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Abstract: Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging
technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined
depth in the sample. A considerable number of images are produced regularly during the process
of research. These images require methods of unbiased quantification to have meaningful analy-
ses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective
data in analyzing confocal microscope images in the coming years. Utilizing visual quantification
methods to quantify confocal images with naked human eyes is an essential but often underreported
outcome measure due to the time required for manual counting and estimation. The current method
(visual quantification methods) of image quantification is time-consuming and cumbersome, and
manual measurement is imprecise because of the natural differences among human eyes’ abilities.
Subsequently, objective outcome evaluation can obviate the drawbacks of the current methods and
facilitate recording for documenting function and research purposes. To achieve a fast and valuable
objective estimation of fluorescence in each image, an algorithm was designed based on machine
vision techniques to extract the targeted objects in images that resulted from confocal images and then
estimate the covered area to produce a percentage value similar to the outcome of the current method
and is predicted to contribute to sustainable biotechnology image analyses by reducing time and
labor consumption. The results show strong evidence that t-designed objective algorithm evaluations
can replace the current method of manual and visual quantification methods to the extent that the
Intraclass Correlation Coefficient (ICC) is 0.9.

Keywords: confocal microscope imaging; objective outcome evaluation; machine vision technique

1. Introduction

The revolutionary technique of confocal microscopy is considered one of the most
useful optical imaging techniques in Biotechnology. It utilizes point illumination through
a spatial pinhole to avoid out-of-focus signals [1]. The technique is based on a laser
that provides the excitation light to produce fluorescence with high intensities from
the focal spot. In vitro and ex vivo samples are analyzed by Fluorescence confocal mi-
croscopy (FCM) in biotechnology laboratories globally. Some of the advantages of FCM
include higher optical resolution with better contrast in the live image of a sample and
the possibility of reconstruction of a 3D image. One of the particularly important uses
of FCM is the demonstration of co-localization of two endogenous varicolored labeled
proteins intracellularly [1,2].

FCM imaging is an addition to the biotechnology research field, but analyzing a large
number of images that are resulted from each experiment remains challenging. Accurate
subcellular object segmentation is very important in image analysis. For instance, it is
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required to quantify and characterize different parameters associated with tiny organelles
in the cell and to set very high requirements for the accuracy of analysis of the image
in order to correctly interpret cellular phenotypes [3]. In addition, images containing
cellular structures that are obtained using FCM require accurate detection to help an-
alyze accurately [4,5]. FCM allows determining the concentration of adsorbed protein
perfectly within a stationary phase particle as long as proteins are labeled with a fluorescent
probe [6]. Fluorescent labeling of specific cellular structures is a revolutionary advance-
ment in cell imaging technology as it enables automation in the image acquisition of tiny
subcellular objects [7,8].

With the popularity of imaging throughput and the huge amount of data acquired in
biotechnology laboratories, the challenge of analyzing images and interpreting collected
information has to be moved from visual interpretation to more automated methods.
Previously, an assay was developed involving transient expression in Nicotiana benthamiana
utilizing FCM. A reporter protein labeled with Green Fluorescent Protein (GFP) was used
to detect the silencing suppression activity of viral protein P6 of the cauliflower mosaic
virus (CaMV) [9]. However, the assay can be used to detect a wide range of silencing
suppressor proteins from any pathogens. In the assay, a simple visual method was used
to analyze FCM images acquired from each test. The method is dependent on the vision
of human workers to determine the spatial distribution of the green or red fluorescent
protein. Utilizing visual quantification methods to quantify confocal images with naked
human eyes is the standard approach to estimating the spatial distribution of fluorescence
in images resulting from the confocal microscope imaging system. Visual quantification of
the spatial distribution method of pathogen silencing suppressor functions is remarkably
reproducible [9]. This method provides fast and conventional measures. However, the
drawback of this approach is that it is very time-consuming when the number of images
acquired is too high. Moreover, the natural differences between the two workers’ visions
make the visual assessment less accurate. In this context, automated object classification
and detection in images become critical.

Various image processing techniques have been used to improve biotechnology imag-
ing. For example, autofluorescence from untargeted components contributes to noise, so
denoising steps are important to interpret results accurately [10]. Several algorithms have
already been proposed to solve different issues in automated image analyses. Among these
algorithms is the Feature Point Detection algorithm, which discriminates non-particles
and detects percentile [4]. There is also an h-dome detection algorithm that filters h-dome
morphology [11], a Kernel Method algorithm that estimates Kernel density with a family of
kernels [12], a Sub-Pixel Localization algorithm that fits Gaussian kernels to focal intensity
maxima [5], a Local Comparison algorithm that maximizes between direction-specific
convolutions of image [13], Morphometry algorithm [13], Top-Hat Filtering algorithm
that filters top-hat and entropy-based thresholding [14], Multiscale wavelets that estimate
wavelets coefficients of the multiscale product [15], and Source Extractor algorithm that
applies convolution for background clipped image [16]. However, most of the above-
mentioned algorithms are not suitable for accurate assessment of the spatial distribution
of a mix of fluorescent proteins in the same image as they suffer from major drawbacks,
including false detection of noise that could affect the interpretation of the results.

In this work, a novel image processing algorithm is presented to analyze FCM images
by assessing the spatial distribution of a mix of fluorescent proteins in a sustainable way
that decreases the time and resources required to visually analyze FCM images. The
proposed work also identified the series of specific denoising steps for the image. The
steps used in image processing to analyze the spatial distribution of protein aggregates
in biological samples have not been reported previously. The dataset used in this work
was obtained from our previous work [9]. The FCM images were captured at varying
time points.
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2. Materials and Methods

Utilizing visual quantification methods to quantify confocal images with naked human
eyes is the standard approach to evaluate an experimental outcome by fluorescence quan-
tification in images. Visual quantification of the spatial distribution method of pathogen
silencing suppressor functions is remarkably reproducible [9]. This method provides fast
and conventional measures. Hence, the main objective is to mechanize the visual quan-
tification of the spatial distribution method described in [9]. An intelligent system that
is supported by machine vision techniques was designed to achieve this objective. Fun-
damentally, this section starts with a brief description of the visual quantification of the
spatial distribution method, then the intelligent system and the utilized machine vision
techniques are discussed in detail.

2.1. Visual Quantification of Spatial Distribution Method

After acquisition from the confocal microscope, images must be saved as a TIFF or
JPEG file. Each individual image was inserted into a PowerPoint slide, and the size of the
image was adjusted to fill the entire slide. In order to analyze the spatial distribution of
fluorescence in each image, a grid of 100 squares was drawn on a separate PowerPoint slide.
This grid was copied and overlaid onto each image. Figure 1 illustrates the results at one
time point for leaves infiltrated with GFP alone, as well as leaves infiltrated with MP-GFP
and P6-RFP [9]. The number of grids that contain a GFP or RFP signal was counted and
expressed as a percentage of 100. The subjective evaluation was performed by dividing the
image into a mesh of 100 parts and then finding the total number of colored regions. This
number represents the outcome of the experiments.
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2.2. Intelligent Machine Spatial Distribution Quantification System

Because such subjective evaluation is time-consuming, an alternative evaluation
method based on only objective factors is required for objective evaluation. To this end,
this work aimed to investigate the extent to which subjective evaluation results can be ap-
proximated using machine vision techniques. The Leica model TCP SP8 MP is an inverted
spectral confocal microscope with fixed visible laser lines (405–514 nm), tunable white light
laser (470–670 nm), three HyD and two PMT detectors, a resonant scanner, and Mai Tai
DeepSee multiphoton laser tunable to 680–1060 nm for deep tissue imaging. The confocal
microscope images are produced from the Leica model TCP SP8 MP, but any other model
with similar features should give a similar image.
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The confocal microscope output images are differed based on the number of channels,
filters, etc. As can be inferred from Figure 2, images have a great diversity of processing
perspectives. This, in turn, provides a challenging opportunity for artificial intelligence to
be part of the processing system. Consequently, the designed intelligent machine spatial
distribution quantification system starts with an intelligent selector. The intelligent selector
is responsible for activating the appropriate processing algorithm to extract the spatial
distribution of red and green colors as a percentage. The system’s main parts are shown in
Figure 3 and discussed accordingly.
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2.3. Intelligent Selector

The complexity of the confocal microscope output images leads to the process of the
images in three different algorithms based on color and object size in the image. It is difficult
to select a suitable algorithm for a specific confocal microscope image. This motivates
the design of an accurate, intelligent selector proficient at achieving smart selection. The
complete procedure for analyzing images is shown in Figure 3. The images are imported
into MATLAB as a three-dimensional (3D) matrix of dimension J × K × 3. The third
dimension of the matrix is designated for every color. Red (R), green (G), and blue (B)
are the color channels. J × K are the number of pixels in the image, where J points to the
row and K to the column. Value in pixels of each channel ranges from 0 to 255, where 0
demonstrates the nonappearance of transmission of color intensity and 255 shows total
transmission of that color intensity. The intensity mean of every color may represent the
color distribution in the image; however, this is not always true. Hence the raw images
without any filter, in some cases, produce red or green colors with very high intensity.
Consequently, this misleads the system to activate the wrong algorithm. Therefore, it is
essential to study and design the intelligent selector wisely. The start was to collect the data
on the total mean of each color channel and the selected algorithm based on the average
of three experts’ opinions (the three experts are three researchers who work actively with
confocal microscopy experiments implementation and analysis). Figure 4 shows the mean
opinion with R, G, and B means for the collected 100 confocal microscope images. Class
1 is represented by an integer one value and means the red channel filtered algorithm is
activated. Class 2 is represented by an integer 15 value, which means the green channel
filtered algorithm is activated. Class 3 is represented by an integer 30 value to indicate
the actual image algorithm is activated. Points in Figure 4 are difficult to classify as many
out-layer points exist. To solve this challenge, a novel multiclass adaptive neuro-fuzzy
classifier was designed and implemented for fast and accurate classification to work as the
core of the intelligent selector.
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Figure 4. The average experts’ opinion is represented by the color bar where integer 1 for Class 1 (red
channel filtered algorithm is activated), integer 15 for Class 2 (green channel filtered algorithm is
activated), and integer 30 for Class 3 (actual image algorithm is activated). R, G, and B means are
drawn for the collected 100 points (confocal microscope images).

The multiclass adaptive neuro-fuzzy classifier (MANFC) is designed based on the
dataset in Figure 4. The features extracted by filtering and averaging of green, red, and
blue color calculation blocks in Figure 3 are fed to the classifier. The adaptive neuro-fuzzy
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model has been developed to implement multiclass. A MANFC-based structure that
combines the superiorities of the fuzzy membership output layer in classification with
the capabilities of neuro-fuzzy models in handling uncertainties. A fuzzy membership
output layer provides class selection certainty in addition to class selection. Two-sided
symmetrical triangular membership functions were considered in planning to improve
the generalization and non-stationarity, taking care of the system’s capability. Hybrid-
based learning algorithm [17] was implied to investigate the knowledge contained in the
training data. All layers were utilized during the training procedure, and only the fuzzy
membership output layer was applied for estimating the class label. Figure 5 shows the
designed adaptive neuro-fuzzy single output structure without the fuzzy membership
output layer implied to investigate the knowledge content in training data. All layers were
utilized during the training procedure, and only the fuzzy membership output layer was
applied for estimating the class label. Figure 5 shows the designed adaptive Neuro-Fuzzy
single output structure without the Fuzzy membership output layer.
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Figure 5. The designed adaptive neuro-fuzzy single analog output structure with five layers: three
inputs, four membership functions for every input, rules to control the operation, output membership
function, and the summarized output.

By giving X as the input vector (R-mean, G-mean, B-mean) and l ∈ (1, 2, 3) as the
corresponding class label, the input and class vectors are sequentially presented to the
system. Layer 1 transfers the input vector to the next layer. Layer 2 implies four two-sided
symmetrical triangular membership functions to the input vector as depicted in Figure 6.

The nodes in Layer 3 (rules layer) provide what is known as firing strength, which is
the AND operation of fuzzy membership in all dimensions. The node i of Layer 4 takes the
ratio of the ith rule’s firing strength to the sum of all rule’s firing strengths. For that reason,
the outputs of this layer represent the normalized firing strength. The single fixed node
in Layer 5 computes the overall output by summing all coming signals from the previous
layer. Consequently, the process of defuzzification is achieved by obtaining a crisp overall
output. For a multiclass problem, the final layer is the fuzzy membership output layer that
uses the membership function shown in Figure 6 to select one of the three classes called the
fuzzy membership classifier.

2.4. Intelligent Machine Spatial Distribution Quantification Algorithm (IMSDQA)

The three IMSDQAs have many common processing units; however, they are initiated
with a dedicated preprocessing unit. The common processing units are based on machine



Sustainability 2023, 15, 3726 7 of 20

vision techniques. Machine vision is a field that includes making a machine “see”. The
intelligent selector output activates one of the three intelligent machine spatial distribution
quantification-filtered algorithms. This innovation utilizes a camera and PC rather than
the natural eye to distinguish, track, and measure focuses for additional picture handling.
With the improvement of PC vision, such innovation has been generally utilized in farming
mechanization and assumes a critical part in its events [18].
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The intelligent machine spatial distribution quantification filtered algorithm starts
with subtracting the objects in the image from the background by replacing all values
above a globally determined threshold with 1 s and setting the rest values to 0 s. The
globally specified threshold is selected based on Otsu’s method. Otsu’s method chooses the
threshold value using a 256-bin image histogram [19]. Next, the Binary image is subdivided
into 100 sub-images. Subsequently, the process of every sub-image finds if there is any
portion of the object or not. If there is any, it is counted to end after all the 100 sub-images
are processed. This way, the maximum counter number is 100, which means it fully covers
hundred percent. Finally, the algorithm’s output is the total number of sub-images with or
even part of an object. The flow chart and Pseudo code are shown in Figures 7 and 8. In
order to clarify the algorithm and the difference in preprocessing of the three algorithms,
the algorithm was applied to the three types of processed confocal images. In Figure 9,
the red and green channel confocal microscope images are started directly to phase 1. In
contrast, the actual confocal microscope image is preprocessed to filter out two images,
pure red and pure green, then processed as in Figure 7. In addition, Figure 9 shows the four
main processing phases applied to the three types of confocal images with the modification
effect of every phase.
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3. Results

The intelligent machine spatial distribution quantification system is tested with col-
lected data from 100 confocal microscope images of three types, as depicted in Table 1.

Table 1. The dataset shows the number of samples of the three types of confocal microscope images.

Red Channel Confocal
Microscope Images

Actual Confocal
Microscope Image

Green Channel Confocal
Microscope Images

30 38 32

The data collection is designed to provide three expert readings to compare them with
the reading of the system of every image type, besides the experts’ opinion about the image
type to train and test the intelligent selector. The raters choose the image class from three
types; red channel FCM (1), green channel FCM (2), and actual FCM (3). Table 2 shows
samples of the data collection.

Table 2. Two samples of the collected data, with the first raw containing the three experts’ opinions
about the red ratio, green ratio, and the class of the image (Pic).

Expert1 Expert2 Expert3

Pic No. Red_ratio Green_ratio Class
selection Red_ratio Green_ratio Class

selection2 Red_ratio Green_ratio Class
selection3

1 88 0 1 89 0 1 88 0 1
2 99 0 1 99 0 1 99 0 1
: : : : : : : : : :

100 95 0 1 95 0 1 85 0 1

The four-fold technique is used to train the adaptive neuro-fuzzy system while keeping
20% of the dataset for an accurate system evaluation. The average of raters’ opinions about
the image class is used as a label to train and test the intelligent selector. Hence the adaptive
neuro-fuzzy system architecture has one output with integer values. Classes are labeled
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as follows: class (1) with (1), class (2) with (15), and class (3) with (30). The system is then
trained to the integer values, and Figure 10 clearly shows the training dataset with the
system output after training is passed.
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of training.

The adaptive neuro-fuzzy system is tested with 20 new samples never seen before
to make an unbiased decision about the system’s performance. The results, as seen in
Figure 11, prove that the performance of tracking the right classes is achieved in the testing
samples and can be achieved when the system deals with new samples other than any of
the 100 collected samples.
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Figure 11. The system output performance in tracking the testing dataset.

The system tracking ability is high enough to achieve high accuracy in the output
fuzzy membership layer. The classification accuracy is 100% in total and 100% for each
class, as seen from the confusion matrix in Figure 12. Accordingly, the intelligent selector
works perfectly in activating the suitable algorithm for the FCM image.

The intelligent machine spatial distribution quantification system is tested with the
collected dataset. The test produces GFP and RFP percentages as a response output of the
system to one of the FCM images. The system output responses to the 100 FCM images are
collected and compared to the average expert’s opinion to evaluate the novel system. The
test results show a high correlation between the system output and the experts’ estimation
based on the method published in [9]. The correlation between them shows an ICC of 99%
for RFP percentage estimation and 97% for GFP percentage estimation. This subjective and
objective evaluation of RFP and GFP appears highly correlated, as can be noticed clearly in
Figures 13 and 14, respectively.
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Figure 13. The correlation of subjective and objective evaluation of RFP ratio estimation: (Top) Using
correlation line; (Bottom) actual RFP ratio estimation by every sample number on the x-axis.
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Figure 14. The correlation of subjective and objective evaluation of GFP ratio estimation: (Top) Using
correlation line; (Bottom) actual GFP ratio estimation by every sample number on x-axis.

In order to study the efficiency of the three algorithms individually, the algorithms
were tested based on the dataset Table 1. For the Red Channel Intelligent machine spatial
distribution quantification algorithm, the correlation between the experts’ rates and the
tested algorithm shows an ICC of 99% for RFP and GFP percentage estimation. This
subjective and objective evaluation of RFP and GFP appears highly correlated, as can be
noticed clearly in Figure 15.
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Figure 15. The red channel intelligent machine spatial distribution quantification algorithm estima-
tion correlation between the subjective and objective evaluation of RFP and GFP ratio estimation:
(Top) Using correlation line; (Bottom) actual RFP and GFP ratio estimation by every sample number
in x-axis.

For the green channel intelligent machine spatial distribution quantification algorithm,
the correlation between the experts’ rates and the tested algorithm shows an ICC of 99%
for RFP and GFP percentage estimation. This subjective and objective evaluation of RFP
and GFP appears highly correlated, as can be noticed clearly in Figure 16.
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Figure 16. The green channel intelligent machine spatial distribution quantification algorithm estima-
tion correlation between the subjective and objective evaluation of RFP and GFP ratio estimation:
(Top) Using correlation line; (Bottom) actual RFP and GFP ratio estimation by every sample number
on x-axis.

The third essential part is the actual image intelligent machine spatial distribution
quantification algorithm (AIMSDQA). This subjective and objective evaluation of RFP
and GFP have a reasonable correlation, as can be inferred from Figure 17. The correlation
between the experts’ rates and the tested algorithm shows an ICC of 94% for RFP and GFP
percentage estimation.
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Figure 17. The actual image intelligent machine spatial distribution quantification algorithm estima-
tion correlation between the subjective and objective evaluation of RFP and GFP ratio estimation:
(Top) Using correlation line; (Bottom) actual RFP and GFP ratio estimation by every sample number
on x-axis.

The results of AIMSDQA show greater values than the raters’ estimations in most
cases. This fact leads to further investigations to discover that the rater’s naked eye can
sometimes miss many details easily found by the algorithm, as in Figure 18, when the
actual image has yellow spots meaning there are red and green colors in the same place,
which refers to co-localization of two proteins in the same spot. This figure shows the
output images for counting the RFP and GFP ratio estimation.
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4. Discussion

The sample images were gathered with FCM from various experiments and several
time points. More than a hundred different images were subjected to the image processing
algorithm. Despite the associated drawbacks, previously, the protein expressions were
found utilizing fSPT, CLSM, AUC with FDS, and FCM [20–25]. Common issues related
to such methods would be fluorescent particle size limitation, operation optimization
requirements, the necessity to use particle standards, dilution of the sample prior to
performing the measurement, and even the effect of using the centrifuge machine could
change the results [21,24,26]. In the proposed approach, there was no need for preparations
that might cause issues when performing the measurements.

The intricacy of the automatic process of a specific confocal microscope image with
a suitable algorithm inspires the design of an accurate, intelligent selector proficient at
achieving smart selection. As a result, the intelligent selector was successfully designed to
directly process raw confocal microscope images imported from the microscope without
prior knowledge of the user parameters settings. The intelligent selector is based on a
novel multiclass adaptive neuro-fuzzy classifier (MANFC) which is designed based on
the collected dataset in Table 1. The selector is tested with fresh samples to find out its
realistic accuracy. The designed intelligent selector approves its high performance by the
test confusion matrix with 100% accuracies shown in Figure 12. The selector is trusted to
activate the appropriate processing algorithm to extract the spatial distribution of red and
green colors as a percentage.

Interclass correlation coefficients were used to complete an objective comparison.
The method produces an extensive understanding of the correlation between AIMSDQA
findings and the experts’ readings. Furthermore, it is possible to run the calculations in
parallel for window individual computations; however, the related sampling and value
range settings remain independent from such calculations.
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In order to facilitate an objective comparison of the method, intraclass correlation
coefficients were used to provide a deep thought about the correlation between the experts’
readings (subjective estimation) and IMSDQA readings to evaluate RFP and GFP ratio
objectively. The intelligent machine spatial distribution quantification system proves to be
highly correlated with subjective estimation, with ICC of 99% for RFP percentage estimation
and 97% for GFP percentage estimation. Hence, the hypothesis of accepting the system
reading is achieved. The reason for obtaining a higher correlation in REP estimation than
in GEP is clarified using Figure 13 compared to Figure 14. From these figures, it is obvious
that the data points value in Figure 13 of the REP correlation is clustered around zero
and 90, while in Figure 14, the data points are distributed along the correlation line. The
proposed algorithm is built based on three processing algorithms to obtain the RFP and GFP
percentage estimation, as shown in Figure 3. Thus, further testing the system regarding
these units is important to improve the general insight into any individual drawbacks. The
red and green channel intelligent machine spatial distribution quantification algorithm
reached an ICC of 99%. This is also proven when the tracking and correlation ability were
analyzed in Figures 15 and 16. These two processing units were near the subjective tracking
estimations and the correlation line in the Figures. The actual image intelligent machine
spatial distribution quantification algorithm achieves an ICC of 94% with almost acceptable
hypotheses, which can be explained by Figure 17. The tracking and correlation are provided
in Figure 17, where type dispersal around the correlation line with adequate tracking ability
can be noticed. Therefore, in Figure 18, further investigation was performed with the
probability of grey background in live FCM images resulting in inaccurate quantification
for specific samples.

Lastly, the proposed algorithm provided a more effortless and faster methodology for
quantifying and analyzing FCM images, showing high accuracy compared to the traditional
analysis method. Further, this methodology does not require special sample preparations or
extensive optimization of instrument settings. Apart from analyzing the spatial distribution
of fluorescence in the samples, the proposed algorithm with fluorescence microscopy can
also be used to analyze visible and sub-visible aggregates. The methodology offers signifi-
cant advantages over other common approaches. Fluorescence sizing from 1 µm backward
cannot be differentiated using a simple visual method due to the limitation of human
vision, but it could be efficiently detected using the proposed method without any require-
ment of complex sample preparation steps. Moreover, unlike black backgrounds, when
analyzing images with a grey background (actual image), it is not easy for human vision to
differentiate the green or red colors from a grey background. The grey background in live
FCM images may result in inaccurate quantification for particular samples. Fluorescence
microscopy analysis prevents false detection of dust, air bubbles, and non-proteinaceous
particles that could plague the study [27]. Overall, it can be concluded that the proposed
algorithm can successfully denoise the fluorescence microscope images. The proposed
methodology can be effectively used as a cheap, sustainable, and complementary technique
to traditional approaches. However, the results of this work show a promising path to
quantifying and analyzing FCM images sustainably and quickly. It is essential to use every
effort in order to build sustainable biotechnology laboratories [28–30]; the current results
add to the knowledge of sustainable biotechnology by providing a methodology that saves
time and labor in the laboratory.

4.1. Sustainability Evaluation of the Technique Proposed

In general, designing algorithms can contribute to sustainability in a number of
ways. In the proposed algorithm, this work focused on analyzing confocal microscope
images. Image processing algorithms are designed to perform various tasks such as image
enhancement, object recognition, and feature extraction automatically. These algorithms
can process images faster and with more accuracy than humans in many cases, and they
are particularly useful for tasks that require repetitive or time-consuming image analysis.
However, it is important to note that algorithms are not capable of replacing human
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intuition, creativity, and judgment in all cases. In some situations, human input may be
required to validate the results of image processing algorithms or to make decisions based
on the results of the processing. With this regard, three experts evaluated the results in the
obtained images (Table 2).

4.2. Sustainability with Regard to Time-Saving

Algorithms can save time in image processing by automating many tasks that would
otherwise require human effort. For example, algorithms can quickly analyze a large
number of images and identify patterns or features in images that may be difficult for a
human to detect. This can include detecting edges and lines, identifying objects or patterns,
and recognizing shapes and textures. Algorithms can also be designed to perform complex
image manipulations, such as adjusting brightness and contrast, enhancing color or texture,
and removing noise, much more efficiently than a human could. By automating these tasks,
algorithms can significantly reduce the time required for image processing, freeing up time
for more creative or high-level tasks. In the proposed algorithm, the average computation
cost of the intelligent machine spatial distribution quantification system is 0.1 s to one raw
confocal microscope image and provides the objective evaluation of it. The experiment is
implemented on a Windows 10, 64-bit intel machine with a 2.50 GHz core i5 CPU and 8 GB
RAM. This is much faster than the regular time consumed by one expert who evaluated
the same amount of data in at least 3 min. Moreover, in the case of time required to analyze
large amounts of data, the usual time spent by humans in the laboratory is 8 h per day. In
the case of a machine, it could continue for a longer time, in some cases up to 24 h per day.

4.3. Sustainability in Labor

The proposed algorithm contributes to saving human effort in biotechnology labo-
ratories by automating the image processing and streamlining many tasks that would
otherwise require manual effort. This includes tasks such as image recognition, object
detection, segmentation, and classification, which are repetitive for humans to perform
and require more than one expert to check and validate the results. By using algorithms,
these tasks can be accomplished much faster and with a higher degree of accuracy and
consistency, freeing up human resources to focus on more strategic and creative tasks in
the laboratory. Additionally, algorithms can analyze vast amounts of data and perform
complex calculations, enabling them to make decisions and draw insights that would be
beyond the capacity of human effort alone. Another aspect to be taken into consideration is
the performance of humans. The accuracy of analysis by humans may vary depending on
the time that the expert does the analysis. If the person is sick or can not perform perfectly
for any reason, the evaluation of the image will not be as accurate as the healthy person.

5. Conclusions

Firstly, and most importantly, the field of biotechnology lacks image processing al-
gorithms to analyze the huge FCM continuing outcomes. To the best of our knowledge,
many published studies have an insufficient methodology to ensure accurate results of
fluorescence quantification and protein co-localization. This work proposed an algorithm
that can quantify the spatial distribution of fluorescence in FCM images as well as detect
the co-localization of GFP/RFP labeled proteins with high accuracy in detecting GFP or
RFP separately on a black or grey (live image) background. This work applied a dataset
that was previously quantified using a visual quantification technique to train the proposed
algorithm to classify the presence of fluorescence severity, investigating the existence of
proteins alone or colocalized with other proteins.

The main contribution of this work was the identification of the fluorescence of proteins
from different backgrounds of images and the discrimination of different object shapes.
Additionally, the suggested use of the proposed method can help to allow more clarity
in interpreting and comparing the results, aiming to enable biologists to analyze a large
number of FCM images in a short time. These contributions can improve further research
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to give tools for biologists to utilize this method when evaluating a subject, more than
simply finding a single or colocalized protein.

The limitations of this study lie mainly in the number of samples in the dataset.
However, it can be speculated about these by collecting and subjectively evaluating more
from the actual FCMs. For further work, the estimation ability of the actual image intelligent
machine spatial distribution quantification algorithm will be improved.

Author Contributions: Conceptualization, M.A. and A.A.; methodology, A.A. and M.A.; software,
A.A., O.S. and N.K.; validation, M.A., G.A. and A.A.; formal analysis, A.A. and M.A.; investigation,
M.A. and A.A.; resources, M.A., O.S. and N.K.; data curation, M.A.; writing—original draft prepara-
tion, M.A. and A.A.; writing—review and editing, G.A. and M.A.; visualization, M.A.; supervision,
M.A.; project administration, M.A. and A.A.; funding acquisition, O.S., N.K. and M.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elliott, A.D. Confocal Microscopy: Principles and Modern Practices. Curr. Protoc. Cytom. 2020, 92, e68. [CrossRef] [PubMed]
2. Wang, S.; Larina, I.V. High-Resolution Imaging Techniques in Tissue Engineering. In Monitoring and Evaluation of Biomaterials and

their Performance In Vivo; Narayan, R.J., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 151–180. ISBN 978-0-08-100603-0.
3. Sacher, R.; Stergiou, L.; Pelkmans, L. Lessons from Genetics: Interpreting Complex Phenotypes in RNAi Screens. Curr. Opin. Cell

Biol. 2008, 20, 483–489. [CrossRef] [PubMed]
4. Sbalzarini, I.F.; Koumoutsakos, P. Feature Point Tracking and Trajectory Analysis for Video Imaging in Cell Biology. J. Struct. Biol.

2005, 151, 182–195. [CrossRef] [PubMed]
5. Jaqaman, K.; Loerke, D.; Mettlen, M.; Kuwata, H.; Grinstein, S.; Schmid, S.L.; Danuser, G. Robust Single-Particle Tracking in

Live-Cell Time-Lapse Sequences. Nat. Methods 2008, 5, 695–702. [CrossRef]
6. Teske, C.A.; Schroeder, M.; Simon, R.; Hubbuch, J. Protein-Labeling Effects in Confocal Laser Scanning Microscopy. J. Phys. Chem.

B 2005, 109, 13811–13817. [CrossRef]
7. LaPan, P.; Zhang, J.; Pan, J.; Hill, A.; Haney, S.A. Single Cell Cytometry of Protein Function in RNAi Treated Cells and in Native

Populations. BMC Cell Biol. 2008, 9, 43. [CrossRef]
8. Pepperkok, R.; Ellenberg, J. High-Throughput Fluorescence Microscopy for Systems Biology. Nat. Rev. Mol. Cell Biol. 2006, 7,

690–696. [CrossRef]
9. Adhab, M.; Schoelz, J.E. A Novel Assay Based on Confocal Microscopy to Test for Pathogen Silencing Suppressor Functions.

In Plant Innate Immunity; Gassmann, W., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 1991,
pp. 33–42. ISBN 978-1-4939-9457-1.

10. Salvi, M.; Morbiducci, U.; Amadeo, F.; Santoro, R.; Angelini, F.; Chimenti, I.; Massai, D.; Messina, E.; Giacomello, A.; Pesce, M.;
et al. Automated Segmentation of Fluorescence Microscopy Images for 3D Cell Detection in Human-Derived Cardiospheres. Sci.
Rep. 2019, 9, 6644. [CrossRef]

11. Smal, I.; Loog, M.; Niessen, W.; Meijering, E. Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy.
IEEE Trans. Med. Imaging 2010, 29, 282–301. [CrossRef]

12. Chen, T.-B.; Lu, H.H.-S.; Lee, Y.-S.; Lan, H.-J. Segmentation of CDNA Microarray Images by Kernel Density Estimation. J. Biomed.
Inform. 2008, 41, 1021–1027. [CrossRef]

13. Prodanov, D.; Heeroma, J.; Marani, E. Automatic Morphometry of Synaptic Boutons of Cultured Cells Using Granulometric
Analysis of Digital Images. J. Neurosci. Methods 2006, 151, 168–177. [CrossRef] [PubMed]

14. Soille, P. Morphological Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999; ISBN 978-3-662-03941-0.
15. Olivo-Marin, J.-C. Extraction of Spots in Biological Images Using Multiscale Products. Pattern Recognit. 2002, 35, 1989–1996.

[CrossRef]
16. Bertin, E.; Arnouts, S. SExtractor: Software for Source Extraction. Astron. Astrophys. Suppl. Ser. 1996, 117, 393–404. [CrossRef]
17. Zhong, W.; Fu, X.; Zhang, M. A Muscle Synergy-Driven ANFIS Approach to Predict Continuous Knee Joint Movement. IEEE

Trans. Fuzzy Syst. 2022, 30, 1553–1563. [CrossRef]
18. Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer Vision Technology in Agricultural Automation—A Review. Inf. Process. Agric.

2020, 7, 1–19. [CrossRef]
19. OTSU, N. A Threshold Selection Method from Gray—Scale Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]

http://doi.org/10.1002/cpcy.68
http://www.ncbi.nlm.nih.gov/pubmed/31876974
http://doi.org/10.1016/j.ceb.2008.06.002
http://www.ncbi.nlm.nih.gov/pubmed/18602470
http://doi.org/10.1016/j.jsb.2005.06.002
http://www.ncbi.nlm.nih.gov/pubmed/16043363
http://doi.org/10.1038/nmeth.1237
http://doi.org/10.1021/jp050713+
http://doi.org/10.1186/1471-2121-9-43
http://doi.org/10.1038/nrm1979
http://doi.org/10.1038/s41598-019-43137-2
http://doi.org/10.1109/TMI.2009.2025127
http://doi.org/10.1016/j.jbi.2008.02.007
http://doi.org/10.1016/j.jneumeth.2005.07.011
http://www.ncbi.nlm.nih.gov/pubmed/16157388
http://doi.org/10.1016/S0031-3203(01)00127-3
http://doi.org/10.1051/aas:1996164
http://doi.org/10.1109/TFUZZ.2022.3158727
http://doi.org/10.1016/j.inpa.2019.09.006
http://doi.org/10.1109/TSMC.1979.4310076


Sustainability 2023, 15, 3726 20 of 20

20. Filipe, V.; Poole, R.; Kutscher, M.; Forier, K.; Braeckmans, K.; Jiskoot, W. Fluorescence Single Particle Tracking for the Charac-
terization of Submicron Protein Aggregates in Biological Fluids and Complex Formulations. Pharm. Res. 2011, 28, 1112–1120.
[CrossRef]

21. Filipe, V.; Poole, R.; Oladunjoye, O.; Braeckmans, K.; Jiskoot, W. Detection and Characterization of Subvisible Aggregates of
Monoclonal IgG in Serum. Pharm. Res. 2012, 29, 2202–2212. [CrossRef]

22. Braeckmans, K.; Buyens, K.; Bouquet, W.; Vervaet, C.; Joye, P.; Vos, F.D.; Plawinski, L.; Doeuvre, L.; Angles-Cano, E.; Sanders,
N.N.; et al. Sizing Nanomatter in Biological Fluids by Fluorescence Single Particle Tracking. Nano Lett. 2010, 10, 4435–4442.
[CrossRef]

23. Arvinte, T.; Palais, C.; Green-Trexler, E.; Gregory, S.; Mach, H.; Narasimhan, C.; Shameem, M. Aggregation of Biopharmaceuticals
in Human Plasma and Human Serum: Implications for Drug Research and Development. MAbs 2013, 5, 491–500. [CrossRef]

24. Demeule, B.; Shire, S.J.; Liu, J. A Therapeutic Antibody and Its Antigen Form Different Complexes in Serum than in Phosphate-
Buffered Saline: A Study by Analytical Ultracentrifugation. Anal. Biochem. 2009, 388, 279–287. [CrossRef] [PubMed]

25. Ye, Z.; Wang, X.; Xiao, L. Single-Particle Tracking with Scattering-Based Optical Microscopy. Anal. Chem. 2019, 91, 15327–15334.
[CrossRef] [PubMed]

26. den Engelsman, J.; Garidel, P.; Smulders, R.; Koll, H.; Smith, B.; Bassarab, S.; Seidl, A.; Hainzl, O.; Jiskoot, W. Strategies for the
Assessment of Protein Aggregates in Pharmaceutical Biotech Product Development. Pharm. Res. 2011, 28, 920–933. [CrossRef]
[PubMed]

27. Demeule, B.; Gurny, R.; Arvinte, T. Detection and Characterization of Protein Aggregates by Fluorescence Microscopy. Int. J.
Pharm. 2007, 329, 37–45. [CrossRef] [PubMed]

28. Al-Ani, R.A.; Sabir, L.J.; Adhab, M.A.; Hassan, A.K. Response of Some Melon Cultivars to Infection by Cucumber Mosaic Virus
Under Field Conditions. Iraqi J. Agric. Sci. 2009, 40, 1–8.

29. Alani, R.; Adhab, M.; Hamad, S. Evaluation the Efficiency of Different Techniques for Extraction and Purification of Tomato
Yellow Leaf Curl Virus (TYLCV). Baghdad Sci. J. 2011, 8, 447–452.

30. Adhab, M. Identification of The Causal Agent of Strip Leaves Symptoms on Tomato in Protective Houses. Iraqi J. Biotechnol. 2010,
9, 607–617.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11095-011-0374-0
http://doi.org/10.1007/s11095-012-0749-x
http://doi.org/10.1021/nl103264u
http://doi.org/10.4161/mabs.24245
http://doi.org/10.1016/j.ab.2009.03.012
http://www.ncbi.nlm.nih.gov/pubmed/19289095
http://doi.org/10.1021/acs.analchem.9b02760
http://www.ncbi.nlm.nih.gov/pubmed/31751513
http://doi.org/10.1007/s11095-010-0297-1
http://www.ncbi.nlm.nih.gov/pubmed/20972611
http://doi.org/10.1016/j.ijpharm.2006.08.024
http://www.ncbi.nlm.nih.gov/pubmed/17005340

	Introduction 
	Materials and Methods 
	Visual Quantification of Spatial Distribution Method 
	Intelligent Machine Spatial Distribution Quantification System 
	Intelligent Selector 
	Intelligent Machine Spatial Distribution Quantification Algorithm (IMSDQA) 

	Results 
	Discussion 
	Sustainability Evaluation of the Technique Proposed 
	Sustainability with Regard to Time-Saving 
	Sustainability in Labor 

	Conclusions 
	References

