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Abstract: The storm water management model (SWMM) has been used extensively to plan, imple-
ment, control, and evaluate low impact development facilities and other drainage systems to solve
storm-related problems in sponge cities. However, the calibration of SWMM involves a variety of
sensitive parameters and may bring significant uncertainties. Here we incorporated the distributed
time variant gain model (DTVGM), a model with a simple structure and few parameters, into the
SWMM (called DTVGM-SWMM) to reduce the complexity but keep the mechanistic representation
of the hydrological process. The DTVGM runoff module parameters were calibrated and validated
using the Nash–Sutcliffe efficiency (NSE), based on measured data and the results of SWMM. It
was then coupled with the SWMM routing module to estimate catchment runoffs and outflows.
Finally, the performance was evaluated using NSE (0.57~0.94), relative errors of the flow depth
(−7.59~19.79%), and peak flow rate (−33.68~54.37%) under different storm events. These implied
that the DTVGM-SWMM simulations were generally consistent with those of the control group,
but underperformed in simulating peak flows. Overall, the proposed framework could reasonably
estimate the runoff, especially the outflow process in the urban catchment. This study provides a
simple and reliable method for urban stormwater simulation.

Keywords: SWMM; TVGM; sponge city; low impact development

1. Introduction

Rapid urbanization has caused various problems in constructed areas [1]. Increased
surface runoff, frequent flooding, and water deterioration have significantly impacted
the environment and the economy [2,3]. In the last decade, the Chinese government
has launched sponge city construction [4], which often uses low impact development
facilities (LIDs) as source control measurements [5]. A sponge city is a city with low impact
development infrastructure, which aims to make the catchment hydrological response
approach the pre-development status with minimum cost. In sponge cities, the runoff
response to rainfall has significant nonlinear characteristics, which can be depicted by the
storm water management model (SWMM), widely used in urban hydrology [6–8]. However,
SWMM requires many parameters and much measured data; moreover, it operates in a
complicated way.

On the other hand, the distributed time variant gain model (DTVGM) has few pa-
rameters and a simple structure for representing the rainfall-runoff response [9,10]. It
can simulate complex nonlinear hydrological processes, but is generally used in large
natural watersheds with low-intensity human activities under prolonged rainfalls. Thus
far, DTVGM has rarely been used to simulate the rainfall runoff process in sponge cities as
urban areas always have small areas, complicated land use and land cover, and, in most
cases, short and intense storms. It would be questionable to apply it to a study subject
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with a small spatiotemporal scale [11]. Moreover, a direct reason for its rare usage is that
DTVGM lacks a routing module for the drainage networks, which the SWMM can provide
(written in C).

To this end, we aim to incorporate the runoff module of DTVGM into the routing
module of SWMM for developing the DTVGM-SWMM to predict the runoff and outflow
in a sponge city. The proposed model will contribute to the modeling and management of
the rainfall-runoff process in sponge cities. This article is organized as follows: Section 2
presents the study area and data; Section 3 introduces the SWMM, DTVGM runoff mod-
ule, coupling method, and performance indicators; Section 4 presents the results and a
discussion from four perspectives; Section 5 summarizes the conclusions.

2. Study Area and Data

Fengxi New City is located between Xi’an and Xianyang (Figure 1b), Shaanxi Province,
China (Figure 1a), with a total area of 143 km2. Since 2013, the study area (22.5 km2, Figure 1d)
has been developed with a LID-based stormwater management system (Figure 1c). Fengxi
was designated one of China’s pilot sponge cities in 2015 and a UNESCO global eco-
hydrology demonstration site in 2019 (http://ecohydrology-ihp.org/demosites/view/1220
(accessed on 16 January 2023)), for featuring a temperate continental monsoon climate
and nonself-weight collapsible loess land cover. The average annual temperature is about
13.6 ◦C, and the average annual rainfall depth is about 520.0 mm. Precipitation is mainly
concentrated from July to September (50–60% of the annual amount), resulting in severe
summer floods. The land cover includes built areas, roads, grasses, trees, bare grounds,
water, etc. The study area has an average slope of 0.5%, with an elevation of 378.0–392.0 m,
and outflows from outfalls are drained to the Weihe River and Fenghe River.
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Figure 1. Map of the study site. (a) Location of Shannxi Province, China. (b) Fengxi sponge city
pilot region, the study site for simulations. (c) Subcatchment divisions and generalized drainage
system in the storm water management model with 210 green roofs, 257 porous pavements, and
268 bioretention cells. (d) Stormwater-related facilities. (Sources: Yang et al. [12]).

Most of the study area data, including measured rainfall and runoff data and the input
file for SWMM, was provided by the Fengxi New City Management Committee; other data
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were collected or measured by our group. Table 1 lists the statistics of the storm events
used to calibrate and validate the models.

Table 1. Statistics of storm events used to calibrate and validate the SWMM and DTVGM-SWMM.

Storm
Event
Name

Return
Period
(Year)

Duration
(min)

Time-to-Peak
Coefficient Depth (mm)

Mean
Intensity
(mm/min)

Usage

Chicago-1 1 1 120 0.35 20.67 0.17 Calibrate
DTVGM-SWMM

Chicago-2 2 120 0.35 27.92 0.23 Validate DTVGM-SWMM

Event-20170820 2 n/a 96 0.57 13.40 0.14 Calibrate SWMM and
Validate DTVGM-SWMM

Event-20170909 n/a 968 0.47 16.00 0.02 Calibrate SWMM and
Validate DTVGM-SWMM

Event-20170916 n/a 771 0.36 11.40 0.01 Calibrate SWMM

1 For simplicity, Chicago denotes a rainfall time series calculated using Equation (1) of Yang et al. [12]. 2 Event
denotes a rainfall time series and the corresponding outflows recorded at that time.

3. Methodology

We ran the DTVGM and SWMM in the study area to account for rainfall-runoff het-
erogeneity between subcatchments (i.e., grid cells) within the catchment. A framework
for coupling the DTVGM and SWMM was proposed to simulate runoffs and outflows in
sponge cities (Figure 2). The flowchart consists of four parts: (1) the preprocessing and
splitting of the observed storm events, including design storms and corresponding simu-
lated flows, into a calibration group and a validation group; (2) calibration and validation
of the SWMM model to simulate the rainfall runoff in subcatchments under storm events;
(3) calibration of the DTVGM runoff module using a genetic algorithm [13]; (4) coupling
the calibrated DTVGM runoff module with the SWMM routing module to develop the
DTVGM-SWMM; (5) evaluating the coupling model using performance matrices.
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Figure 2. Framework of coupling DTVGM and SWMM. DTVGM, distributed time variant gain
model; SWMM, storm water management model; DTVGM-SWMM, the runoff module of DTVGM
with the routing module of SWMM; GA, genetic algorithm.
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3.1. Storm Water Management Model

SWMM is a widely used rainfall-runoff model developed by the US Environmen-
tal Protection Agency (https://www.epa.gov/water-research/storm-water-management-
model-swmm (accessed on 16 January 2023)). The software consists of hydrological, hydro-
dynamic, and water quality modules and helps predict runoff quantity and quality from
LIDs and drainage systems. It is free, open-source, and allows for the easy achievement of
secondary development [14].

Based on the topography and underlying conditions, the study area was divided
into 268 subcatchments (Figure 1c). In this paper, the SWMM model has 603 nodes,
603 sections of pipeline, and 25 outfalls (Figure 1d). Table 2 lists the values of the options
and main hydrological parameters of SWMM [12,15]. Note that the SWMM used here was
calibrated and validated with measured data, i.e., Event-20170820, Event-20170909, and
Event-20170916.

Table 2. Values of options and main calibrated parameters for the storm water management model.

Options or Parameters Value 1

Infiltration model Horton [16–18]
Routing model Dynwave [6,19–27]
Reporting time step (minute) 1
Routing time step (second) 10
Catchment slope (%) 0.5
Imperviousness (%) 65.0
Percent of the impervious area with no depression storage (%) 35.0
Depression storage in impervious areas (mm) 2.1
Depression storage in pervious areas (mm) 3.6
Conduit roughness (s/m1/3) 0.013
Surface roughness for overland flow in impervious area (s/m1/3) 0.013
Surface roughness for overland flow in pervious area (s/m1/3) 0.150
Minimum infiltration rate on Horton curve (mm/h) 3.56
Maximum infiltration rate on Horton curve (mm/h) 25.40
Decay rate constant of Horton curve (1/h) 7
Drying time (day) 7

1 Data from Yang et al. [12,28]. For more details on SWMM, please refer to Rossman [29,30].

3.2. Runoff Module of Distributed Time Variant Gain Model

The DTVGM divides the catchment into cell grids (i.e., subcatchments) based on
GIS/DEM and applies the time variant gain model, a conceptual hydrological model, to
each cell grid for runoff and routing calculations. Previous studies have shown that the
DTVGM can perform well in large watersheds under prolonged rainfalls. In this section,
we only explain the runoff module of DTVGM because the routing module of DTVGM is
not used.

The number of grids in the DTVGM equals the number of subcatchments in the
SWMM. For the ith subcatchment at time t, the runoff (Ri(t), mm) is the sum of the surface
runoff (RS

i (t), mm) and subsurface runoff (RSS
i (t), mm). The surface runoff yielded in the

subcatchment is calculated thus:

RS
i (t) = Gi(t)Pi(t) (1)

where Pi(t) is the rainfall depth in the ith subcatchment at time t, mm. Gi(t) is the time
variant gain factor (determined by soil moisture) in the ith subcatchment at time t:

Gi(t) = g1
i + g2

i APIi(t) (2)

https://www.epa.gov/water-research/storm-water-management-model-swmm
https://www.epa.gov/water-research/storm-water-management-model-swmm


Sustainability 2023, 15, 3804 5 of 13

where g1
i and g2

i are dimensionless time variant gain parameters of surface runoff for the
ith subcatchment. APIi(t) is the antecedent precipitation index of the ith subcatchment at
time t, which represents the recent soil moisture state of the subcatchment, mm [31–33]:

APIi(t) =
t

∑
j=1

(
1 − e−

1
Ki

)
e−

j
Ki Pi(t − j + 1) (3)

where j is the time and t is the number of times; Ki, the dimensionless decay factor and is
related to the soil property and evaporation within the ith catchment.

Lastly, for the ith subcatchment at time t, the subsurface runoff is calculated as:

RSS
i (t) = g3

i APIi(t) (4)

where g3
i is the dimensionless time variant gain parameter of subsurface runoff for the ith

subcatchment.

3.3. Coupling Model

Though a monitoring system has been developed at a few sites in the catchment, there
were no observed rainfall, runoff, and outflow data at a subcatchment scale. Thus, we cali-
brated the DTVGM runoff module using the genetic algorithm (https://ww2.mathworks.
cn/help/gads/ga.html (accessed on 16 January 2023)) based on the subcatchments’ runoff
time series calculated by SWMM. For the ith subcatchment, the decision variables of the
optimization problem are g1

i , g2
i , g3

i , and Ki. Thus, we set the number of iterations to 8000,
namely, 2000 times the number of decision variables.

The Nash-Sutcliffe efficiency (NSE) [28,34–39] was used to quantify the overall con-
sistency between the hydrographs by DTVGM and observed values (including some
hydrographs by SWMM). Note that NSE ranges from −∞ to 1, being equal to 1 if a perfect
agreement exists. It is calculated as follows:

NSEi = 1 − ∑N
t=1
[
RSWMM

i (t)− RDTVGM
i (t)

]2
∑N

t=1

[
RSWMM

i (t)− RSWMM
i

]2 (5)

where N refers to the number of time steps of the runoff time series, min; QSWMM
i (t)

and QDTVGM
i (t) are the runoff time series simulated by SWMM and DTVGM for the ith

subcatchment at time step t, respectively, m3/s; QSWMM
i is the average value of runoff time

series simulated by SWMM for the ith subcatchment, m3/s.
The objective function is to maximize the NSE value for the ith subcatchment. Here, the

calibration was conducted 30 times, thus obtaining 30 sets of optimal parameters (decision
variables) with corresponding NSE values. Thus, the optimization model for the calibration
can be expressed as follows:

fi
(

g1
i , g2

i , g3
i , Ki

)
= min(−NSEi) (6)

subject to:
−1 ≤ g1

i ≤ 1
0 ≤ g2

i ≤ 2
0 ≤ g3

i ≤ 1
0 ≤ Ki ≤ 100

(7)

Generally, developing a DTVGM-SWMM consists of three steps: (1) call the MAT-
LAB engine (https://www.mathworks.com/help/matlab/calling-matlab-engine-from-
c-programs-1.html?s_tid=CRUX_lftnav (accessed on 16 January 2023)) in Visual Studio
(https://visualstudio.microsoft.com/ (accessed on 16 January 2023)) to run the runoff
module of DTVGM that was developed in MATLAB by our group; (2) use the runoff results

https://ww2.mathworks.cn/help/gads/ga.html
https://ww2.mathworks.cn/help/gads/ga.html
https://www.mathworks.com/help/matlab/calling-matlab-engine-from-c-programs-1.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/matlab/calling-matlab-engine-from-c-programs-1.html?s_tid=CRUX_lftnav
https://visualstudio.microsoft.com/
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of DTVGM to replace the values of vOutflow in SWMM, which is a variable that refers to
the rate of flow leaving from the catchment; (3) run the SWMM routing module to obtain
catchment outflow time series.

3.4. Performance Criteria

We used three indicators, namely, the NSE (Equation (5)), the relative error of runoff
depth (δR, Equation (8)), and that of peak runoff (δP, Equation (9)) to evaluate the coupling
model. A higher NSE and a lower δR and δP indicate better performance. As defined in
Equations (8) and (9), the values of δR and δP are positive when the DTVGM overestimates
and are negative when it underestimates.

δR(i) =

[
RDTVGM

i − RSWMM
i

RSWMM
i

]
× 100% (8)

δP(i) =

 max
1≤t≤N

RDTVGM
i (t)− max

1≤t≤N
RSWMM

i (t)

max
1≤t≤N

RSWMM
i (t)

× 100% (9)

4. Results and Discussion
4.1. Simulation of Storm Water Management Model

The relevant parameters of SWMM were adjusted; for details on the calibration and
validation, please refer to Yang et al. [12]. In addition, we used a runoff coefficient-based
method to verify the SWMM parameters. Theoretically, the integrated runoff coefficient
for the study catchment is 0.45~0.60 because the site is densely built-up [40]. In fact, under
Event-20170820, the subcatchment runoff coefficients calculated by the SWMM simulation
were 0.52–0.57 for the no LIDs scenario and 0.18–0.28 for the LIDs scenario. Thus, the
calibrated SWMM is satisfactory for calibrating and validating the DTVGM runoff module
and the coupling model.

4.2. Performance of Distributed Time Variant Gain Model

Figure 3a shows the performance of the DTVGM-SWMM based on the NSE val-
ues of each subcatchment in the calibration phase (i.e., Chicago-1) and validation phase
(i.e., Chicago-2 and Event-20170820). We can see that most subcatchments under the three
storms have an NSE > 0.6, with only five exceptions: subcatchments 13, 31, 171, and 238
under Event-20170820. Figure 3b further illustrates these cases, displaying a positive corre-
lation trend between the calibration and validation NSE values. For most subcatchments,
especially the underperformed five subcathments, NSE values under Chicago-2 are greater
than those under Event-20170820 because the former pattern is more similar to Chicago-1,
which was used for calibration. Figure 3c presents the violin plot to analyze the statistical
characteristics of the NSE values. We found that the average (median) NSE values for
the runoff simulation under the three storm events were 0.92, 0.71, and 0.84 (0.91, 0.64,
and 0.85), respectively, indicating an acceptable model performance. Overall, the DTVGM
could simulate the runoff over 263 subcatchments (98.1% of all).

Figure 4 shows the calibrated parameters (g1, g2, g3, and K) of the DTVGM runoff
module. The values of g1 and g3 for different subcatchments displayed more variance
than the values of g2 (Figure 1a,b); the values of K had a considerable variation range
(Figure 1c,d). In a subcatchment, the value of the four parameters reflected the complicated
runoff generation characteristics in urban areas because g1 and g2 are gain parameters of
surface runoff, and g3 is that of subsurface runoff. For example, in most subcatchments,
a greater g1 value denotes a higher conversion from rainfall to runoff; for g2, a greater
value denotes a greater impact of soil moisture on the surface runoff generation. However,
to some extent, the four parameters were not entirely based on physical mechanisms,
but were obtained using a statistical method. Further work should be conducted on the
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parameter explanation based on a detailed investigation of the hydrological conditions in
each subcatchment.
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storm events. Note that the NSE value of a subcatchment in the graph is the largest one obtained
from 30 iterations of DTVGM calibration, that is, the biggest NSE value during calibration. (a) NSE
values of 268 subcatchments. (b) Five subcatchments that have NSE < 0.6. (c) Violin plot of NSE
ranges by storm event. The markers * and—denote the mean value and median, respectively.
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Table 3 lists the statistics of the calibrated parameters of DTVGM for all subcatchments.
We found that all the parameters’ values were within the range of variation, i.e., subjected
to the constraints in Equation (7). Moreover, these calibrated parameters were consistent
with other studies on DTVGM [10]. Overall, these results suggest that the calibration of
DTVGM was reasonable.

Table 3. Statistics of calibrated parameters of distributed time variant gain model for all subcatchments.

Variable Range of Variation
Calibrated Value

Average Median Minimum Maximum

g1 [−1, 1] −0.241 −0.281 −1.000 −0.004
g2 [0, 2] 1.326 1.575 0.000 2.000
g3 [0, 1] 0.169 0.138 0.078 0.583
K [0, 100] 62.469 61.906 2.619 100.000

4.3. Catchment Runoff and Outflow Simulations

The catchment runoff time series was calculated as the sum of the subcatchments’
runoff time series. For a subcatchment under a given storm event, two runoff time series
were obtained by the SWMM simulation and the DTVGM-SWMM. Then, they were used
to calculate the NSE with Equation (5), the relative error of runoff depth with Equation (8),
and the relative error peak runoff with Equation (9). The calibrated DTVGM runoff module,
determined based on the NSE values in Section 4.2, was used to generate the subcatchment
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runoff time series under different rainfalls. These series were finally used to drive the
SWMM routing module to obtain the catchment outflow series.

We analyzed the applicability of DTVGM-SWMM by comparing the simulation results
with those of SWMM in Figure 5, which illustrates the time series of rainfall, and the
corresponding catchment runoff and outflow (simulated by DTVGM and SWMM) in
calibration and validation phases. We found that the outflow time series were flattened
after routing, and the times to peak were delayed. In addition, we found that the simulated
hydrographs by DTVGM or DTVGM-SWMM demonstrated a good fit to those by SWMM
under all storm events, especially in the rising and receding limbs.
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However, there were gaps in the magnitudes of the peak runoffs of two simulations.
Specifically, the DTVGM runoff module underestimated the peak runoff in the calibration
phase of Chicago-1 (Figure 5a) and the validation phase of Event-20170909 (Figure 5d), but
overestimated them in the validation phase of Chicago-2 and Event-20170820 (Figure 5b,c);
similar phenomena were also found for the catchment outflow estimation by DTVGM-
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SWMM. No pattern of underestimation or overestimation was observed from these simula-
tions. That is, the calibrated DTVGM demonstrated considerable uncertainty in predicting
the peak rate of runoff. This can be explained by the fact that only the NSE, which reflects
the accuracy and precision of the simulation for the entire time, was chosen as the objective
function for calibrating the DTVGM runoff module. To conclude, the peak outflows of
DTVGM-SWMM under three validation storms were very different from those of SWMM,
one main reason being the poor simulation of peak runoff by DTVGM.

4.4. Performance of Coupling Model

Table 4 lists the statistics of the runoff and outflow time series simulated by SWMM
and DTVGM-SWMM under different storms (illustrated in Figure 5). The depths and
peak flow rates of runoffs and outflows were as given for the subsequent evaluation. We
observed that the outflow depths might be greater than the runoff depths under a given
storm for the SWMM model, but not for the DTVGM-SWMM model because SWMM
considers the rainfall-derived inflow and infiltration into sewage infrastructure [41,42],
while the coupling model neglects this.

Table 4. Depths and peak flow rates of runoff and outflow simulated by storm water management
model and the coupling model under four storm events.

Storm Chicago-1 Chicago-2 Event-20170820 Event-20170909

Precipitation (mm) 20.67 27.92 13.40 16.00
SWMM model
Runoff depth (mm) 2.41 4.07 1.06 2.75
Outflow depth (mm) 2.45 4.12 1.08 2.65
Peak runoff rate (m3/s) 10.90 23.54 1.99 8.72
Peak outflow rate (m3/s) 3.62 7.76 0.98 3.72
DTVGM-SWMM model
Runoff depth (mm) 2.53 4.67 1.27 2.54
Outflow depth (mm) 2.47 4.53 1.22 2.45
Peak runoff rate (m3/s) 7.23 24.65 3.07 5.92
Peak outflow rate (m3/s) 3.50 10.63 1.12 2.52

Figure 6 summarizes the performance criteria of DTVGM-SWMM for estimating the
runoff and outflow time series at a catchment scale under storm events (described in
Table 1). We observed that:
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Figure 6. Performance indicators of goodness-of-fit for catchment runoff and outflow simulation using
DTVGM-SWMM. Chicago-1 was used for calibrating, and the other storms were used for validation.

First, the NSE values of the runoff and outflow simulations during the validation
phase (Chicago-2, Event-20170820, and Event-20170909) were smaller than those for the
calibration phase (Chicago-1), which is to be expected. The NSE minimum was 0.57
(runoff simulation under Event-20170909), suggesting a satisfactory accuracy for runoff
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and outflow simulations. In any case, for all storm events, the NSE value of the outflow
simulation was higher than that of the runoff simulation. During the validation phase, the
runoff simulation under Event-20170820 outperformed that under Chicago-2 and Event-
20170909. The outflow simulation was similar. The NSE values of outflow simulation
showed a strong correlation with the values of runoff simulation. In short, the NSE values
indicate an acceptable performance for overall catchment runoff and outflow simulation.

Second, during validation, the absolute maxima of the relative error of flow depth (δR)
were 19.79% for the runoff simulation and 13.37% for the outflow simulation; they were
both under Event-20170820, which had the largest NSE values. We found that when the
calibrated DTVGM-SWMM simulated runoff well in terms of overall fit, the runoff depth
would be poorly estimated. A similar pattern could be found for the outflow simulation.

Third, δR values under Chicago-1, Chicago-2, and Event-20170820 were positive,
indicating that estimations by DTVGM-SWMM were higher than those of SWMM; under
Event-20170909, it was the opposite. For any storm event, the outflow depth simulation was
better than the runoff depth simulation. Overall, the runoff and outflow depth simulations
were reasonable and acceptable.

Fourth, the absolute maxima of the relative error of peak flow (δP) were 54.37%
for runoff (under Event-20170820) and 36.98% for outflow (under Chicago-2). In most
cases (7 out of 8), δP was greater than δR except in the runoff simulation under Chicago-2
(i.e., δP = 4.70, δR = 14.53).

Overall, the DTVGM-SWMM had a sizable relative error in runoff depth but a small
relative error in the outflow depth after the routing process. The reason is that only the
NSE was considered in the objective function for the model calibration without considering
the accuracy of simulating the peak runoff where the duration is short. The DTVGM runoff
module was well-calibrated for estimating the runoff process at the catchment scale, and
the DTVGM-SWMM showed high accuracy in outflow simulation.

5. Conclusions

We proposed and validated the DTVGM-SWMM by combining the DTVGM runoff
module with the SWMM routing module to develop a simple and efficient model for
rainfall-runoff simulation in a sponge city. We conclude that: (1) the NSE and relative
error of flow depth are good when using the calibrated coupling model to simulate the
catchment runoff and outflow processes, especially for estimating outflows; (2) the relative
errors of peak flow rate were significant for runoff and outflow simulation, indicating that
the calibrated DTVGM-SWMM is bad in predicting peak flow rates for urban catchment.
Overall, the proposed model can characterize the nonlinear characteristics of rainfall-runoff
with few parameters; thus, it can be used for effective and efficient prediction, like machine
learning models.

This research demonstrates that the DTVGM-SWMM excels in simulating catchment
runoff and outflows in a sponge city. Future studies can be conducted on: (1) packaging
the DTVGM-SWMM into software, like Mat-SWMM [14], and developing a feature that
models the runoff for different underlying surfaces and the LIDs constructed in sponge
cities; (2) improving the calibration by taking the peak flow rate as another objective
function, as well as using more performance indicators; (3) investigating and quantifying
the uncertainty (input data, structure, and parameters of the DTVGM and SWMM used),
sensitivity, efficiency, and ease of development, and comparing them with other distributed
models; and (4) developing and integrating a multi-objective decision-making tool for LIDs
implementation [43,44].
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agreed to the published version of the manuscript.
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