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Abstract: The paper proposes a method for analyzing the mechanical properties of flexoelectric
materials based on the isogeometric finite element method (IGA-FEM) and polynomial chaos ex-
pansion (PCE). The method discretizes the flexoelectric governing equations utilizing the B-spline
shape functions that satisfy the continuity requirement to obtain the mechanical properties (electric
potential) of the material. To obtain a mechanical property with different input parameters, we choose
the truncated pyramid model as the object of study, and use IGA-FEM and PCE to solve different
single uncertain parameters, including independent Young’s modulus and uniformly distributed
force, and two kinds of flexoelectric constants, respectively. Numerical examples are presented to
bear out the accuracy and viability of the proposed methodology.

Keywords: two-dimensional flexoelectric structure; finite element method; polynomial chaos expansion;
surrogate model

1. Introduction

Mashkevich and Tolpygo proposed flexoelectricity in solids in the 1950s [1], but flexo-
electric effects were weak for bulk crystalline materials, so flexoelectricity received limited
attention in the early period. With the development of nanotechnology, significant strain
gradients may now be seen on short-length scales. Flexoelectricity is becoming a new way
of understanding of size-dependent phenomena [2]. In contrast to piezoelectric materials,
which exhibit linear electrical polarization with mechanical strain, the flexoelectric materials
display gradient-dependent electrical polarization with mechanical strain [3]. Flexoelec-
tricity is a more prevalent electromechanical coupling mechanism than piezoelectricity
since it may potentially occur in practically any dielectric, even those with centrosymmetric
crystal structures [4]. The interested reader may read the references [5,6] for further current
reviews on flexoelectricity.

In the numerical analysis of dielectric solids (e.g., piezoelectric and flexoelectric),
the parameters of the materials considered in most studies are deterministic [7–10]. How-
ever, the input parameters in real engineering are generally highly uncertain and there are
limitations in the parameter estimation of the model, which leads us to make erroneous
decisions on some real engineering problems [11–14]. The quantization of uncertainty in
engineering is to obtain the statistical characteristics of response by studying the uncer-
tainty of input parameters to the model. Approaches to uncertainty analysis, such as Monte
Carlo simulations (MCs) [15], stochastic spectral methods [16,17], and perturbation tech-
niques [18,19], typically quantify the statistical characteristics (mathematical expectation
and standard deviation) of the system response. As the modeling requirements increase,
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the simulation model of the objective becomes extremely complex, the computation time for
uncertainty quantification increases, and the efficiency decreases. Traditional MCs methods
require a significant number of samples and model observations for uncertainty quantifica-
tion, making it difficult to address some of the more complex problems [20]. Surrogate
models can be used to replace complex analytical or computational models by using a basic
polynomial function to establish input-output relationships [21,22]. The development of
an appropriate surrogate model can provide the required model observations at a rational
computational cost, beyond the limitations of conventional calculations.

The polynomial chaos expansion (PCE) method is an efficient way to quantify un-
certainty because it is computationally inexpensive [23]. The expression of the unknown
function of the response is obtained by a series of orthogonal polynomials, and the polyno-
mial surrogate model about the random input parameters is established by solving for the
coefficients of the components in the unknown function [24–26]. The fact that these polyno-
mials are orthogonal to each other with respect to the joint probability density function of
the inputs simplifies computation. There are various methods to solve the PCE coefficients,
such as non-intrusive and intrusive methods. Implementing the intrusive method in real
engineering issues is challenging and time-consuming since it necessitates changing the
code for the governing equations to complete for uncertainty quantification [27]. Another
non-intrusive method is appropriate for the majority of issues and does not require a
clear understanding of the governing equations. As a result, the target problem may be
characterized as a “black box” problem where observations can be made utilizing a variety
of input variable samples [28]. The non-intrusive methods are classified into two main
streams: projection methods [29] and regression methods [30,31], and regression methods
to solve the PCE coefficients are very efficient [32] and became the most widely available
solution method.

Isogeometric analysis (IGA), a Finite Element Method (FEM) extension, is a critical
milestone in the development of computational mechanics [33]. The IGA has the advantage
of using Non-Uniform Rational B-spline basis functions to discrete partial differential
equations, allowing engineers to perform numerical analysis directly from Computer-
Aided Design (CAD), reducing the burden of meshing while remaining geometrically
accurate [34,35]. The IGA has rapidly expanded to a wide range of engineering applications
such as elasticity [36], electromagnetics [37], fluid flow [38], acoustic problems [39,40],
and optimization problems [41–46] since its inception. Jahanbin and Rahman [47] have
made significant contributions to the stochastic isogeometric analysis (SIGA) of linear
elasticity of high-dimensional functions in the growth of engineering applications of un-
certainty quantification. Liu et al. [48] presented a new technique for real engineering
problems based on reduced basis vectors in the stochastic isogeometric analysis (SIGA).
IGA can provide the C1 continuity requirement, which satisfies the continuity requirement
of the fourth order partial differential equations (PDEs) for the flexoelectricity considered
in this paper. Therefore, the IGA-FEM is chosen in this paper to obtain the mechanical
properties of the flexoelectric structure.

In this paper, we propose a polynomial chaos expansion isogeometric FEM (PCE-IGA-
FEM) to perform mechanical properties analysis for flexoelectric materials. This paper
mainly makes the following two contributions:

1. IGA-FEM is employed to analyze mechanical properties of flexoelectric materials.
2. PCE is adapted to accelerate mechanical properties analysis for flexoelectric materials

with different single uncertain parameters.

The remaining sections of the paper are structured as follows. Section 2 discusses the
principles of PCE in the quantification of uncertainty. Section 3 introduce the fourth-order
partial differential equations in flexoelectricity. Section 4 outlines the fundamental concepts
of the IGA-FEM. Section 5 provides several numerical examples to validate the PCE method
for flexoelectric structures, followed by Section 6 conclusions.
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2. The PCE Fundamental Theory

PCE is an essential surrogate model strategy that represents the scalar model output y
by expanding a series of orthogonal polynomials in the n-dimensional input parameters
r = (r1, r2, . . . , rn). For any orthogonal condition of i 6= j, the inner product of arbitrary two
functions and probability density function P(r) provided by ψi(r) and ψj(r) that is [20]∫

ψi(r)ψj(r)P(r)dr = wiδij (1)

when i = j, the Kronecker symbol δij is one, otherwise it is zero, and wi is the weight.
To simplify computations, the orthogonal polynomial, also known as the standard orthogo-
nal polynomial, normalizes the probability density function so that wi equals 1 when i = j.
Thus, the output function y(r) can be obtained as

y(r) = ∑
α∈Nn

cαΨα(r) (2)

where cα are the coefficients of the unknown polynomial. Multivariate orthogonal polyno-
mials Ψα are created by taking the tensor product of univariate orthogonal polynomials,
which is defined as

Ψα =
n

∏
i=1

ψα(ri) (3)

and α = (α1, α2, . . . , αn) denote the exponents of the polynomial basis where αi(i ∈ [1, n])
represents the order of the respective parameter ri in the polynomial term. For the prob-
ability density functions of various distributions, there are several forms of orthogonal
polynomials. The Legendre polynomials are orthogonal to the uniform distribution, while
Hermite polynomials are equivalent to popular probability density functions like the
Gaussian distribution. Table 1 lists the four most prevalent orthogonal polynomials.

Table 1. The probability density functions for four typical forms of orthogonal polynomials [49].

Distribution of Random Parameter Type Interval

Uniform Legendre [a, b]
Normal Hermite (−∞,+∞)

Beta Jacobi [a, b]
Gamma Laguerre (0,+∞)

The PCE representation in Equation (2) is sometimes reduced in actual applications to
simplify the calculation and keep a smaller set of coefficients for training [20]. The standard
truncation approach for PCE is

Ap,n ≡ {α ∈ Nn : ‖α‖1 ≤ p}, (4)

Most of the time, the overall degree of PCE stays within the bounds of the stated order
p [50]. The dimension of truncated PCE can be written as

N = (
n + p

p
) = (n + p)!/(n!p!). (5)

The PCE coefficient cα can be calculated in a variety of ways. In this paper, we seek
to solve this coefficient by solving a least-squares minimization problem and using the
most popular collocation approach. This approach minimizes the square of the Euclidean
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norm between the PCE and the solution U =
{
{ f (r)}Z

z=1
}T by using Z random samples

(collocation points). The orthogonal matrix and coefficient vector are [51]

Ψ =


Ψ0
(
r1) . . . ΨN−1

(
r1)

· ·
· ·
· ·

Ψ0
(
rZ) . . . ΨN−1

(
rZ)

 and c =


c0
·
·
·

cN−1

. (6)

The PCE coefficient vector expression is

c = (ΨTΨ)−1ΨTU. (7)

In this paper, all random parameters satisfy Gaussian distribution, corresponding to
Hermite orthogonal polynomials. Here, a one-dimensional random parameter is used to
illustrate the recurrence relation of Hermite orthogonal polynomials, which is defined as

Ψα(r) =
1

(−1)αe−
r2
2

dα

drα

[
e−

r2
2

]
= α!

[α/2]

∑
k=0

(−1)k 1
k!2k(α− 2k)!

rα−2k (8)

where [ α
2 ] is the biggest number that is either smaller than or equal to α

2 . A one-dimensional
random parameter is represented by the symbol r. The mathematical equation for the
general recurrence of the Hermite orthogonal polynomial is

Ψα+1(r) = rΨα(r)− αΨα−1(r) (9)

where Ψ0(r) = 1 and Ψ1(r) = r. The first six polynomials of the equation is shown in
Table 2.

Table 2. The first six polynomials of Ψα(r).

α Ψα(r)

1 1
2 r
3 r2 − 1
4 r3 − 3r
5 r4 − 6r2 + 3
6 r5 − 10r3 + 15r

3. Theory of Flexoelectricity

For dielectric solids with flexoelectric effects, the enthalpy density H is a function
of the strain gradient and the electric field gradient, and the expression for the enthalpy
density is [52]

H
(

Sij, Ei, Sjk,l , Ei,j

)
=

1
2

CijklSijSkl − eiklEiSkl +
(

dijklEi,jSkl + fijklEiSjk,l

)
− 1

2
κijEiEj (10)

where the symbol ϕ refers to scalar electric potential. The fourth-order elasticity ten-
sor is denoted by the symbol Cijkl . The strain tensor is represented by the symbol Sij.
The third-order piezoelectric tensor is symbolized by the abbreviation eijk. The electric
field is symbolized by the symbol Ei as the gradient of the scalar electric potential ϕ, i.e.,
Ei = ϕ,i. The second-order dielectric tensor is represented by the symbol κij. fijkl denotes
the fourth-order direct flexoelectric tensor and dijkl represents the fourth-order converse
flexoelectric tensor.
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Take into account the terms in the brackets on Equation (10), which contain the direct
and reverse flexoelectric effects. When these terms are integrated over the physical domain
Ω, using integration by parts and the Gauss divergence theorem on the first term, we get∫

Ω

(
dijklEi,jSkl + fijklEiSjk,l

)
dΩ = −

∫
Ω

(
dil jk − fijkl

)
EiSjk,ldΩ +

∫
∂Ω

dijklEiSkldΓ

= −
∫

Ω
µijklEiSjk,ldΩ +

∫
∂Ω

dijklEiSkldΓ
(11)

where µijkl is a single material tensor, that is, µijkl = dil jk − fijkl . As a result, Equation (10)
may be rewritten as

H
(

Sij, Ei, Sjk,l

)
=

1
2

CijklSijSkl − eiklEiSkl − µijklEiSjk,l −
1
2

κijEiEj. (12)

For purely piezoelectric dielectric we have

Tij =
∂H̄
∂Sij

and Di = −
∂H̄
∂Ei

. (13)

The normal (T̂ij/D̂i), higher-order (T̃ijk/D̃i), and physical (Tij/Di) electromechanical
stresses are characterized by the following relations in the presence of flexoelectricity:

T̂ij =
∂H
∂Sij

and D̂i = −
∂H
∂Ei

(14)

T̃ijk =
∂H

∂Sij,k
and D̃ij = −

∂H
∂Ei,j

(15)

Tij = T̂ij − T̃ijk,k and Di = D̂i − D̃ij,j. (16)

Substituting Equations (14) and (15) into Equation (16), we get

Tij = T̂ij − T̃ijk,k = CijklSkl − ekijEk + µlijkEl,k (17)

Di = D̂i − D̃ij,j = eiklSkl + κijEj + µijklSjk,l (18)

For a flexoelectric dielectric, the electrical enthalpy is

H =
1
2

∫
Ω

(
T̂ijSij + T̃ijkSij,k − D̂iEi

)
dΩ. (19)

The work of external forces (mechanical traction t̄i and surface charge density ω) can
be expressed as

Wext =
∫

Γt
t̄iuidΓt −

∫
ΓD

ωϕdΓD (20)

where the symbol ui signifies displacement. The mechanical traction is represented by the
symbol ti and the surface charge density is represented by the symbol ω. The symbols
Γt and ΓD represent the boundaries of mechanical tractions and electric displacements,
respectively.

The kinetic energy of the system is defined by

KE =
1
2

∫
Ω

ρu̇iu̇idΩ (21)

where ρ represents the density and
·
(·) denotes the derivative with respect to time t.

Ignoring the damping term and using Hamilton’s principle, we have
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δ
∫ t2

t1

(KE − H + Wext)dt = 0. (22)

Substituting Equations (19)–(21) into Equation (22), we get

δ
∫ t2

t1

(
1
2

∫
Ω

ρu̇iu̇idΩ− 1
2

∫
Ω

(
T̂ijSij + T̃ijkSij,k − D̂iEi

)
dΩ

+
∫

Γt
t̄iuidΓt −

∫
ΓD

ωϕdΓD

)
dt = 0.

(23)

By including the variation operation within the integral operations, we obtain∫ t2

t1

(
1
2

∫
Ω

δ(ρu̇iu̇i)dΩ− 1
2

∫
Ω

δ
(

T̂ijεij + T̃ijkεij,k − D̂iEi

)
dΩ

+
∫

Γt
t̄iδuidΓt −

∫
ΓD

ωδϕdΓD

)
dt = 0.

(24)

Using the chain rule of variation and changing the order of operations, we have∫ t2

t1

[
1
2

∫
Ω

δ(ρu̇iu̇i)dΩ
]

dt = −
∫ t2

t1

[∫
Ω

$(δuiüi)dΩ
]

dt (25)∫ t2

t1

[
1
2

∫
Ω

δ
(

T̂ijεij + T̃ijkSij,k − D̂iEi

)
dΩ
]

dt

=
∫ t2

t1

[∫
Ω

(
T̂ijδSij + T̃ijkδSij,k − D̂iδEi

)
dΩ
]

dt. (26)

Equation (24) can now be rewritten as∫ t2

t1

(
−
∫

Ω
ρ(δuiüi)dΩ−

∫
Ω

(
T̂ijδεij + T̃ijkδεij,k − D̂iδEi

)
dΩ

+
∫

Γt
t̄iδuidS−

∫
ΓD

ωδϕdS
)

dt = 0.
(27)

The integrand of the time integration must disappear in order to fulfill Equation (27)
for all feasible values of u, which results in∫

Ω
ρ(δuiüi)dΩ +

∫
Ω

(
T̂ijδSij + T̃ijkδSij,k − D̂iδEi

)
dΩ−

∫
Γt

t̄iδuidS +
∫

ΓD

ωδϕdS = 0. (28)

For a static problem, the inertia term is ignored, resulting in∫
Ω

(
T̂ijδsij + T̃ijkδSij,k − D̂iδEi

)
dΩ−

∫
Γt

t̄iδuidS +
∫

ΓD

ωδϕdS = 0. (29)

Substituting Equations (14)–(18) into Equation (29) to obtain the weak form of the
governing equation for flexoelectricity is given below∫

Ω

(
CijklδSijSkl − ekijEkδSij − µlijkElδSij,k − κijδEiEj

−eiklδEiSkl − µijklδEiSjk,l

)
dΩ−

∫
Γt

t̄iδuidΓt +
∫

ΓD

ωδϕdΓD = 0.
(30)

4. IGA-FEM Discretization of the Flexoelectric Fourth-Order Partial
Differential Equation

In this study, the governing Equation (10) is discretized using B-splines basis functions.
The Cox-de-Boor formula is used recursively to define the B-spline basis function [53–57],
Ni,p(ξ), and its expression is



Sustainability 2023, 15, 3417 7 of 13

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

(31)

when p = 1, 2, 3, . . . . . .

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (32)

Figure 1 depicts a schematic illustration of a specific B-spline multidimensional shape
function, with all knot vectors being Ξ =

[
0 0 0 0 0.5 1 1 1 1

]
. The multi-

dimensional shape functions have orders p and q of three. It can be seen from Figure 1
that as long as the knot vectors Ξ and orders p, q are specified, a very rich set of function
types exists for the B-spline basis functions. This provides the continuity requirement for
solving the flexoelectric governing equations. The linear algebraic discrete system equation
of Equation (30) is written as[

Auu Auϕ

Aϕu Aϕϕ

][
u
Φ

]
=

[
fu
fϕ

]
(33)

and

Auu = ∑
e

∫
Ωe

(Bu)
TC(Bu)dΩe, (34)

Auϕ = ∑
e

∫
Ωe

[(Bu)
TeT(Bϕ) + (Hu)

TµT(Bϕ)]dΩe, (35)

Aϕu = ∑
e

∫
Ωe

[(Bϕ)
Te(Bu) + (Bϕ)

Tµ(Hu)]dΩe (36)

Aϕϕ = −∑
e

∫
Ωe

(Bϕ)
Tκ(Bϕ)dΩe (37)

fu = ∑
e

∫
Γte

Nu
TtΓdΓte (38)

fϕ = −∑
e

∫
ΓDe

Nϕ
TωdΓDe. (39)

In Equations (34)–(39), the subscript e indicates the eth finite element in Ωe, Γte, and ΓDe,
where Ω = ∪eΩe. The Bu, Bϕ, and Hu are listed below

Bu =


∂N1
∂x

∂N2
∂x · · · ∂Nncp

∂x 0 0 0 · · ·
0 0 · · · 0 ∂N1

∂y
∂N2
∂y · · · ∂Nncp

∂y
∂N1
∂y

∂N2
∂y · · · ∂Nncp

∂y
∂N1
∂x

∂N2
∂x · · · ∂Nncp

∂y

 (40)

Bϕ =

[
∂N1
∂x · · · ∂Nncp

∂x
∂N1
∂y · · · ∂Nncp

∂y

]
(41)

Hu =



∂2 N1
∂x2

∂2 N2
∂x2 · · · ∂2 Nncp

∂x2 0 0 · · · 0

0 0 · · · 0 ∂2 N1
∂y∂x

∂2 N2
∂y∂x · · · ∂2 Nncp

∂y∂x
∂2 N1
∂y∂x

∂2 N2
∂y∂x · · · ∂2 Nncp

∂y∂x
∂2 N1
∂x2

∂2 N2
∂x2 · · · ∂2 Nncp

∂x2

∂2 N1
∂x∂y

∂2 N2
∂x∂y · · · ∂2 Nncp

∂x∂y 0 0 · · · 0

0 0 · · · 0 ∂2 N1
∂y2

∂2 N2
∂y2 · · · ∂2 Nncp

∂y2

∂2 N1
∂y2

∂2 N2
∂y2 · · · ∂2 Nncp

∂y2
∂2 N1
∂x∂y

∂2 N2
∂x∂y · · · ∂2 Nncp

∂x∂y .


(42)
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The matrix form of C, κ, e, and µ are

C =

(
Y

(1 + ν)(1− 2ν)

) 1− ν ν 0
ν 1− ν 0
0 0 ( 1

2 − ν)

 (43)

κ =

[
κ11 0
0 κ22

]
(44)

e =

[
0 0 e15

e31 e33 0

]
(45)

µ =

[
µ11 µ12 0 0 0 µ44
0 0 µ44 µ12 µ11 0

]
(46)

where the symbol Y stands for Young’s modulus and the symbol ν is the Poisson’s ratio.
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5, ( )qN η 5, ( )pN ξ

Figure 1. Schematic diagram of the B-spline shape functions with a specific knot vectors.

5. Numerical Examples

In this section, we firstly use a benchmark example to verify the correctness of our
analytical model. The confirmed IGA model is applied to the polynomial chaos expansion
method to build the surrogate model. In the case of model verification, we assume that the
model satisfies the plane strain hypothesis, as detailed in Equation (43).

5.1. Model Validation

The truncated pyramid is the most commonly studied geometry in flexoelectric mate-
rials. The truncated pyramid model and the discretization meshing are shown in Figure 2.
The upper edge is subjected to uniformly distributed forces of F magnitude, whilst the
lower edge is immobile. The material parameters and detailed sizes of the model are shown
in Table 3. Here, we specify that the electric potential at the upper edge is 0. Here, we use
the penalty function method to process the electric potential at the lower edge, resulting
in an equipotential boundary condition. On this benchmark case, we obtain the electric
potential and strain distributions depicted in Figure 3. The electric potential and strain
distributions are essentially comparable to those observed in [10].
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h

1a

2a

V

F( )a ( )b

1x

2x

Figure 2. Truncated pyramid model where the upper edge is subjected to uniformly distributed
force F (a), and the discretization meshing (b).

Table 3. Material parameters for truncated pyramid.

Type Symbol Magnitude Unit

Upper edge width a1 750 µm
Lower edge width a2 2250 µm

Thickness h 750 µm
Distributed force F 6 N/µm

1

0

2

310−× 510−×

4−

2−

Electric potential 2Strain  directionx

Figure 3. The distribution of overall electric potential ϕ (a), and the distribution of strain in the x2

direction (S22) (b).

5.2. Verification of Surrogate Models for Mechanical Properties of Flexoelectric Materials

In this section, we will employ the truncated pyramid model from Section 5.1 to
construct a surrogate model of the mechanical properties of materials with significant
strain gradients. Owing to the equipotential boundary condition at the lower edge, we
use the electric potential at the lower edge as the response result required to construct the
surrogate model. The random input parameters are chosen as Young’s modulus, uniformly
distributed force and two flexoelectric constants, respectively. The range of values and
statistical characteristics of the random input parameters are listed in Table 4.

Table 4. Range of values and the statistical properties of the random input parameters.

Random Input Parameters Expected Values E Coefficient of Variation γ
The Input Parameters’ Limitations:

[Lower, Upper]

Young’s modulus Y 1 × 1011 0.06 [8.20 × 1010, 1.18 × 1011]
Uniformly distributed

force F 6 × 106 0.06 [4.92 × 106, 7.08 × 106]

Flexoelectric constant
µ11/µ12

1 × 10−6 0.1 [7.00 × 10−7, 1.30 × 10−6]

The compared results of PCE and IGA-FEM of the electric potential generated by the
material under excitation are shown in Figure 4, where the random input parameter is
Young’s modulus. From Figure 4, it can be seen that the IGA-FEM and PCE results are
consistent, confirming the algorithm’s validity. It is also shown that the magnitude of the
elastic stiffness affects the results of the electric potential generated by the excitation of
piezoelectric and non-piezoelectric materials, which is due to the magnitude of the elastic
modulus affecting the elastic stiffness of the structure.
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Figure 4. Comparison findings of IGA-FEM and PCE with Young’s modulus as a random parameter.

Figure 5 shows the compared results of PCE and IGA-FEM of the electric potential
generated by the excitation of the material when a uniformly distributed force is utilized
as a random parameter. The graphic shows that when the normalized uniform distri-
bution force grows, so does the normalized outcome of electric potential. The electrical
potential generated by a piezoelectric material under excitation is larger than that of a
non-piezoelectric material.

Since the flexoelectric effect is weak in piezoelectric materials, the PCE model of
piezoelectric materials whose flexoelectric constants are random parameters is not consid-
ered. The compared results of PCE and IGA-FEM of the material subjected to excitation
to generate electric potential are shown in Figure 6, where the random input parameters
are the flexoelectric constants µ11 and µ12. As seen in Figure 6, as the normalized flex-
oelectric constant increases, the normalized electric potential values exhibit an opposite
trend. Through PCE, a surrogate modeling of mechanical properties can be established
under small sample conditions and the calculation accuracy can be guaranteed. This is an
advantage that distinguishes it from other uncertainty quantification methods such as MCs.
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Figure 5. Comparison findings of IGA-FEM and PCE with uniformly distributed force as a
random parameter.
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Figure 6. Comparison findings of IGA-FEM and PCE. (a) The flexoelectric constant µ11 is a random
parameter. (b) The flexoelectric constant µ12 is a random parameter.

6. Conclusions

In this work, a polynomial chaos expansion based on the isogeometric FEM is used to
study the mechanical properties of flexoelectric materials, the key points are as follows:

1. The B-spline shape functions satisfying the continuity requirement are employed to
discretize the governing equations.

2. The IGA-FEM reduces the need for repeated meshing in uncertainty quantification
while maintaining geometric accuracy.

3. The truncated pyramid model was chosen as the object of study to obtain the mechan-
ical properties of the flexoelecteric material.

The present method is not without limitations. It is difficult to efficiently compute the
mechanical response of a material when the dimension of the input random variable is
multidimensional. Therefore, the development of efficient methods for the analysis of me-
chanical properties of multidimensional random variables is the focus of our future work.
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