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Abstract: A proper understanding of hydrological processes is vital for water resource assessment,
management, and conservation at a local, national, and global scale. The role of hydrological models
is critically important in rarely studied ungauged catchments including of Kobo-Golina, in the
Danakil basin of Ethiopia. The main objective of this research is to model the hydrology of the Kobo-
Golina catchment using the completely restructured SWAT (SWAT+) model. Validated reanalysis
river flow from the Global Flood Awareness System (GloFAS) and actual evapotranspiration (AET)
from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for single and multi-
variable calibration. It is found that the multi-variable calibration scenario reasonably attained the
minimum satisfactory performance limit for both variables (NSE = 0.67, R2 = 0.68, PBias = −9.68%,
and RSR = 0.57 for calibration of GloFAS flow; and NSE = 0.56, R2 = 0.63, RSR = 0.66, PBias = 3.86
for calibration of MODIS AET). The model simulation showed that evapotranspiration accounts for
47% of the input water while surface runoff, lateral flow, and groundwater recharge account for
30%, 1.53%, and 21.4%, respectively. The simulated mean annual streamflow at the Basin outlet is
10.6 m3/s. The monthly low flow occurs in June with a median flow of 1.43 m3/s and a coefficient of
dispersion of 0.67. High flows occur in August, with a median flow of 16.55 m3/s and a coefficient of
dispersion of 1.55. The spatial distribution of simulated runoff was depicted as being higher in the
floodplains and along the riparian/drainage lines, whereas upland areas showed lower runoff. The
maximum monthly recharge occurs in September with a recharge value of 78.2 mm. The findings of
the study suggested that both surface water harvesting and groundwater exploitation can be sought
in floodplain areas while conserving the uplands.

Keywords: GloFAS river flow; MODIS AET; Multi-variable calibration; SWAT+

1. Introduction

Water is one of the most vital and core resources for sustainable development around
the globe [1]. Its role in socio-economic, and environmental development aspects is priceless.
At this time, the world’s population is increasing at an alarming rate, putting a strain on
water resources in a variety of ways [2]. Unless special attention is paid to the sustainable
use of water resources, it will be a great global risk [3]. It is concerning that the current
water use, particularly in Ethiopia, is not wise considering the exploitable potential of
available water resources [4,5].

According to recent surveys, about 65% of the world’s population experiences severe
water scarcity for at least one month per year [6]. Currently, more than two billion people
live in countries with insufficient water supply [7]. Fifty percent of the world’s population
could be living in water-stressed areas by as early as 2025 [6]. Ethiopia has a population of
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about 120 million people [8] and has immense water resources [9]. However, spatial and
temporal variability of rainfall has caused water scarcity in many parts of the country [10].
Nearly 27 million of Ethiopia’s population lives in areas of high water stress [11]. Though
rainfed agriculture contributes significantly to Ethiopia’s economy, its variability is the
source of water stress and chronic food insecurity [12,13].

The current study area, the Kobo-Golina basin, is one of the drought-prone areas in
the country due to erratic rainfall [14,15]. The area is identified as one of the potential areas
for surface and groundwater irrigation [16]. Both surface and groundwater irrigation have
been practiced in the basin since 1999 [16–18]. The government is planning to expand the
number of irrigation projects in the country including this area in the coming years [19].

Though irrigation is under development, the area is facing some problems like poor
water management [16,17,20] and a lack of sufficient hydrological information [21]. Water
balance components are not properly defined. Random utilization of resources without
understanding the hydrology of the area is still a challenge. So, scientific intervention
is required to understand hydrology and assess the potential to properly manage the
water resource of the area. Hydrological quantification of water resources, simulation,
and monitoring of the water balance components are critical for the area. This will help
to properly understand the potential and mitigate the problems in utilizing the resources.
Hydrological models are among the various tools used to quantify and predict changes in
the spatial and temporal availability as well as the quality of water resources [22]. Due to
its improved features, multiple internal processes, and versatility [23,24], the SWAT model
is widely applicable globally. The application of the SWAT model for the study of water
resources and environmental assessments has shown significant progress in Africa [25].
The SWAT model application in Ethiopia is also progressive but limited to a few major
river basins which have ground-measured data [26–30]. Hydrological modeling through
SWAT is rare in ungauged basins due to a lack of data. There is not a significant number of
studies that focused particularly on data-scarce humid and semi-arid regions including the
current study area. The SWAT model has never been applied before in the Kobo-Golina
River to simulate the hydrological characteristics of the watershed.

Recent studies indicated that the humid and semi-humid tropical highlands of Ethiopia
showed a saturation excess runoff process [31]. For this, SWAT+ was recently developed to
separate upland and floodplain regions to better simulate lowland hydrology—saturation
excess runoff [32]. SWAT+ will be applied for the hydrological simulation of the Kobo-
Golina catchment as the majority of the area is humid. However, the availability of input
and calibration data is still a constraint. At this time, open-source remote sensing tech-
nologies are offering alternative input data and simplifying the application of the SWAT
model [33,34]. A prior study has not been performed to assess the hydrology of this water-
shed using SWAT+ and open-source remote sensing data. The novelty of this research then,
is the use of open sources remotely sensed data and the application of the recent SWAT+
to generate data/information on the hydrology of the ungauged Kobo-Golina catchment.
According to our knowledge, this research work is the first of its kind in the humid and
semi-arid regions of the Danakil Basin in Ethiopia. The outputs from this research are
of great scientific importance and provide supplemental information on streamflow in
data-scarce areas of the Kobo-Golina catchment in the Danakil Basin of Ethiopia.

The main objective of this research is then to model the hydrology of the Kobo-Golina
catchment by SWAT+ using open-source remote sensing data. First, single and multi-
variable calibration approaches were applied to simulate hydrologic processes; second,
water balance components, water yield, and total water storage were assessed; finally,
groundwater recharge has been characterized. The major advantage of the proposed
methodology is that it has been developed for typical ungauged humid and semi-arid hy-
drological regimes in the Danakil Basin of Ethiopia and can be easily applied to catchments
with similar hydrological and geomorphological characteristics. Such an approach provides
vital information and insights to improve understanding of the hydrological processes of
ungauged catchments in humid and semi-arid hydrological regions.
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2. Materials and Methods
2.1. Study Area

The Kobo-Golina sub-basin is located in the Northeast part of the Amhara region in
Northern Ethiopia. It is located in the upper part of the Danakil Basin. It is geographically
extending from 11◦55′33.6′′ to 12◦14′20.4′′ N latitude and 39◦22′30′′ to 39◦49′44.4′′ E longi-
tude. The area has a humid and semi-arid climate in the hills and valley plains, respectively.
It covers an estimated drainage area of 1040 km2 at an outlet of the Golina River (Figure 1).
The elevation of the area varies from 1117 to 3972 m and with a mean elevation of 1971 m.
The study area receives a mean annual rainfall of 727 mm (2003–2005) and has a bi-modal
type of rainfall. The long rainy season occurs from June to mid September and the short
rainy season from March to April. The average monthly temperatures of the study area
range from 18.7 ◦C in December to about 26 ◦C in June. The dominant soil in the study area
is vertisol and leptosol. The major annual crop types grown under rain-fed cultivation are
sorghum, teff, and maize.
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Figure 1. Location of the study area.

2.2. Data Sources and Description

The basic data required and used in the study are (i) insitu rainfall and streamflow
data for validation of reanalysis rainfall and GloFAS streamflow, respectively; (ii) Climate
data: CHIRPS precipitation, CFSR temperature, relative humidity, solar radiation, wind
speed along with spatial data: DEM, Land use/Landcover and soil for model input;
(iii) MODIS evapotranspiration (MOD16A2 8 days) and reanalysis GloFAS stream flow
data for calibration and validation of the model.



Sustainability 2023, 15, 3337 4 of 23

2.2.1. Hydro-Meteorological Data
Climate Data

There are three meteorological stations found within the watershed area (i.e., Kobo,
Tekulesh, and Zobel). They have records of rainfall and temperature for different periods
having missed data exceeding 40%. As a result, reanalysis data were considered as an
alternative source of data to fill the gap. CHIRPS rainfall is recommended as an alternative
source of rainfall data in ungauged catchments of Ethiopia [27,35,36]. Scatterplot and
correlation coefficient review of open-access precipitation products such as CFSR, ERA5,
and CHIRPS also confirmed that CHIRPS had the best performance of all [37].

The daily maximum and minimum temperature, daily relative humidity, solar radia-
tion, and wind speed found within the SWAT+ CSFR-World weather generator were used
to simulate the model [27,36,38].

Hydrological Data

Conventionally, the SWAT model is calibrated based on measured streamflow data
from hydrometeorological stations [24,36,39,40]. However, there is no sufficient streamflow
data in the study area. The only streamflow gauging station located in the study area is
the Golina weir site (upstream of the main outlet). The station was operational for a short
period (1979–1983) with several missed data. This data is not sufficient to calibrate the
model but is used for the validation of remote sensing streamflow data. The validated
streamflow data is then employed for calibration of the SWAT model.

2.2.2. Spatial Data for Model Input
DEM, Land Use, and Soil

The watershed delineation and the streamflow networks extraction were performed
based on 30 m resolution SRTM Digital elevation model (DEM). The subbasins were fur-
ther discretized into basic computational units called Hydrologic Response Units (HRUs).
Slope, 10 m resolution ESRI Sentinel-2 Land Use/Land Cover data [41], and African
Soil Information System soil data (AFSIS) [42] were used to discretize the subbasins
into HRU. DEM, Land use land cover and soil map of the study area are presented in
Figure S1 in Supplementary Materials. All datasets utilized in the study are summarized
in Table 1.

Reanalysis GloFAS River Discharge Dataset

Considering the lack of measured streamflow data, satellite-based/reanalysis stream
flow was introduced recently with various time steps and resolution; the Global Flood
Awareness System (GloFAS) is one of these products which provides reanalysis river flow
estimates at a worldwide scale since 1979 [43]. GloFAS data has substantial potential
for calibrating the SWAT hydrological model in the ungauged watersheds of the Grande
San Miguel River Basin (El Salvador) [44]. This study recommended the application of
GloFAS flow for water resource management studies for similar un-gauged catchments [44].
Additionally, GloFAS streamflow data was validated using measured streamflow data
before use in the model. Considering this fact, the validated GloFAS stream flow data
(1997–2021) with monthly time steps and 0.1◦ spatial resolution was used for calibration
and validation of the model.

Remotely Sensed AET

Beyond its scarcity, calibrating hydrological models against only simulated hydro-
graph (Streamflow data) can lead to parameter equifinality [45–47]. This will result in
low simulation accuracy of hydrological variables like evapotranspiration and ground-
water [48,49]. Evapotranspiration has a major share (>60%) of the global average water
budget and influences the water balance of the system [50]. Model parameterization for
streamflow calibration significantly affects the simulation of actual evapotranspiration and



Sustainability 2023, 15, 3337 5 of 23

vice versa [50–52]. As a result, it is very reasonable and beneficial to use AET for calibration
and validation of the hydrological model [53].

Observed AET data is not available across Ethiopia [54]. Remote sensing AET data
such as MODIS AET and AVHRR (Advanced Very High-Resolution Radiometer) AET
are recommended as alternative data for the calibration of SWAT [54]. Based on this
recommendation, the Moderate Resolution Imaging Spectrometer (MOD16 AET) 250 m
resolution data for the years 2001–2021 was used for calibration and validation of the model.

Table 1. Data type, source, and intended use in the study.

Data Description Sources Use

Meteorological Data Daily station data of rainfall
(2003–2005)

Ethiopian National Meteorological Services
Agency

https://www.ethiomet.gov.et (accessed on
1 September 2022)

For validation of CHIRPS
precipitation data

Hydrological Data Streamflow data (1979–1982) Ethiopian Ministry of Water and Energy For validation of GloFAS
river flow

Topography
Digital elevation model (DEM)

1 arc-second for global coverage
(~30 m)

https://earthexplorer.usgs.gov/ (accessed
on 15 September 2022)

SWAT+
watershed delineation

Soil 250 m resolution, soil property
maps of Africa

Soil property maps of Africa (AFSIS,
2015; [42]

https://www.isric.org/projects/soil-
property-maps-africa-250-m-resolution

(accessed on 1 October 2022)

SWAT+ HRU definition

Land use 10 m resolution ESRI Sentinel-2
Land Use/Land Cover

https://livingatlas.arcgis.com/landcover/
(accessed on 16 October 2022) SWAT+ HRU definition

Reanalysis climate data

-CHIRPS Reanalysis rainfall data
with daily time step and a
resolution of 0.05◦ × 0.05◦

-CFSR Reanalysis climate data
with daily time steps and a
resolution of 0.30◦ × 0.30◦

https://data.chc.ucsb.edu/products/
CHIRPS-2.0/ (accessed on

1 November 2022)
https://globalweather.tamu.edu/ (accessed

on 28 October 2022

Input for SWAT+

Reanalysis River discharge

GloFAS River Discharge
Reanalysis Dataset with daily

time steps and 0.1◦

spatial resolution

https://cds.climate.copernicus.eu,
(accessed on 5 November 2022

SWAT+ model Simulation
calibration and validation

Remotely sensed
based Actual

Evapotranspiration (AET)

Moderate Resolution Imaging
Spectrometer (MOD16A2 8 Day)

available at 500 m resolution; [55]

https://modis.gsfc.nasa.gov/data/
dataprod/mod16.php (accessed on

20 November 2022)

SWAT+ model simulation
calibration and validation

2.3. SWAT Model Description and Setup

In this study, SWAT+ version 2.1.10 was used. QSWAT+, which is the QGIS (Quantum
GIS) interface for SWAT+, owns various QGIS functionalities and provides a more flexible
spatial representation of interactions and processes [32]. SWAT+ with landscape unit (LSU)
option was selected to discretize subbasins to allow separation of upland processes from
wetlands [32].

30 × 30 m SRTM DEM was employed to delineate the watershed. 6 km2 and 60 km2

were considered as channel and stream area thresholds, respectively. Discretization of the
model provided 9 subbasins and 696 HRUs. HRU thresholds of 20% for land use, 10% for
soil type, and 20% for slope were applied (Table 2). DEM inversion method was used to
create LSU (Figure S2). The area of the subbasin generated ranges from 0.61 km2 to 135 km2.
SWAT+ Editor 2.0.4 was utilized to set up the project, edit SWAT+ inputs, run the model,
and check the QSWAT+ model.

Potential evapotranspiration was estimated using the Penman–Monteith equation [56].
The Penman–Monteith method requires air temperature, solar radiation, relative humidity,
and wind speed as input in Equation (1):

λE =
4X(Hnet−G) + ρairXCpX(eo

z − ez)/ra

4+ γX
(

1 + rc
ra

) (1)

https://www.ethiomet.gov.et
https://earthexplorer.usgs.gov/
https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution
https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution
https://livingatlas.arcgis.com/landcover/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://globalweather.tamu.edu/
https://cds.climate.copernicus.eu
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
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where λ is the latent heat flux density (MJ m−2 day−1), E is the depth rate evapora-
tion (mm day−1), 4 is the slope of the saturation vapor pressure-temperature curve,
de = dT (kPa ◦C−1), Hnet is the net radiation (MJ m−2 day−1), G is the heat flux density to
the ground (MJ m−2 day−1), ρair is the air density (kg m−3), Cp is the specific heat at con-
stant pressure (MJ kg−1 ◦C−1), eo

z is the saturation vapor pressure of air at height z (kPa),
ez is the water vapor pressure of air at height z (kPa), γ is the psychrometric constant
(kPa ◦C−1), rc is the plant canopy resistance (s m−1), and ra is the aerodynamic resistance
(s m−1).

The Soil Conservation Service’s Curve Number method was employed to estimate
the surface runoff. Surface runoff was estimated separately for each HRU and routed to
the outlet of a subbasin to make the cumulative runoff of the subbasin. The Muskingum
routing method was used to route the streamflow within the subbasin channels. Finally,
model simulations were performed at a daily time step from 1991 to 2021. The three-year
warm-up period was considered to run the model.

Table 2. Landscape/Land use/Soil/Slope and HRU distribution in the basin.

Id No Area [ha] % Watershed

1 Watershed 104,092.2
2 Landscape units

Floodplain 30,021.39 28.84
Upslope 74,070.81 71.16

3 Land use
URML (Urban Medium Density) 2331.55 2.24

AGRL (Agricultural land generic) 70,584.9 67.81
FRST (Forest) 6319.8 6.07

RNGB (Range Shrubland) 23,834.74 22.9
South Western Range +Bed rock

(SWRN) 80.61 0.08

PAST (Pasture land) 633.43 0.61
WETW (Water) 307.17 0.3

4 Soil
LP (Leptosols) 73,768.46 70.87

CM (CambiSols) 5973.07 5.74
VR (VertiSols) 23,983.13 23.04
LV (LuviSols) 367.54 0.35

5 Slope
0–5.0 18,590.4 17.86

5.0–8.0 7269.69 6.98
8.0–15.0 10,796.81 10.37

15.0–30.0 18,645.81 17.91
30.0–9999 48,789.49 46.87

2.4. Sensitivity Analysis

Sensitivity analysis, calibration, and validation of model parameters were carried
out using SWAT+ TOOLBOX Version 0.7.6 [57]. SWAT+ TOOLBOX is an independent
tool from SWAT+. The initial model parameters were selected referring to the existing
literature [40,58,59]. 13 parameters were selected and first-order sensitivity analysis was
performed related to (i) MODIS AET only and GloFAS flow only scenario separately and
(ii) both AET and GloFAS flow concurrently using Variance-based sensitivity analysis
(Sobol) method. The Sobol method is the widely applicable method that is relatively
reliable for quantifying sensitivity and ranking parameters based on p-factor and t-test [60].
It deals with nonlinear responses, and it can measure the effect of interactions in non-
additive systems [61]. 1300 seed was selected to run 36,400 samples until the most sensitive
parameters were attained. Parameters that have sensitivity values of zero were supposed
to be removed but decided to remain there considering their importance for further fine-
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tuning in other models. The description of the SWAT parameters, change type, and their
minimum and maximum range are presented in Table S1 in Supplementary Materials.

2.5. Model Calibration and Validation

Following the sensitivity analysis, model calibration was performed using both GloFAS
flow and MODIS AET at the monthly time step. Model calibration and validation were
performed from the year 2001–2011 and 2012–2014, respectively. Data after 2014 were not
considered because of disturbed natural flow conditions due to intensive irrigation.

Two calibration strategies were investigated. First, single-variable calibration was
considered. In the single variable calibration scenario, parameters were calibrated based on
GloFAS flow at the main outlet and MODIS AET at the entire basin separately. Finally, SWAT
model parameters were calibrated/validated in the multi-variable calibration scenario
employing both MODIS AET and GloFAS flow concurrently.

2.6. Model Performance Evaluation and Verification

The objective function used during the calibration and validation in all scenarios
was the Nash–Sutcliffe efficiency (NSE) on Equation (2) [58]. Evaluation of the model
performance is greatly affected by the choice of a particular statistical “goodness-of-fit” [62].
In addition to NSE, coefficient of determination (R2) on Equation (3), RSR (the ratio of root
means square error (RMSE) to the standard deviation of the measured data) on Equation (4),
and percent bias (PBias) on Equation (5) were also considered to eliminate subjectivity in
assessment of the model performance.

NSE = 1− ∑N
i=1(Si −Oi)

2

∑N
i=1(Oi −Omean)

2 (2)

R2 =

 ∑N
i=1(Oi −Omean)(Si − Smean)√

∑N
i=1(Oi −Omean)

2
√

∑N
i=1(Si − Smean)

2

2

(3)

RSR =

√
∑N

i=1(Si −Oi)
2√

∑N
i=1(Oi −Omean)

2
(4)

PBias = 100 × ∑N
i=1(Oi − Si)

∑N
i=1 Oi

(5)

where S = Model Simulated output; O = observed hydrological variable; Omean = mean
value of the observations that the NSE uses as a benchmark against which the performance
of the model is compared; and N = number of observations. NSE values range from—∞ to 1,
where 1 shows a perfect model. If NSE is zero, it implies that the observed mean is as good
a predictor as the model, and if NSE is less than zero to negative infinity, then the model
is a worse predictor than Qmean. NSE > 0 is considered a generally accepted agreement
between subject variables; whereas, NSE > 0.5, R2 > 0.5, RSR ≤ 0.7, and PBias ± 25% are
considered satisfactory values [63,64].

Relying solely on performance indicator values (NSE, R2, RSR, PBias) will not ensure
that the model performs well. Qualitative evaluation was also assessed through a graphical
comparison of model-simulated variables with that of satellite-based AET and GloFAS
river flow within the calibration and validation period.

2.7. Water Balance, Water Yield, and Total Water Storage Assessment

An assessment of the long-term average water balances of the watershed was carried
out based on SWAT+ simulated output. The water yield of the catchment is predicted using
the following equation.
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Water Yield (WY) = SURQ + LATQ+ Qgw/Perc − Tloss (6)

where

SURQ is the surface runoff;
LATQ is the lateral flow;
Qgw/Percolation is the groundwater contribution to streamflow;
Tloss is the transmission loss.

Total water storage (WS) is also analyzed to see whether there is excess or deficit of
water in the catchment for the given month. Either release or storage of water is expected
for different months. Water storage is calculated by deducting runoff and AET from
precipitation. Two cases are considered to see the water storage condition of the basin:

Case (i) If PCP (Precipitation) > WY + AET (Positive storage), excess water infiltrated
and stored as soil moisture and groundwater (GW) storage.

Case (ii) If PCP (Precipitation) < WY + AET (Negative storage), implying water deficit
will be compensated from the storage.

3. Result and Discussion
3.1. Correlation of Observed and Reanalysis Datasets
3.1.1. Correlation of Rain Gauge Station and Reanalysis Precipitation Data

A correlation coefficient was determined between measured rainfall from the Kobo
station and open-source reanalysis rainfall (CHIRPS, ERA5, and CFSR) for the same period.
Figure 2 depicts that CHIRPS reanalysis rainfall has a better correlation efficiency of 85%
(R2 = 0.85) than the other two (ERA5 and CFSR). A scatterplot of the CHIRPS and observed
rainfall points were spread relatively close to the 45◦ line, indicating a better agreement
between the two datasets. Finally, CHIRPS rainfall was used as input climate data in
the model.
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Figure 2. Scatter plot and correlation coefficient determination of rain gauge station and CHIRPS
rainfall data.

A study conducted by [65] in North Wollo, including the Kobo area, showed that
CHIRPS rainfall has a strong correlation with observed rainfall. The authors of [66] also
validated CHIRPS rainfall in the Zeway basin of Ethiopia and has a good correlation. Other
studies in the upper Blue Nile Basin of Ethiopia by [27,35] confirmed that CHIRPS rainfall
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is suitable and performs well in the SWAT model simulation. A study by [67] in the Tekeze
basin of Ethiopia also confirmed CHIRPS rainfall as it is suitable and performs well in the
simulation of the SWAT hydrological model.

3.1.2. Correlation of Measured Streamflow and Reanalysis GloFAS Flow

A correlation coefficient was determined between GloFAS flow and measured stream-
flow at the Golina weir site. The correlation showed a reasonably good result, R2 = 0.82
(Figure 3). As a result, GloFAS flow was employed for model calibration. A scatterplot
of the GloFAS flow and observed streamflow points were spread close to the 45◦ line,
indicating a better agreement between the two datasets.
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3.2. SWAT Model Performance
3.2.1. Default Analysis

Tthe NSE, R2, RSR, and PBias values at default model run depict a low performance
according to [63,64]. The results of the default run support the need to improve the SWAT
model’s performance further. As a result, the SWAT model outputs were subjected to
further calibration and validation.

3.2.2. Sensitivity Analysis

The common parameters found to be sensitive in all circumstances were runoff curve
number (CN2.hru), the available water capacity of the soil layer (sol_awc), and Percolation
coefficient (perco.hru). When considering GloFAS flow alone and multi-variable simulation,
CN2 was the first highly sensitive parameter to demonstrate substantial effects, whereas,
in the case of simulation of AET only, an available water capacity of the soil layer (sol_awc)
was the first most sensitive parameter.

Similar results were obtained in the Chindwin Basin of Myanmar [68] in which CN2
was the most sensitive model parameter for streamflow and multivariable simulation
scenario, and SOL_AWC was the most sensitive model parameter for evapotranspiration.
Another study conducted in the Grande San Miguel River Basin (El Salvador) [44] coincides
with the findings of this study that CN2 was the most sensitive parameter in GloFAS flow-
based SWAT model calibration. Table 3 displays the lists of calibrated model parameters,
change procedures, and calibrated values.
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Table 3. Sensitivity analysis of calibrated parameters with their optimal values and rank.

SWAT Parameter Description GloFAS Flow-Based
Calibration

MODIS AET- Based
Calibration

GloFAS Flow and
MODIS ET

Based Calibration

1st-Order
Sensitivity

Value
Rank

1st-Order
Sensitivity

Value
Rank

1st-Order
Sensitivity

Value
Rank

r_ cn2.hru SCS Curve Number 0.74102 1 0.10819 3 0.9615 1
v_ esco.hru Soil evaporation compensation factor −0.002006 8 0.03333 5 0.01367 5
a_ canmx.hru Maximum canopy storage 0.000 NS 0.000 NS 0.000 NS
r_bd.sol (mg/ cm3) Moist bulk density 0.00002 6 0.000 NS 0.000 NS
r_ bd.sol (g/m3) Moist bulk density 0.00279 5 0.00228 7 −0.0084 6
v_ alpha.aqu Base flow alpha factor −0.00636 10 0.000 NS −0.0175 7
a_ k.sol Saturated hydraulic conductivity −0.02341 9 0.01093 6 0.0243 4
v_ epco.hru Plant uptake compensation factor 0.06178 3 0.20932 2 −0.03118 9
a_ awc.sol Available water capacity of the soil layer 0.14531 2 0.59164 1 0.1950 2
v_ perco.hru Percolation coefficient 0.04321 4 0.04886 4 0.0561 3

v_ revap_min.aqu
Threshold depth of water in the shallow
aquifer for “revap” or percolation to the

deep aquifer to occur
0.000 NS 0.000 NS 0.000 NS

r_cn3_ swf.hru Pothole evaporation coefficient −0.0005 7 0.00087 8 −0.02426 8

v_ flo_min.aqu Minimum aquifer storage to allow
return flow −0.13588 11 0.00 NS −0.05953 10

NS: Not sensitive, “v_” represents a replacement (existing parameter value is to be replaced by a given value);
“r_” represents a relative change (existing parameter value is multiplied by 1+ given value within the range);
“a_” represents the given value is added to the existing parameter values. The parameter with the most sensitive
values is shown in bold type. Sensitivity rank is indicated by the values in brackets.

3.2.3. SWAT Model Calibration Using MODIS AET

For the AET-based calibration, the basin has simulated AET performance of NSE
(0.64) > 0.5, R2 (0.65) > 0.5, RSR (0.59) ≤ 0.7 with PBias (1.684) ± 25%. For the validation
case, the basin has a simulated AET performance of NSE (0.7) > 0.5, R2 (0.73) > 0.5, RSR
(0.55) ≤ 0.7 as well as PBias (4.77) < ±25% (Figure 4). These are within the satisfactory
ranges proposed by [67,68], whereas, the AET-based simulated streamflow which was
evaluated with GloFAS flow at the outlet of the basin has performance values of calibration
(NSE (0.45) < 0.5, RSR (0.74) > 0.7 and validation (NSE (0.43) < 0.5 and RSR (0.75 > 0.7)
(Figure 5). According to the performance results, employing MODIS AET for calibrating
SWAT considerably improves AET simulations over the whole basin, whereas the resultant
streamflow simulations at the basin outlet do not meet the required statistical requirements
for a satisfactory SWAT model performance [63,64].
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3.2.4. SWAT Model Calibration Using Reanalysis GloFAS River Flow

GloFAS flow was employed for the calibration of the model. Obviously, the simulated
output performs better than the uncalibrated SWAT model. For the GloFAS flow-based
calibration, the basin has simulated flow performance of NSE (0.67) > 0.5, R2 (0.68) > 0.5,
RSR (0.57) ≤ 0.7 with PBias (−6.607) ± 25%. For the validation, the basin has a simulated
flow performance of NSE (0.53) > 0.5, R2 (0.53) > 0.5, RSR (0.68) ≤ 0.7, as well as with PBias
−3.34 ± 25% (Figure 6).
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Simulated AET from GloFAS stream flow-based calibration was also evaluated with
MODIS AET at the basin level. In the calibration case, the resulting simulated AET does
meet the required statical criteria for a satisfactory SWAT model performance (NSE (0.51),
R2 (0.58), > 0.5, RSR (0.7) ≤ 0.7, and PBias 1.185 ± 25%). In the validation case also, the
resulting simulated AET at the whole basin does meet the required statical criteria for a
satisfactory SWAT model performance (NSE (0.64) > 0.5, R2 (0.64) > 0.5 and RSR (0.60) ≤ 0.7
and PBias (3.327) ± 25% (Figure 7).

The simulated streamflow at the basin outlet and the simulated AET at the basin level
meet the statical criteria for satisfactory SWAT model performance during calibration and
validation periods [63,64].
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3.2.5. Model Calibration and Validation Using GloFAS River Flow and MODIS AET
Concurrently (Multivariable Calibration)

In multi-variable calibration, the basin has simulated flow performance of NSE (0.67) > 0.5,
R2 (0.68) > 0.5, RSR (0.57) ≤ 0.7 with PBias (−9.675) ± 25%. For the validation, the basin has
a simulated flow performance of NSE (0.54) > 0.5, R2 (0.54) > 0.5, RSR (0.67) ≤ 0.7 as well
as with Pbias (−6.221) ± 25%. It is also found that in calibration, the resulting simulated
AET does meet the required statical criteria for a satisfactory SWAT model performance (NSE
(0.56), R2 (0.58) > 0.5, RSR (0.66) ≤ 0.7 and PBias (3.857) ± 25%). In the validation case also, the
resulting simulated AET at the whole basin do meet the required statical criteria for a satisfactory
SWAT model performance (NSE (0.68) > 0.5, R2 (0.7) > 0.5 and RSR (0.564) ≤ 0.7 and PBias
(5.34) ± 25% (Figures 8 and 9). In both cases, the performance values are within the satisfactory
ranges proposed by [63,64]. Table 4 summarizes model calibration and validation efficiencies
for all modeling scenarios.

Single and multivariable calibration scenarios attained different model performances
for both calibration and validation periods. The single calibration variable, either stream-
flow or evapotranspiration led to high performance in terms of the calibration/validation
variable but impaired performance in the other variable, whereas, the multi-variable cali-
bration scenario reasonably attained the minimum satisfactory performance limit for both
variables when compared with the single-variable calibration scenario. Similar studies
conducted in Morocco [69], in the Myanmar river basin [68], in the Karkheh river basin of
Iran [70], and over the continental USA [71] agreed with the findings of this study that multi-
variable calibration performs better than the single variable calibration. Another similar
study by [72,73] revealed that multi-variable calibration (evapotranspiration + streamflow)
streamflow performance was superior to a single calibration strategy.

Since the multivariable calibration scenario gives reasonable performance for both
variables, the parameters are employed to run the model for both the calibration and
validation period (2001–2014) at a time to estimate the water balance terms and characterize
catchment hydrology.
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Figure 8. MODIS AET and simulated AET based on Calibration of multiple variables.
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Figure 9. GloFAS flow and simulated hydrographs based on Calibration of multiple variables.

Table 4. Model calibration and validation efficiencies for all scenarios.

Model Scenario Variable
Performance Evaluation for

the Calibration Period
(2004–2011)

Performance Evaluation for
the Validation Period

(2012–2014)

Default

GloFAS river flow

NSE 0.06
R2 0.48

PBias 30.09
RSR 0.96

NSE 0.21
R2 0.59

PBias 31.10
RSR 0.88

MODIS AET

NSE −1.68
R2 0.23

PBias −39.66
RSR 1.63

NSE −0.38
R2 0.31

PBias −30.03
RSR 1.17
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Table 4. Cont.

Model Scenario Variable
Performance Evaluation for

the Calibration Period
(2004–2011)

Performance Evaluation for
the Validation Period

(2012–2014)

Calibration/validation based
on GloFAS flow only

Comparison between raw
GloFAS flow and simulated

flow data

NSE 0.67
R2 0.68

PBias −6.607
RSR 0.572

NSE 0.54
R2 0.54

PBias −3.348
RSR 0.68

Comparison between raw
MODIS AET and simulated

AET data

NSE 0.51
R2 0.58

PBias 1.18
RSR 0.7

NSE 0.64
R2 0.64

PBias 3.32
RSR 0.60

Calibration/validation based
on MODIS AET only

Comparison between raw
MODIS AET and simulated

AET data

NSE 0.64
R2 0.65

PBias 1.68
RSR 0.599

NSE 0.69
R2 0.73

PBias 4.77
RSR 0.554

Comparison between raw
GloFAS flow and simulated

flow data

NSE 0.5
R2 0.5

PBias 2.36
RSR 0.74

NSE 0.4
R2 0.5

PBias −16.23
RSR 0.752

Calibration/validation based
on both GloFAS and

MODIS AET

Comparison between raw
GloFAS flow and simulated

flow data

NSE 0.67
R2 0.68

PBias −9.675
RSR 0.57

NSE 0.54
R2 0.54

PBias −6.22
RSR 0.67

Comparison between raw
MODIS AET and simulated

AET data

NSE 0.56
R2 0.63

PBias 3.857
RSR 0.66

NSE 0.68
R2 0.70

PBias 5.347
RSR 0.56

3.3. Water Balance of the Watershed
3.3.1. Annual Water Balance Components

To address the problems with water management in the basin, water balance compo-
nents that are simulated by SWAT+ provide a baseline understanding of the hydrologi-
cal processes.

The simulated water balance components for each year are presented in Table 5. The
annual average precipitation is 729 mm. The percentage of precipitation falling in the dry
(October to January), short rainy season (February to June), and the major rainy season
(July, August, and September) are 11.9%, 27.64%, and 60.47%, respectively. Similar studies
in the Kobo area confirmed that the majority of the rainfall (50%) of the total annual rainfall
is derived from the long rain seasons (July, August, and September) in the Kobo area [12].

The surface runoff (SURQ) varied from 165 mm to 332 mm, respectively, with an
average annual of 239.46 mm. The minimum and maximum lateral flows were 8.95 mm
and 15.6 mm, respectively. The minimum and maximum percolations were also 143 mm
and 190 mm, respectively. The minimum and maximum average annual water yields are
317.22 mm and 537.6 mm, respectively. In Table 5, it can be seen that all of the annual water
balance components with a higher value are observed during the highest rainy year (2010),
whereas, in dry years in which the rainfall is below average (2002, 2004, 2008, 2009, 2011,
and 2013), the contribution of water balance components to the water budget decreased
significantly. Previous studies in the upper Blue Nile of Ethiopia [74,75] have shown the
same trend in that the contribution of water balance components declined with the fall
of rainfall.

The year 2002 and 2010 were considered crucial for their minimum and maximum
potential of producing water balance components in the catchment, respectively. It is
observed that surface runoff, lateral flow, and percolation increase with the increase in
rainfall (Figure 10).
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Table 5. Mean annual Water Balance components of Kobo-Golina catchment (2002–2014).

Year Annual Input Water
(PCP + Run On) SURQ LATQ Perc. Water

Yield AET Run_On Sum of Water
Balance Components

2002 685.75 174 8.95 147 329.95 359 32.75 688.95

2003 854.29 314 11.7 164 489.7 365 55.29 854.7

2004 682.85 199 9.36 148 356.36 329 36.85 685.36

2005 833.7 258 12 171 441 385 47.7 826

2006 779.39 282 11.2 160 453.2 324 50.39 777.2

2007 824.6 239 14.3 182 435.3 391 46.6 826.3

2008 719.25 222 10.6 154 386.6 328 41.25 714.6

2009 641.87 165 9.22 143 317.22 334 31.87 651.22

2010 902.1 332 15.6 190 537.6 350 62.1 887.6

2011 728.82 224 10.1 162 396.1 353 40.82 749.1

2012 834.4 272 14.1 178 464.1 363 51.4 827.1

2013 753.5 194 13.2 171 378.2 367 39.5 745.2

2014 821.1 238 13.9 182 433.9 384 46.1 817.9

Annual
average 773.97 239 11.86 165.5 416.8 356.3 44.8 773.17Sustainability 2023, 15, 3337 17 of 25 
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Figure 10. Distribution of mean annual value of simulated water balance components (2002–2014).

The water balance during the simulation period (2002–2014) showed that the catch-
ment receives an annual rainfall of 729 mm. SWAT+ with landscape unit (SWAT + LSU)
assumed surface flow -and lateral flow run-on as an additional source of water in the
catchment. Therefore the catchment receives 771.63 mm of water annually. Actual evapo-
transpiration and lateral flow took the major and minor share of the annual water budget,
respectively. The actual evapotranspiration, surface runoff, lateral flow, and groundwater
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recharge (percolation) account for 47%, 30%,1.53%, and 21.4% of the total water in the
catchment (precipitation + run-on), respectively.

The result of the water balance assessment showed that 47% of the annual precipitation
in the catchment is transferred back to the atmosphere through evapotranspiration. Evapo-
transpiration holds a major share in the water balance of the catchment. Other previous
studies in Ethiopia agree with the findings of this study. A SWAT modeling in the Borkena
River Basin showed that evapotranspiration accounts for 48.1% of the total rainfall [76]. A
study in the Hormat-Golina River of Ethiopia using the WetSpass model showed that about
68% of precipitation is lost through evapotranspiration [77]. The simulated results from the
WEP modeling in the upper Blue Nile of Ethiopia showed that evapotranspiration accounts
for a major share (58%) of the total rainfall [74]. In [78], the JGrass-NewAge model system
was applied in the upper Blue Nile and found that evapotranspiration accounts for a major
share (56%) of the total rainfall. The spatial distribution of water balance components at
the HRU level is depicted in Figure 11.
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Figure 11. Spatial distribution of average annual water balance components at HRU level. (a) Surface
runoff generated (b) Lateral flow (c) Percolation, and (d) Actual evapotranspiration.

3.3.2. Water Yield and Total Water Storage Assessment

The monthly water balance was also evaluated to see the water yield and storage
condition of the catchment. The water yield (WY) accounts for 58.8%, 23.56%, and 17.63%
in the main rainy, short rainy, and dry seasons, respectively (Figure 12).

The variation in water yield depends on surface runoff, groundwater, and lateral flow.
As a result, water yield followed the same pattern in that it increased with the increase in
rainfall. Following the rainfall and runoff pattern, positive storage is obtained (water is
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stored in soil and ground) for March and April (short rainy season) and July and August
(main rainy season).
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Figure 12. Mean monthly simulated (2002–2014) water balance Kobo-Golina (Long time simulated
value based on parameters from multivariable calibration).

This is due to the high precipitation and limited evapotranspiration in the rainy
seasons, whereas, in the rest of the months (dry season), negative storage was observed,
and as a result, water that was stored during the wet seasons is released from the soil and
ground to compensate for the deficiency.

Following the precipitation and runoff patterns, maximum positive storage (both in
soil and ground) was observed in July (+46.7 mm/month) and August (+26.85 mm/month).
Maximum negative storage was observed in September (−53.46 mm/month) and October
(−36.36 mm/month). The water stored in the soil during the rainy season will be lost as
evapotranspiration in the dry season.

3.4. Surface Runoff Conditions

The spatial pattern of surface runoff follows the rainfall pattern of the catchment. A
significant amount of rainfall generated a considerable amount of runoff. The simulated
average annual basin surface runoff (SURQ) is 239.46 mm. This shared 30% of the input
water of the watershed. The simulated maximum and minimum monthly runoff are
attained in August and December with a value of 86.12 mm and 0.67 mm, respectively.
Surface runoff generation was found higher in the floodplain areas than in upland areas
(Figure 11a). The runoff and rainfall have a direct relationship because of the topography,
land cover, and soil infiltration capacity of the catchment. A previous modeling study
conducted by [77] around the study area using WetSpass and MODFLOW revealed that
the share of surface runoff in the water balance is 27%, which is similar to the findings of
the current study.

3.5. Streamflow Conditions

Figure 13 showed that the stream flow closely follows the precipitation pattern of
the basin. The Mann–Kendall trend test indicated that the daily streamflow showed a
significant increasing trend (p < 0.05).
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Figure 13. A rainfall-runoff pattern of the Kobo-Golina sub-basin at the main outlet (2002–2014).

The monthly low flow occurs from October to February and from May to June with
a median flow of 1.43 m3/s in June and a coefficient of dispersion of 0.67 and high flows
occur in July and August, with a median flow of 16.55 m3/s in August with a coefficient of
dispersion of 1.55. The highest coefficient of dispersion (COD) was found in August (the
wettest month) and a low coefficient of dispersion was found for the driest month (June)
(Table 6).

Table 6. Monthly median flows (m3/s) of Kobo-Golina at the outlet (2002–2014). Q25 is the flow that
is exceeded 25% of the time, Q50 is the median, and Q75 is the flow that exceeded 75% of the time.

Month Median Flow (Q50)
Coefficient of

Dispersions (Q75
− Q25)/Q50)

Month Median Flow
(Q50)

Coefficient of Dispersions
(Q75 − Q25)/Q50)

Jan 2.918 1.028 Jul 15.13 1.59
Feb 2.152 0.96 Aug 16.55 1.55
Mar 5.875 1.01 Sep 6.334 1.21
Apr 8.914 1.22 Oct 2.527 0.88
May 2.109 1.18 Nov 1.767 0.59
Jun 1.43 0.67 Dec 1.691 1.1

The simulated minimum and maximum mean annual stream flow at the basin outlet
are 7.95 m3/s and 13.2 m3/s (2010), respectively. The maximum flow occurs in the highest
rainy year and the lowest flow is observed in the small rainy year (2009). Previous stud-
ies showed similar results that in areas where saturation excess runoff dominates, daily
discharge is the function of daily rainfall [79–81].

3.6. Recharge Conditions

Groundwater recharge has no real data to prove the performance of the model. Most
of the current studies have encountered a similar challenge because of the difficulty in ob-
taining real data on groundwater recharge. Illuminated by many of the existing studies, we
did not directly validate the reliability of groundwater recharge, but validated simulating
streamflow instead, assuming that streamflow has a strong correlation to groundwater
recharge; this correlation has been substantially represented in the SWAT+ model.
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Based on this fact, the simulated model recharge value showed an increasing trend
from the upland to the floodplain areas. The minimum and maximum annual recharge are
208 and 276 mm with mean annual recharge of 244.36 mm. The maximum mean monthly
simulated recharge is obtained in September (one month later than the month of maximum
rainfall) with a value of 78.2 mm (Figure 14). Since the dominant soil in the floodplain area
is vertisols, it has a good water-holding capacity and as a result, has a good potential for
recharge to the shallow aquifer.
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Figure 14. Average monthly recharge for September.

Even if the main rainy season is from June to August, the simulated maximum volume
of recharge is observed from September to November. This might be because of the poor
capacity of vertisol to release water immediately to the shallow aquifer. This caused a
delay in recharge to the aquifer (one month later than the main rainy month). In Figure 14,
it is also observed that recharge increases while surface runoff falls from September to
December. It can be easily understood that the magnitude of surface runoff is affected by
the recharge condition during the storage deficient period.

4. Conclusions

Random utilization of water resources is a threat to the environment. The use of water
resources should be based on the recommended exploitable potential. So, understanding
the hydrological processes and applying a good hydrological model is the most important
aspect of water resource management works. The hydrology of ungauged catchments is
still an issue for hydrologists for better management of water resources at different scales.
The issue is very critical in developing nations like Ethiopia where there are numerous
ungauged catchments. A solution has to be found to tackle the challenge, and hydrological
models were considered as one of the means. The SWAT+ model was used to characterize
the hydrology of the ungauged catchments of Kobo-Golina.

The water balance terms were properly characterized based on the model simulated re-
sult. The study suggested that both surface water harvesting and groundwater exploitation
can be sought in floodplain areas while conserving the uplands. It was also found that the
use of open-source remote sensing data for model simulation is promising for ungauged
areas. CHIRPS reanalysis rainfall can be used as alternative input data for model simulation
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in the study area. The SWAT+ model simulations also demonstrated that MODIS AET and
GloFAS flow present good potential for hydrological model calibration in the study region.

The SWAT+ with LSU (Landscape unit) model setup is very promising with regard to a
better representation of hydrological processes in the saturated excess humid areas. This ap-
proach paves a new path for characterizing ungauged catchments by SWAT+ hydrological
models based on open-source satellite data. The SWAT+ may be used to assess the hydro-
logical processes and quantification of the water balance terms in catchments with similar
hydrological and geomorphological features.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15043337/s1, Figure S1. Physical land resources of the study
area (A) DEM, (B) Land use, (C) Soil. Figure S2. Landscape of the study area. Table S1: Parameter
range and change type to simulated SWAT using MODIS AET and GloFAS river flow.
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