for this shift is a lag in the coal industry’s reflection of coal
demand in the power industry. Coal production is not a fully market-based behavior
but rather is more influenced by pre-planning and macro-regulation. In addition, the
coal industry and the power industry are in the upstream and downstream of the coal
supply chain, respectively, so the energy demand is not transmitted in real-time. In
addition, because coal for power generation can be imported and transferred from
other provinces [15], the impact of carbon emissions from the power industry on local
carbon emissions from coal industry is relatively weak. In the long term, there is a posi-
tive synergy between carbon emissions from the power industry and the coal industry,
which means an increase in carbon emissions from the power industry will boost
carbon emissions from the coal industry. It is primarily due to the advancement of
electrification in the transportation, construction, and industrial industries, which has
increased the demand for electricity in each industry, and the continued development
of the economy also necessitates adequate electricity supply. To meet society’s electric-
ity demand, the coal-based electricity mix must consume more coal [88]. Therefore,
lowering coal consumption and providing alternatives should be the main priorities
for reducing carbon emissions from the coal production process [87]. Electrification
of energy use becomes an important path to decarbonization, resulting in a large
demand for electricity [89]. If the structure of the electricity supply is not changed, it
will promote an increase in carbon emissions from the power industry and the coal
industry. We must recognize that investment in renewable energy is a fundamental
way to replace coal consumption in thermal power grids [89,90]. While promoting the
electrification of the industries, it is necessary to accelerate the development of a new
type of power system based primarily on clean energy and to promote the low-carbon
transformation of the power structure. However, many studies show that renewable
energy substitution is a long-term and slow process [87,91]. In the initial stage, a large
capital investment is required, and the emission reduction and substitution effect is
relatively limited, which needs time to accumulate before showing a sufficient effect.
However, using renewable energy to replace coal is beneficial to the economy in the
long run [90]. It is necessary to have a long-term plan for promoting clean power
substitution for coal, and to provide guarantee measures for stable energy substitution
through financial subsidies and R&D investment.

3. The shock effect of carbon emissions from the power industry on economic devel-
opment is positive. The effect of the shock caused by carbon emissions from the
coal industry on economic development is positive in the first period. The results
support the findings of Acheampong [92] and Menyah and Wolde-Rufael [93]: that
carbon emissions promote economic growth. However, they contradict the findings of
Lu [94]. They indicate that carbon emissions in key industries have not yet decoupled
from economic development. The coal and power industries are characterized by
extensive development, and we should pay attention to the critical role of fossil energy
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in economic growth. It is important to be wary of the deregulation of carbon emissions
in some regions in pursuit of rapid economic growth and to rein the behavior of some
enterprises in creating higher economic benefits by sacrificing the environment. Cur-
rently, we need to develop advanced energy conversion and production technologies
to improve energy utilization efficiency and the level of economic growth per unit of
carbon emissions [95]. Then, in order to promote the decoupling of economic devel-
opment from carbon emissions, we should focus on the development of clean energy.
Upgrading industrial structure through green technological innovation and increasing
the proportion of tertiary industries are good ways to promote lighter and cleaner
industry, which not only promote an energy-driven economy into a technology-driven
and innovation-driven economy, but also facilitate the decoupling of the economy
from carbon emissions [96].

4. In resource-based cities, economic development has a negative shock effect on carbon
emissions from the coal industry and power industry. Because people’s demand for
environmental quality rises as their income rises and coal resources become scarcer,
resource-based cities are actively seeking the path to green transformation, so eco-
nomic development represents a suppressive effect on carbon emissions. If economic
development is considered as an intrinsic motivation in the process of carbon emis-
sion reduction, it will greatly improve the efficiency of carbon emission reduction. In
non-resource-based cities, the effect of the shock caused by economic development on
carbon emissions from the power industry is positive in the first period. This is mainly
because the increase in demand for electricity caused by economic development has
resulted in an increase in the power industry capacity, which in turn has led to an
increase in carbon emissions in the power generation process. This is consistent with
the findings of He et al. [97]: that economic growth is the dominant driver of increased
carbon emissions in the power industry. Therefore, we should continue to explore
mechanisms for the coordinated and healthy development of clean energy generation
and coal-fired power, and improve clean energy supply technologies to reduce the
increase in carbon emissions in the power industry caused by economic development.
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4.3.4. Variance Decomposition

To further understand the long-term dynamic impact relationship between carbon
emissions from the coal industry and the power industry, this section conducts a 20-
period variance decomposition of the error term, using the variance contribution ratio
to indicate the degree to which shocks to the random disturbance term explain variables
prediction errors.

As shown in Table 10, for non-resource-based cities, the variance decomposition
results are consistent over the forecast period. Future changes in economic development
are entirely the result of their own shocks. Economic development accounts for about 2%
variation in carbon emissions from the power industry, and the remaining 98% is due to
the power industry’s shocks.

Table 10. Variance decomposition for non-resource-based cities.

Response Variables Forecast Horizon
Impulse Variables

d.LnGDP d.LnPCE

d.LnGDP

1.000 1.000 0.000
2.000 1.000 0.000
3.000 1.000 0.000
4.000 1.000 0.000
5.000 1.000 0.000
10.000 1.000 0.000
20.000 1.000 0.000

d.LnPCE

1.000 0.020 0.980
2.000 0.020 0.980
3.000 0.020 0.980
4.000 0.020 0.980
5.000 0.020 0.980
10.000 0.020 0.980
20.000 0.020 0.980
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According to Table 11, for resource-based cities, economic development and carbon
emissions from the power industry and carbon emissions from the coal industry all have
some mutual explanatory power. The explanation ceases to change after five years, indicat-
ing that the fluctuations of each variable all reach a steady state in the fifth year. Economic
development explains about 9.9% variation in carbon emissions from the power industry
and 2% variation in carbon emissions from the coal industry, while carbon emissions from
the power industry account for only 1.8% variation in economic development and 0.4%
variation in carbon emissions from the coal industry. Carbon emissions from the coal
industry explain 4.4% of the change in economic development and 0.9% variation in carbon
emissions from the power industry.

Table 11. Variance decomposition for resource-based cities.

Response Variables Forecast Horizon
Impulse Variables

d.LnCCE d.LnGDP d.LnPCE

d.LnGDP

1.000 0.065 0.935 0.000
2.000 0.050 0.937 0.013
3.000 0.046 0.938 0.017
4.000 0.044 0.938 0.018
5.000 0.044 0.938 0.018

10.000 0.044 0.938 0.018
20.000 0.044 0.938 0.018

d.LnPCE

1.000 0.007 0.096 0.897
2.000 0.009 0.097 0.894
3.000 0.009 0.098 0.893
4.000 0.009 0.099 0.892
5.000 0.009 0.099 0.892

10.000 0.009 0.099 0.892
20.000 0.009 0.099 0.892

d.LnCCE

1.000 1.000 0.000 0.000
2.000 0.985 0.012 0.004
3.000 0.979 0.017 0.004
4.000 0.977 0.019 0.004
5.000 0.976 0.019 0.004

10.000 0.976 0.020 0.004
20.000 0.976 0.020 0.004

Overall, economic development and carbon emissions from the coal industry and
power industry have the strongest explanatory power for their respective changes. We
also discovered:

1. In resource-based cities, the contribution of carbon emissions from the coal industry to
the change in carbon emissions from the power industry is greater than the contribu-
tion of carbon emissions from the power industry to the change in carbon emissions
from the coal industry. This could be because local coal resources are mainly used to
meet local coal demand, while the coal demand of the power industry can also be met
by resources from outside the province.

2. Economic development contributes more to variation in carbon emissions from the
power sector than it does to carbon emissions from the coal industry. This is probably
because economic growth is more likely to be reflected in an increase in electricity
demand. In comparison to the coal industry, the power industry has stronger and more
extensive links with other industries, as electricity is the main mode of energy supply
for many industries. Economic development is the main driver of increased electricity
consumption, which also provides financial security for the transformation of the
electricity structure. It is essential to actively promote the development of a low-carbon
economy. By increasing the demand for clean electricity, the low-carbon economy can
facilitate a shift in the electricity structure from thermal generation to clean energy
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generation [98]. The low-carbon economy could also provide sufficient funds for
the transformation of green power generation technologies. It is not only conducive
to increasing investment in renewable energy generation, but it also supports the
research and development of core technologies for carbon reduction [99].

3. I contribution of carbon emissions from the coal industry to changes in economic
development is decreasing, while the contribution of the power industry is gradually
increasing, but the former is always higher than the latter. This indicates that although
the green transformation of cities has gradually reduced the reliance on coal resources
for economic growth, coal resources remain the main driver of economic growth.
As electrification has strengthened the linkages between the power industry and
other industries, which increases the importance of the power industry, the power
industry has a growing impact on economic development. Resource-based cities
should improve the urban industrial system and plan the regional industrial layout
in an integrated manner. By extending the coal industry chain and developing coal
substitution industries, they can transform traditional industries and develop new
leading industries, which is beneficial to reducing the over-dependence of regional
economic and industrial development on resources and accelerating the transforma-
tion of old and new dynamics of economic development [100]. The construction of
new electric power systems in non-resource-based cities should take the economic
development goals as constraints while ensuring energy supply security. To realize
deep decarbonization of economic development, non-resource-based cities should
strictly control new coal power projects, enhance the capacity of renewable energy
consumption, and establish a green power trading market [101].

4.3.5. Granger Causality Test

This section uses the Granger causality test to further clarify the causal relationship
between the variables. Table 12 shows the results of the Granger causality test. There is
only a unidirectional causality from carbon emissions in the coal industry to economic
development, which is significant at the 10% level, i.e., the growth of carbon emissions
in the coal industry will promote economic development, but economic growth will not
promote an increase in carbon emissions from the coal industry. There is no two-way
Granger causality between all variables, especially between carbon emissions from the coal
industry and carbon emissions from the power industry, which is the focus of this paper.

Table 12. Results of the Granger causality test.

Region Explained Variables Explanatory Variables chi2 df Prob > chi2

Non-resource-based cities
h_ d.LnGDP

h_ d.LnPCE 0.0716 1 0.789
ALL 0.0716 1 0.789

h_ d.LnPCE
h_ d.LnGDP 0.00576 1 0.940

ALL 0.00576 1 0.940

Resource-based cities

h_ d.LnGDP
h_ d.LnPCE 0.43566 1 0.509
h_ d.LnCCE 3.7456 1 0.053 *

ALL 3.8003 2 0.150

h_ d.LnPCE
h_ d.LnGDP 0.21012 1 0.647
h_ d.LnCCE 1.1502 1 0.284

ALL 1.5149 2 0.469

h_ d.LnCCE
h_ d.LnGDP 1.6605 1 0.198
h_ d.LnPCE 0.74643 1 0.388

ALL 1.6606 2 0.436

Notes: * represents significance at the level of 10%, respectively.
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5. Conclusions and Recommendations

This paper calculates the carbon emissions of the coal industry and power industry
by the IPCC method in 13 cities in Jiangsu Province from 2006 to 2020, then it adopts
the EOF decomposition to explore the spatial and temporal evolution characteristics of
carbon emissions in key industries, and finally employs the PVAR model to systematically
evaluate the interaction between the carbon emissions of coal industry and power industry,
as well as the effect of economic development. The following are the main conclusions of
this study:

1. From the perspective of spatial distribution, there is a close relationship between
carbon emissions and coal resource distribution in the coal industry, and the time
coefficients of EOF decomposition show an “N”-shaped variation, with the type
of spatial distribution varying with the positive and negative values of temporal
coefficients. In the power industry, the first model of the EOF shows a consistent
trend of carbon emissions across the entire region, with the time coefficients showing
a continuous upward trend and the typicality of the spatial distribution showing
weakening firstly and then strengthening in the opposite direction. The second model
of the EOF is characterized by a “south-north” inverse phase distribution, with a “U-
shaped” change in time coefficients, which is characterized by interannual variability,
and the typicality of spatial distribution undergoes three changes.

2. In terms of long-term development, there is a synergistic effect from carbon emissions
of the power industry to carbon emissions of the coal industry, which is closely
related to the supply and demand of coal. However, the results of the variance
decomposition and causality test indicate that the synergistic relationship between
the carbon emissions of the coal industry and power industry is relatively weak. We
should improve the degree of synergy between carbon emissions of key industries
through technological innovation and cross-industry materials development. It is
essential to start from the energy consumption side to reduce emissions, which can
reduce coal production by reducing the demand for coal, thereby reducing carbon
emissions on the production side.

3. The increase in carbon emissions will promote economic development; the economic
development of resource-based cities in particular has resource characteristics. There
is a unidirectional causal relationship between carbon emissions from the coal indus-
try to economic development. However, the improvement of economic development
in resource-based cities will suppress carbon emissions from the coal and power in-
dustries. Thus, resource-based cities should use economic development as an internal
impetus to promote urban green transformation, and non-resource-based cities should
focus on promoting the decoupling of the economy from carbon emissions.

This paper makes the following policy recommendations based on the research find-
ings discussed above:

1. Promote differentiated carbon emission reduction efforts, taking into account the
characteristics of urban development. The typical spatial distribution of carbon emis-
sions in the coal industry and power industry side-by-side reflects some irrationality
in dividing regions and implementing carbon emission reduction policies based on
traditional geographical locations. Therefore, when developing carbon-reduction
strategies, we should adhere to formulating and implementing policies in accordance
with local conditions, taking into account the local economic development and re-
source endowment. For example, non-resource-based cities should prioritize the
quality of economic development and adjust the supply structure of power industry.
They could mitigate the impact of economic development on the promotion of carbon
emissions from the power industry by pursuing a clean energy supply aggressively.
The energy-rich regions are constrained by resource endowment and industrial base.
Natural resources underpin their economic development. In order to accelerate the
transition between old and new economic dynamics and break the “lock-in effect” of
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energy-driven economic development, they should optimize their industrial structure
by encouraging energy-saving technological innovation and increasing the proportion
of tertiary industries.

2. Identify ideas to reduce carbon emissions through cross-industry synergies. The
results of the study show that there is a synergistic effect of carbon emissions between
key industries, from the energy consumption side to the energy production side.
Therefore, it is important to start from the energy consumption side when formulating
cross-industry synergistic carbon emission reduction policies. First of all, we must
reduce the reliance on fossil energy on the consumption side. Then, we must reduce
the production of fossil energy at the production side by lowering demand, thereby
promoting the green and low-carbon transformation of the entire energy supply chain.
For example, enhance the substitution of electricity for fossil energy by increasing the
electrification of the energy consumption side of the industry. Next, develop clean
energy vigorously and establish a new power system with new energy as the mainstay
to promote the low-carbon transformation of the energy and power structure, which
will help to reduce the overall demand for fossil energy for social development.

3. Strengthen the synergy of carbon emissions reduction among key industries. To
promote the expansion of energy conservation and emission reduction policies from
individual industries to multiple industries, it is crucial to thoroughly comprehend
the synergistic effect of carbon emissions among key industries and establish a coordi-
nated and complementary mechanism for reducing pollution and carbon emissions
in key industries first. Secondly, an innovation system of energy-saving and carbon-
reducing should be built. In order to fully exploit and improve the synergistic effect
between industries, it will help to break down industry barriers through research and
development and the promotion of low-carbon and green technologies such as energy
substitution, energy gradient utilization and optimization, and resource recycling.

4. Facilitate the harmonious development of environmental protection and economy.
Stable economic development is a prerequisite for carbon emission reduction; it
is essential to consider economic development as an endogenous driving force for
carbon emission reduction. With the construction of the carbon emission trading
market, the market-based mechanism will mobilize the enthusiasm of enterprises to
save energy and reduce carbon emissions, lowering the cost of emission reduction
and achieving both economic and social benefits. Furthermore, in order to break
the cumulative effect of carbon emissions, a monitoring and verification platform of
carbon emissions based on the carbon emission trading market can be established to
grasp the carbon emission dynamics in real-time, allowing problems to be detected
and carbon emission reduction policies to be optimized and adjusted in time.

There are still several limitations in this paper. First, due to the limitations of the PVAR
model and the non-disclosure of industry data for more variables at the city level, this paper
developed a study of carbon emissions from standpoint of the coal and power industries
and economic development, which inevitably has the shortcomings of omitting variables
and simplifying the complexity of reality. It is necessary to consider more complex realistic
connections. Therefore, further studies can be carried out by broadening the research
perspective and exploring more advanced research methods. It is suggested that future
studies can achieve significant results by comprehensively considering various influencing
factors of carbon emissions and the spatial effects between them. Moreover, the negative
externalities of carbon emissions should not be overlooked. They will make the research
more closely related to real economic and social activities. Second, the present study only
took the coal and power industries in 13 cities in Jiangsu Province as samples. However,
the level and mode of development of different economic agents vary greatly. In the future,
the sample scope should be expanded to include more industries, more cities, and even
more countries. It is suggested that the mechanism of the synergistic effect of carbon
emissions can be investigated further by comparing multiple agents. Exploring the path
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of synergistic carbon emission reduction of multiple agents will help to improve carbon
emission reduction efficiency and enhance carbon emission reduction space.
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