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Abstract: In maritime engineering, marine-derived construction materials are seen as an efficient and
cost-effective alternative. HWM is a novel inorganic cementitious material characterized by its high
water content, rapid setting, and early strengthening. In this study, first, HWM was proposed to be
produced from seawater and used in a maritime environment. Two groups of HWM samples with
varied w/c ratios were prepared with fresh water and seawater, and their behavior was examined to
assess the viability of HWM produced with seawater. The microstructures and chemical compositions
were studied using SEM and XRD. Results indicated that as the w/c ratio increased from 3:1 to 6:1, the
water content, density, and uniaxial compressive strength of HWM produced from seawater varied
from 72.1% to 77.5%; 1.25 to 1.12 g/cm3, and 1.47 MPa to 0.39 MPa, respectively, which is 2–10% lower,
0.8–2.2% higher, and 13–45% stronger than that from fresh water. The chemical composition of HWM
mixed with seawater is predominantly composed of ettringite, C-S-H gel, aluminum (Al(OH)3) glue,
M-S-H gel, and Mg(OH)2. SO4

2− and Mg2+ in seawater participate in the hydration and hardening
of HWM, resulting in an increase in the synthesis of ettringite and M-S-H gel, which makes the
skeletal structure of HWM denser, hence increasing its strength. HWM derived from seawater retains
excellent physical and mechanical properties. This work reveals the HWM-seawater interaction
mechanism, elucidates the promising application prospect of HWM in maritime engineering, and
paves the way to investigate its field performance.

Keywords: high-water material; seawater; water-cement ratio; microstructure; water content; strength

1. Introduction

In recent years, with the expansion of ocean exploitation, the construction of mar-
itime infrastructure has grown at an unparalleled rate [1]. Cementing material has been
widely used and chosen among manmade construction materials in maritime environments
around the world due to its low cost and ease of construction [2]. Cementing material
draws a matter of continuing concern due to a high environmental cost. It is reported that
cement production is the third-largest producer of CO2 in the world after transport and
energy generation [3]. Sustainability for cementitious material has attracted widespread
interest and has become a hot topic of research [4–6]. Recently, recycled cementing materials
in cementing materials production have become more and more popular in terms of less
consumption of natural materials and many environmental advantages of disposal and
reusing of waste materials. The behavior of recycled cementing materials was investigated
by a large number of researchers [7–13]. However, the long-term durability of recycled ce-
menting materials, especially under various harsh environments, for example, in maritime
environments, was reported to be obviously lower than conventional concrete [14]. There-
fore, developing novel and sustainable cementing materials is still a scientific challenge for
the sustainability of marine development.
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In addition, cementitious materials are reported by previous research [15–17] to be
susceptible to a range of physical and chemical breakdown processes in maritime envi-
ronments. In addition, the use of standard construction materials (freshwater and river
sand, etc.) on most islands and reefs in marine engineering is always constrained by time,
transportation costs, and difficult geological conditions [17]. Therefore, how to obtain
alternative and sustainable construction materials locally and economically is a significant
challenge [18,19].

High-water material (HWM), also known as high-water back-filling material or high-
water-content and quick-setting material, is a novel cementing material. HWM was first
invented by Professor Henghu SUN from China University of Mining and Technology in
1989 and successfully used in the coal mining back-filling engineering practice [20]. HWM
has been praised as green and sustainable cementing material with numerous excellent
advantages, including high water content, good pumpability, rapid setting, high early
strength, recrystallization recovery strength after the early failure of the stone body, a
simple material production process, and low cost [21]. The chemical composition and
mineral composition of the raw material of HWM were analyzed by Xie and Liu (2014) [22],
and the hydrating and hardening mechanism of HWM was revealed by Xia et al. (2018) [23].
The basic physical and mechanical properties of HWM were tested by a large number of
scholars, and the uniaxial and triaxial compressive strength and creep properties were
measured as well. Xie et al. (2013) investigated the influence of curing time on the
properties of HWM and revealed that the strength of HWM stones increased with the
curing time [24]. Zhang et al. (2017) discussed the effects of water-cement ratios on the
physical and mechanical characteristics of HWM [25]. Zhou et al. (2017) conducted an
experimental study to investigate the failure characteristics of HWM under loading and
divided the stress-strain curve of HWM, which had initial deformation, elastic, plastic
deformation, and disruption four stages [26]. The research above proved that HWM is a
promising cementing material with excellent physical and mechanical properties.

Initially, HWM was utilized mostly for back-filling, roadway support, etc., in under-
ground coal mining [27–30]. Recent studies indicate that HWM has a promising application
in maritime environments. HWM is lauded for its ability to “convert water into stone”
because of its ultrahigh water-cement ratio and water content, which can exceed 10:1 and
95%, respectively, and its strength can exceed 5 MPa [20], which means less cementing
materials are consumed, hence less CO2 emission is produced. Given that water could be
acquired locally and HWM slurry could be transported by pumping, HWM construction is
practical, quick, and inexpensive in maritime environments [31].

Previous research has examined the behavior of HWM and demonstrated its usefulness
in marine environments. Hou et al. (2012) recommended using HWM for the preservation
and reinforcement of coral sand islands and reefs, as well as port reinforcement, and they
measured the properties of HWM in marine environments [32]. The hydration mechanism,
physical and mechanical properties, and port engineering application of HWM in maritime
environments were examined [33]. He et al. (2014) discuss the environmental influences on
the physical and mechanical properties of HWM cured in seawater [34]. However, there
are still a number of scientific obstacles to implementing HWM in marine engineering.
The majority of previous studies focused on the characteristics of HWM mixed with
freshwater [34–37]. Given the shortage of fresh water in marine environments, HWM
derived from marine sources (i.e., seawater) is viewed as an efficient and cost-effective
alternative [38,39]. It is required to explore the viability of preparing HWM with seawater
and the impact of the seawater environment on HWM’s behavior.

In this study, the physical and mechanical characteristics and microstructure, and
chemical composition of HWM produced with seawater were studied.
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2. Materials and Methods

The raw materials of HWM used in this study consist of two parts: main material (A
material, B material) and subsidiary material (A-A material, B-B material). Their chemical
compositions are shown in Table 1. The main components of A material are bauxite. B
material is composed of lime, gypsum, etc. The main components of A-A material are
suspension agent, coagulant, and dispersant, including Na2CO3, BaBiO3, etc. B-B material
is composed of early strength agents, suspension dispersants, etc., including SiO2, CaSO4,
etc. The proportion of ingredients employed in this study was A:A-A:B:B-B = 1:0.1:1:0.04,
which follows the material formulation proposed by Sun and Song (1994) [20].

Table 1. Mineral components of high-water material used in this study.

ID Materials Main Compositions

A Bauxite 3CaO·3Al2O3·CaSO4, 2CaO·SiO2 etc.
A-A Additives Na2CO3, BaBiO3, etc.

B Lime, gypsum, etc. CaSO4, CaSO4·2H2O CaSO4·0.5H2O etc.
B-B Additives SiO2, CaSO4, etc.

Figure 1 shows the preparation procedures for preparing HWM. It can be seen that
A and A-A were mixed together first, and then enough water was added and stirred
thoroughly to produce A seriflux. At the same time, B and B-B were mixed together, and
then enough water was added and stirred thoroughly to produce B seriflux. A and B seriflux
have a strong fluidity and keep good mobility as a liquid for more than 24 h. Therefore,
A and B seriflux have excellent pumpability and can be transported by pipeline, which
is convenient for construction in engineering practice. Then A and B seriflux were mixed
together and stirred thoroughly to produce HWM stone. HWM has the characteristics of
quick setting and early strength. HWM could be solidified in half an hour after mixing
A and B seriflux together. The early strength of HWM stone could be over 2 MPa in 2 h,
which is about 20% of the final strength, and could increase to more than 60–90% of final
strength after 7 days, according to Sun and Song (1994) [20]. After that, the strength of
HWM would increase flat. HWM stone should be cured in water for more than 28 days
to get final strength. In addition, it was reported that the crystals of HWM could keep
growing for a long term hence the mechanical strength of HWM could be recovered after
the early failure of the stone body of HWM.
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Figure 1. Procedures of preparing for HWM.

Table 2 shows the test plan in this study. The HWM samples were prepared and tested
according to the Standard for the Test Method of Mechanical Properties of Ordinary Con-
crete (GB/T 50081-2002) [40] and Methods for Determination of Physical and Mechanical
Properties of Coal and Rocks (GB/T 23561.1-2009) [41]. By varying the amount of water
added, standard cylindrical HWM samples with a diameter of 50 mm and a height of
100 mm (50 mm × 100 mm) with different water-cement (w/c) ratios (i.e., w/c = 3:1, 4:1,
5:1, and 6:1) were produced. The HWM samples prepared with and cured in tap water were
used as the control test group (Test ID: C). As a comparison, artificial seawater was used
to prepare and cure samples of the seawater test group (Test ID: S). The artificial seawater
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used in this study was manmade in the laboratory by following ASTM D1141-98(2013) [42].
The temperature of the fresh water and seawater was about 18–22 ◦C.

Table 2. Specimen design and test plan.

Test ID Test Group Mixing and Curing Water w/c Parameters Investigated

C Control test group Tap water
3:1, 4:1, 5:1 and 6:1

Density, water content, strength,
microstructure, chemical component etc.S Seawater test group Artificial seawater

Note: S3-2 means the 2nd HWM sample of the seawater test group with w/c = 3:1.

In accordance with the procedure proposed by He et al. (2014) [34], HWM was
prepared and cured. The HWM samples were prepared in a standard cast iron mold
(ϕ50 mm × 100 mm). As shown in Figure 1, the preparation procedures of preparing
HWM in this study comprised weighing, mixing with water, combining A and B seriflux,
injecting into the mold, and demolding. After demolding, the samples were then placed
in tap water or seawater and cured for 28 days. All samples were put in an environment-
controlled room at Sichuan University. The room temperature was kept at 26–30 ◦C, and
the air humidity was 40–50%.

The samples were then utilized in the subsequent analysis. After analyzing the
microstructure and chemical components with a scanning electron microscope (SEM) and
X-rays, the fundamental physical characteristics, such as moisture content and density,
were determined. MTS815.03 Electro-hydraulic Servo-controlled Rock Mechanics Testing
System was used to test the mechanical properties of samples. Each group sample was
subjected to the aforementioned tests three times, with the average value being the final test
results. The above experiments were carried out in the State Key Laboratory of Hydraulics
and Mountain River Engineering of Sichuan University, China.

3. Results
3.1. Density and Water Content

The density of HWM produced from water and seawater at various w/c ratios is
depicted in Figure 2. It can be seen that as the w/c ratio grows, the average mass and bulk
density of samples from two groups of HWM samples drop. As the w/c ratio increases from
3:1 to 6:1, the density of HWM produced from seawater decreases from 1.25 to 1.12 g/cm3.
The density steadily drops until it reaches the density of water (1 g/cm3). However, the
density of HWM prepared from seawater with the same w/c ratio is 0.8% to 2.2% more
than that of HWM prepared from water.
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Figure 3 depicts the water content of HWM produced by mixing freshwater and
seawater at various w/c ratios. As the w/c ratio increases, the moisture content of the two
groups of HWM samples increases progressively. As the w/c ratio increases from 3:1 to
6:1, the water content of HWM produced from seawater increases from 72.1% to 77.5%.
The HWM stone body with the same w/c ratios as the seawater test group had 2–10% less
water than the control test group. Previous studies also found that when water-cement
ratios increase, the density of HWM decreases while the water content of HWM increases,
which is consistent with the findings based on the above test results.
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3.2. Mechanical Characteristics

The stress-strain curves of S3 and S6 are shown in Figure 4.
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In accordance with the rock mechanics classification standard, the stress-strain curve
of a typical HWM can be classified into four stages: pore fracture compaction stage, elastic
deformation to fracture development stage, unsteady fracture development stage, and
post-peak failure stage. Among them, S3 has the shortest pore crack compaction stage, then
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enters the elastic deformation stage with a sharply rising stress-strain curve and an elastic
modulus of 0.198 GPa. Afterward, S3 quickly reaches its maximum strength (i.e., 1.5 MPa),
and the strain is 0.015%. As soon as it enters the post-peak phase, the residual stress is
nearly nil.

Sample S6’s stress-strain curve demonstrates a substantially longer pore fracture
compaction stage and an unstable fracture development stage. In the elastic phase, its
stress-strain curve is quite moderate, as the strain increases from 0.02 to 0.04 and the
corresponding stress increases from 0.1089 MPa to 0.3276 MPa, while the linear phase
elastic modulus is just 0.009 GPa. In the post-peak phase, stress slightly reduces as strain
increases. The range of residual stress is 0.08–0.1 MPa, which corresponds to approximately
45–70 percent of the peak stress, while the range of strain is 0.12 to 0.20. It proved that
HWM with higher water-cement ratios has better plasticity.

In the uniaxial compression test, Figure 5 depicts the typical failure images of the
HWM produced from seawater with w/c = 3:1 (i.e., S3) and 6:1 (i.e., S6). Split failure
can be seen to be the failure mode of S3. During loading, first, the stress of S3 sharply
spiked while there was no vertical compression observed, after that the sample was split
into many pieces in the internal axial direction, after which the stress fell sharply, and
the sample could only hold a small axial strain, which is in accordance with the stress-
strain curve depicted in Figure 4. At the same time, S6’s mode of failure was a ductile
failure. Under axial loading, the axial strain continued to grow, and the specimen was
compressed vertically and extended laterally. As the axial compression increased, the
upper portion of the specimen was initially crushed, and the shattered HWM blocks piled
on the upper portion of the specimen and continued to support the load. The sample
resembled a “compressed biscuit” in appearance. During this procedure, the material
remained somewhat intact, and residual stress remained elevated. Figure 4 depicts the
stress-strain curve for the material. A similar phenomenon was also observed in previous
studies on the failure mode of HWM [43,44]. It was reported that HWM with higher w/c
ratios owns better plasticity; therefore, it could generate a larger axial and horizontal strain
under axial loading.
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During the uniaxial compression test, the surface of the S3 sample remained rather
dry, and no water leaked out. While in S6, water precipitated continually, and as the strain
increased, water bleeding accelerated. As seen in Figure 5, the bleed water was collected
near the sample’s base. Sun and Song (1994) proposed that the water in HWM could
be divided into three parts, namely crystal water, absorbed water, and free water [20].
Most of the water in HWM is free water, and the amount of free water increases with the
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water-cement ratios. Free water is apt to be lost under loading. Therefore, a large amount
of water was observed to be leaked out for HWM with higher water-cement ratios.

Two groups of HWM samples were then subjected to uniaxial compression tests
to obtain the uniaxial compression strength. The loading rate for the tests was kept
at 5 mm/min. Figure 6 depicts the sample strength of two distinct groups. It can be shown
that as the w/c increased, the uniaxial compressive strength of the HWM samples in
the two groups fell gradually. The sample strengths of the seawater test group with
w/c = 3:1 and 6:1 were 1.47 MPa and 0.39 MPa, respectively, while those of the control
test group were 1.30 MPa and 0.31 MPa, respectively. The HWM sample strengths of the
seawater group were 13 to 60 percent higher than those of the freshwater group of HWM
samples, respectively.
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3.3. Microstructure and Chemical Compositions Analysis

Figure 7a–c show SEM images (×2000 times) of HWM samples of C3, S3, and
S6, respectively.
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Figure 7a demonstrates that the hydration products of HWM produced by freshwater
are dominated by ettringite crystals and have a needle-like, net-like, and predominantly
rod-like structure. The crystals are staggered and interconnected to produce a dense
network structure that serves as a framework and support. Filling the network structure
with fibrous hydrated silica (C-S-H) gel and pom-shaped aluminum (Al(OH)3) glue reduces
the number of interior pores and increases the density. This explains why the water-cement
ratio and water content of HWM are so high.
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Comparing SEM images of HWM made by water and seawater with w/c = 3:1 (i.e.,
Figure 7a C3 and Figure 7b S3, respectively), the microstructures of both groups include a
network structure composed of ettringite crystals, as well as fibrous hydrated silica (C-S-H)
gel and pom-shaped aluminum (Al(OH)3) glue within the network structure. However,
there are more ettringite crystals within, and the network structure is significantly denser
in HWM generated from seawater, which increases the network structure’s strength in the
HWM-hardened body. In addition to C-S-H gel and Al(OH)3 glue, a significant amount of
M-S-H gel and Mg(OH)2 were found to be present in the network structure, which makes
the structure denser. The strength of HWM with a stronger and denser microstructure is
always greater. Consequently, the differences in the SEM images of HWM created using
fresh water and seawater are consistent with the findings of Figure 6.

By comparing Figure 7b,c, the differences in the SEM images of HWM produced by
seawater with a w/c ratio of 3:1 and 6:1 can be determined. It can be observed that HWM
with w/c = 6:1 has significantly fewer ettringite crystals, as well as C-S-H gel, Al(OH)3
glue, M-S-H gel, and Mg(OH)2 inside the crystal network structure. HWM with a w/c ratio
of 6:1 is able to absorb more water and has a larger water content than HWM with a w/c
ratio of 3:1. This is because the network structure is significantly looser and has many more
internal pores. In addition, the ettringite crystals of w/c = 6:1 are thinner, and the fibrous
hydrated silicic acid gel and pom-shaped aluminum glue in the network structure are also
significantly reduced, resulting in a structure with less compactness and more holes.

The C3 and S3 XRD scans are depicted in Figure 8. Ettringite (chemical formula:
3CaO•Al2O3•3CaSO4•32H2O), C-S-H, and Al(OH)3 are the primary constituents of the
stone body of the HWM, as seen. In addition to the aforementioned component, however,
M-S-H gel and Mg(OH)2 were also detected in the HWM of the seawater group.
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4. Discussion
4.1. Effects of w/c on the Microscopic and Macroscopic Properties of HWM Made by Seawater

In comparison to fresh water, seawater has a substantial impact on the microstructure,
chemical content, and physical and mechanical properties of HWM.

Zhang et al. (2017) analyzed the microstructure of HWM produced using potable
water [25]. Figure 7 shows that compared to the SEM pictures of HWM made with fresh
water, HWM made with seawater has a denser microstructure, a greater number of ettringite
crystals, and a smaller porosity. This is compatible with the impacts of seawater on the
macroscopic properties of HWM, specifically a decrease in water content, an increase in
density, and an increase in strength.

Comparing the microstructure of HWM with different w/c ratios, the principal hydra-
tion products of HWM produced by seawater are the needle-like and prismatic Ettringite
crystals, C-S-H and M-S-H gel, Al(OH)3 glue, and Mg(OH)2. Ettringite crystals in HWM
with higher w/c ratios are narrower than those with lower w/c ratios.

In addition, when w/c ratios grow, fewer ettringite crystals are produced, much less fi-
brous hydrated silica gel and pom-shaped aluminum glue are filled in the network structure,
and HWM has a looser microstructure and more interior pores. Comparing the macroscopic
parameters of HWM with different w/c ratios, as illustrated in Figures 2–4 and 6, HWM
formed from seawater with a greater w/c ratio has higher water content, lower density,
and lower strength. Therefore, the microscopic and macroscopic properties of HWM in our
investigation are compatible.

Additionally, w/c has a substantial impact on the failure modes of HWM. During the
uniaxial compression test, hardly any water separated from samples with a w/c ratio of
3:1. The samples demonstrate brittle elasticity, and split failure is the predominant form of
failure. The samples with a w/c ratio of 6:1 contain more water (78.4%). During the uniaxial
compression test, there was water bleeding, and the rate of water bleeding increased as
stress increased. The major mode of failure for samples with a w/c ratio of 6:1 is ductile
failure. HWM with a greater w/c has excellent plasticity, whereas HWM with a lower w/c
has excellent elasticity-brittleness. This may be the primary reason why failure modes of
HWM with different w/c ratios vary.

He et al. (2014) studied the physical and mechanical qualities of HWM manufactured
with fresh water but cured in seawater for 21 days. The results demonstrated that HWM
cured in seawater could retain outstanding physical and mechanical properties [34]. Hou
et al. (2012) conducted field testing with HWM derived from fresh water in maritime
engineering, and the HWM demonstrated excellent performance [33]. In this investigation,
it was determined that HWM might be prepared and cured in seawater while retaining its
outstanding physical and mechanical qualities. HWM is, therefore, a promising building
material for islands, reefs, and marine engineering.

4.2. Effects of Seawater on the Physical and Mechanical Properties of HWM

Xia et al. (2018) reported that the following reactions will occur after the mixing of two slur-
ries during the hydrating and hardening process of HWM, as shown in Equations (1)–(4) [23].
During the above process, a large amount of 3(3CaO·Al2O3·CaSO4·12H2O) (AFm) and
3CaO·Al2O3·3CaSO4·32H2O (AFt) were produced.

3CaO·Al2O3·CaSO4 + 2CaSO4 + 38H2O→3CaO·Al2O3·3CaSO4·32H2O + 4Al(OH)3 (1)

3CaO·Al2O3·CaSO4 + 18H2O→3CaO·Al2O3·CaSO4·12H2O + 4Al(OH)3 (2)

3Ca (OH)2 +3CaSO4 + 2Al (OH)3 + 2H2O→3CaO·Al2O3·CaSO4 ·32H2O (3)

2CaO·SiO2 + nH2O→C-S-H +Ca(OH)2 (4)

It can be observed that a significant amount of the free water in the mixed slurry of
A and B dissipates during the hydration reaction and converts into bound water of AFm
and AFt, with AFt being the majority of the final reaction result (i.e., ettringite). During the
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hydration and hardening reaction of HWM, the formation of Ettringite crystals is largely
reliant on the amount of water, with free water forming in HWM stones with a higher w/c
ratio and less bound water forming in ettringite with a low w/c ratio. The ideal w/c ratio
for HWM made using potable water is 6.86, and the HWM water content is 87.3% [24].

Seawater provides a high concentration of salt, with SO4
2− and Mg2+ being the most

influential ions on the hydration and hardening reactions of HWM.
According to reports [45,46], SO4

2− reacts with Ca2+ to generate gypsum (CaSO4·2H2O).
On the one hand, gypsum can create ettringite (AFt) directly with tricalcium aluminate
(C3A) in nail slurry. CaSO4 must be present for AFm to react with gypsum dihydrate
and form more ettringite (AFt). Equations (5)–(8) depict the primary chemical reaction
equations for the procedure described above.

Ca(OH)2 + Na2SO4 + 2H2O→CaSO4·2H2O +2NaOH (5)

3(CaSO4·2H2O) + 3CaO·Al2O3 + 26H2O→3CaO·Al2O3·3CaSO4·32H2O (AFt) (6)

3CaO·Al2O3·3CaSO4·32H2O + 3(CaSO4·2H2O)
+4H2O→3(3CaO·Al2O3·CaSO4·12H2O)

(7)

2(CaSO4·2H2O) +3CaO·Al2O3·CaSO4·12H2O +
16H2O→3CaO·Al2O3·3CaSO4·32H2O

(8)

As HWM is a novel cement-based material, its hydration and hardening processes
are comparable to those of conventional cement-based materials, such as cement and
concrete. When concrete is placed in seawater, ion exchange may occur, according to
previous studies [47]. Ca2+ in C-S-H and Ca(OH)2 would be replaced by Mg2+, resulting in
the formation of Mg-S-H gel and insoluble Mg(OH)2. Equations (9)–(11) [46,48] depict the
principal chemical reaction equations of the aforementioned procedure for the production
of HWM from seawater. It can be observed that AFm combines with MgSO4 to form
more ettringite AFt, hence increasing the number of ettringite crystals in the body of the
high-water material after it has been hardened. M-S-H gel and insoluble Mg(OH)2 were
used to strengthen the compactness of the hardened body of HWM by filling the network
structure of Ettringite crystals. Therefore, it contributes to the enhancement of the tough
body of HWM.

Ca(OH)2 + MgSO4 + 2H2O→CaSO4·2H2O +Mg(OH)2 (9)

C-S-H + MgSO4 + 2H2O→M-S-H + CaSO4·2H2O (10)

4CaO·Al2O3·13H2O +3MgSO4 +2Ca(OH)2
+20H2O→3CaO·Al2O3·3CaSO4·32H2O +3Mg(OH)2

(11)

In conclusion, SO4
2− and Mg2+ in seawater can enhance the synthesis of additional

ettringite AFt in the hydration and hardening reaction of HWM, hence enhancing the
strength of the hardened skeleton structure. In addition, M-S-H gel and insoluble Mg(OH)2
were produced to fill the internal holes of the ettringite network structure. This improved
the density of the hardening body of high-water material, hence enhancing the strength of
seawater-based HWM.

5. Conclusions

In this study, HWM was first proposed to be produced from seawater and used
in a maritime environment. Then the method of HWM produced from seawater was
provided, and the physical and mechanical characteristics of HWM made from seawater
were investigated, and the interaction mechanism between HWM and seawater was also
discussed. The subsequent findings were reached:

(1) As the w/c ratio increases from 3:1 to 6:1, the water content, density, and uniaxial
compressive strength of HWM produced from seawater varied from 72.1% to 77.5%; 1.25 to
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1.12 g/cm3, and 1.47 MPa to 0.39 MPa, respectively, which is 2–10% lower, 0.8–2.2% higher,
and 13–45% stronger than that from fresh water. Compared to HWM samples made with
fresh water, seawater test group samples show a 0.8–2.2% greater density, 2–10% lower
water content, and 13–45% greater strength.

(2) The primary chemical components of HWM derived from seawater are Ettringite,
C-S-H gel, aluminum (Al(OH)3) glue, M-S-H gel, and Mg(OH)2. Ettringite crystals stagger
and link, forming a dense network structure that functions as a skeleton and support. The
network structure was filled using C-S-H gel, aluminum (Al(OH)3) glue, M-S-H gel, and
Mg(OH)2.

(3) The HWM-seawater interaction was revealed. SO4
2− and Mg2+ in seawater con-

tribute to the hydrating and hardening reaction of HWM, resulting in the production of
additional Ettringite, M-S-H gel, and Mg(OH)2, which makes the skeletal structure of HWM
denser, hence enhancing its strength. HWM produced from seawater retains outstanding
physical and mechanical characteristics.

(4) This study demonstrated that HWM produced from seawater possesses excellent
physical and mechanical properties; consequently, HWM is a promising construction
material for islands, reefs, and marine engineering, and it is suggested that additional field
tests be conducted to verify the long-term behavior of HWM produced from seawater.
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