
Citation: Gu, Z.; Xiong, G.; Fu, X.

Parameter Extraction of Solar

Photovoltaic Cell and Module

Models with Metaheuristic

Algorithms: A Review. Sustainability

2023, 15, 3312. https://doi.org/

10.3390/su15043312

Academic Editors: Luis

Hernández-Callejo, Prince Winston

David and Praveen Kumar B

Received: 6 January 2023

Revised: 2 February 2023

Accepted: 7 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Parameter Extraction of Solar Photovoltaic Cell and Module
Models with Metaheuristic Algorithms: A Review
Zaiyu Gu 1, Guojiang Xiong 1,2,* and Xiaofan Fu 1

1 College of Electrical Engineering, Guizhou University, Guiyang 550025, China
2 Guizhou University Institute of Engineering Investigation and Design Co., Ltd., Guiyang 550025, China
* Correspondence: gjxiongee@foxmail.com

Abstract: As the photovoltaic (PV) market share continues to increase, accurate PV modeling will
have a massive impact on the future energy landscape. Therefore, it is imperative to convert difficult-
to-understand PV systems into understandable mathematical models through equivalent PV models.
However, the multi-peaked, non-linear, and strongly coupled characteristics of PV models make it
challenging to extract accurate parameters of PV models. Metaheuristics can address these challenges
effectively regardless of gradients and function forms, and have gained increasing attention in solving
this issue. This review surveys different metaheuristics to the PV model parameter extraction and
explains multiple algorithms’ behavior. Some frequently used performance indicators to measure
the effectiveness, robustness, accuracy, competitiveness, and resources consumed are tabulated and
compared, and then the merits and demerits of different algorithms are outlined. The patterns
of variation in the results extracted from different external environments were analyzed, and the
corresponding literature was summarized. Then, challenges for both metaheuristics and application
scenarios are analyzed. Finally, corresponding perspectives on future research are summarized as a
valid reference for technological advances in PV model parameter extraction.

Keywords: PV model; parameter extraction; metaheuristic

1. Introduction

Fossil fuels’ total reserves are limited, and their overuse has threatened human health
and the ecological environment. Thus, developing renewable energy sources is an extremely
urgent concern [1–5]. Renewable energy, including the energy sources of solar, hydro,
wind, geothermal, and biomass energy [6–8], is inexhaustible or short-term renewable.
Solar energy is a form of energy that contains a tremendous amount of energy and has
the potential to meet all the energy requirements of current human activities [9]. As a
result, solar energy has been employed in varied applications such as desalination, heating
plants, and photovoltaic (PV) power generation [10,11]. Due to the clean and widespread
availability of electrical energy in various fields, PV power generation is an important
project for developing renewable energy sources [12].

Accurate modeling is essential for the assessment, efficiency improvement, fault
analysis, and simulation of PV systems [13–15]. A PV system consists of an aggregation
of PV cells, and they are typically modeled with equivalent circuits, mainly including
single diode (SDM), double diode (DDM), and triple diode (TDM) models [16–18]. These
equivalent circuits can simulate PV cells’ electrical characteristics. They have five, seven,
and nine parameters to be extracted, respectively. As the number of diodes increases, more
parameters to be extracted are involved, which results in more computational difficulty.
The challenges faced by the issue include not only the multiplication of solution complexity
due to multiple unknown parameters but also the coupling between electrical quantities,
leading to a highly implicit function [4,19–21]. Moreover, the non-linear characteristics are
challenging to solve due to the exponential functions in the characteristic equations. These
challenges render determining accurate PV models a puzzle.
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Extracting proper parameters of PV models is a thorny issue, and it is primarily
solved by three types of methods: point-specific-based methods, traditional numerical
optimization methods, and metaheuristic methods [19]. The first category, also referred to
as analytical methods, relies heavily on the analytical treatment of the models to reduce
the parameters and on specific points to deduce the model parameters [13,22,23]. They
generally have low accuracy, especially when there is noise on specific data points. The
second category is also known as the deterministic methods, which extensively use the
idea of gradients. They are highly exploitable and computationally fast but are sensitive to
initialization settings, and the accuracy of the solutions can be insufficient [24–26]. That
dilemma is because the PV model’s mathematical formulation is implicit, has exponential
functions, and requires extraction of multiple parameters. As a result, the mentioned issue
has multi-peaked, non-linear, and strongly coupled characteristics, which pose a significant
challenge to solving the issue using deterministic methods. Unlike the above two categories,
natural phenomena inspire the third class of methods: metaheuristics. They do not rely
on gradients and detailed data, are conceptually simple and computationally convenient,
and can solve complex optimization issues with high accuracy [27–31]. Therefore, scholars
have identified the merits of metaheuristics and applied them to many problems.

Nowadays, the metaheuristics for this paper’s problems have evolved considerably,
and it is necessary to review the current developments in parameter extraction techniques.
Recently, several reviews have partially covered the application of metaheuristics in this
area. Abbassi et al. [19] comprehensively described and summarized different indicators
and cases and briefly assessed the results. However, the authors were biased towards a
broad overview of different methods and ignored details about the metaheuristics’ applica-
tion mechanisms. They merely measured the indicators’ presence, without specific results
to give the methods’ effectiveness. Oliva et al. [32] undertook a dedicated review, tabulated
each indicator’s results, and described the details of some metaheuristics. Nevertheless, the
work mainly focused on PV cells, with insufficient attention to PV modules, and ignored a
review of the TDM and algorithmic settings. Venkateswari et al. [33] summarized the indi-
cators and case names, described improved concepts, and compared some metaheuristics.
However, they just summarized the minimum root mean square error (RMSE) results and
lacked data on other indicators. Li et al. [20] overviewed the environmental factors’ pres-
ence and surveyed the results of various approaches. However, the review mainly focused
on the SDM and DDM and lacked the algorithmic settings of metaheuristics. Overall, the
available reviews mainly highlighted the statistics of the RMSE values for SDM and DDM.
Specific data on other indicators, i.e., the total number of fitness evaluations (TNFES),
the sum of individual absolute errors (SIAE), and the mean, maximum, and standard
deviation (STD) of RMSE, were unavailable for judging different methods’ performance in
computational resources, accuracy, reliability, and robustness. We also note the following
shortcomings in past reviews: (a) a lack of holistic evaluation of metaheuristics in recent
years for cells and modules, (b) no discussion or literature screening of the situation when
the temperature changes, and (c) omission of a presentation of data changes when partial
shade is applied.

A holistic view of this type of research takes time to establish for researchers unfamiliar
with this area. Meanwhile, the available reviews should include the results of the last several
years of study. However, although some reviews comprehensively summarize all solutions
to the problem, they mention too few metaheuristics and need more numerical details.
Others focus on PV cells and modules, but omit the analysis of metaheuristics. These
shortcomings make their conclusions rather one-sided and make it difficult for the reader to
understand the research results from multiple dimensions. Therefore, a persuasive article
that considers the model’s various aspects, the parameter settings, and the evaluation
metrics and integrates the results of a large number of applications of metaheuristics
to the problem is needed to present the recent research results. This paper provides a
comprehensive and detailed summary and analysis of the application of metaheuristics to
model PV accurately in recent years. Specifically, the metaheuristics are categorized and
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their rationale is outlined. The algorithmic settings are summarized, and the results are
compared and ranked in various indicators. The variation of the parameters in different
environments is studied, and a brief description of the relevant literature in recent years
is given. Some cell models that are temporarily not in widespread use today but are of
high research value are analyzed. Then, their advantages and disadvantages are analyzed,
and the remaining challenges are analyzed. Eventually, future directions for research are
summarized in solution approaches and application scenarios.

This work’s main contributions are as follows:

• The mathematical models of current commonly used SDM, DDM, TDM, and PV
modules are explained;

• The characteristics of each metaheuristic method and their enhancements and applica-
tions are outlined;

• The statistical results of RMSE, TNFES, SIAE and algorithmic settings of selected
metaheuristics are summarized and compared;

• The output characteristics of the PV system are discussed for the dynamic temper-
ature, irradiance, and partial shading, and the variation in parameters and RMSE
are analyzed;

• Existing challenges and possible future work focuses are analyzed and provided.

The remainder is briefly sketched as follows. The PV cell’s mathematical model and the
evaluation indicators are explained in Section 2. Section 3 illustrates different metaheuristics.
Section 4 provides an overall analysis of different methods, existing challenges, and possible
research directions. Finally, Section 5 gives the conclusion.

2. PV Models and Problem Formulations

Several PV models and their corresponding equivalent circuits are revealed in the
first part of this section, to quantify the electrical characteristics of PV systems. Directly
comparing PV models’ parameters extracted by different methods is not easy. To objectively
appraise the extracted results of different methods, the second part of this section gives
several indicators commonly used to evaluate the experimental results.

2.1. PV Models

SDM, DDM, and TDM models have been widely used by researchers in recent
years [20]. In general, more diodes in a circuit represent a more accurate model, but
also increase the model complexity [33].

2.1.1. SDM

Figure 1a mentions the equivalent schematic of the SDM. The output voltage and
current are V and I, respectively, and the electrical expression of I is shown below [34,35].

I = Iph − Ish − Isd = Iph −
V + IRs

Rsh
− Issd

[
exp

(
q(V + IRs)

nkT

)
− 1
]

(1)

where Iph, Ish, Isd, and Issd represent the photogenerated line current, shunt resistor line
current, diode line current, and diode saturation current, respectively. Rs and Rsh represent
the series resistance and branch resistance, respectively. n represents the ideal factor. T, k,
and q represent the Boltzmann constant (1.3806 × 10−23 J/K), absolute temperature, and
unit charge (1.6022 × 10−19 C).
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Figure 1. PV models’ circuits: (a) SDM; (b) DDM; (c) TDM; (d) PV module. 

( )exp 1ss
ph sh sd ssd

sh
ph

q V IRV IRI I I I I I
R nkT

 + += = − − −  
  

−
 

−  (1)

where Iph, Ish, Isd, and Issd represent the photogenerated line current, shunt resistor line cur-
rent, diode line current, and diode saturation current, respectively. Rs and Rsh represent 
the series resistance and branch resistance, respectively. n represents the ideal factor. T, k, 
and q represent the Boltzmann constant (1.3806E-23J/K), absolute temperature, and unit 
charge (1.6022E-19C). 

The above demonstrates that accurate modeling requires estimating the values of Iph, 
Issd, n, Rs, and Rsh. 

2.1.2. DDM 
Figure 1b mentions the equivalent schematic of the DDM. After adding a diode, be-

low is the electrical expression of I [36,37]. 

( ) ( )
1 2 1 2

1 2

exp 1 exp 1ph
s ss

ph sh sd sd ssd ssd
sh

q V IR q V IRV IRI I I I I I I I
R nkT n kT

   + +
− − −

  += = − − − − −      
         

 (2)

where Isd1 and Isd2 represent the first and second diode line currents, respectively, Issd1 and 
Issd2 represent the corresponding diode saturation currents, and n1 and n2 represent the 
corresponding ideal factors. 

This model needs to estimate the values of Iph, Issd1, Issd2, n1, n2, Rs, and Rsh. 

2.1.3. TDM 
Figure 1c mentions the equivalent schematic of the TDM. Below is the electrical ex-

pression of I [38–40]. 

( )
1 3 1 3

exp 1ss
ph sh sdj ssdj

sh
p

j
h

j j

q V IRV IRI I I I I I
R n kT= → = →

  ++= = − − −   − −
   

   (3)

where Isdj, Issdj, and nj represent the jth diode line current, the saturation current, and the 
ideal factor, respectively. 

The TDM requires estimating the values of Iph, Issd1, Issd2, Issd3, n1, n2, n3, Rs, and Rsh. 

2.1.4. PV Module 

Figure 1. PV models’ circuits: (a) SDM; (b) DDM; (c) TDM; (d) PV module.

The above demonstrates that accurate modeling requires estimating the values of Iph,
Issd, n, Rs, and Rsh.

2.1.2. DDM

Figure 1b mentions the equivalent schematic of the DDM. After adding a diode, below
is the electrical expression of I [36,37].

I = Iph − Ish − Isd1 − Isd2 = Iph −
V + IRs

Rsh
− Issd1

[
exp

(
q(V + IRs)

n1kT

)
− 1
]
− Issd2

[
exp

(
q(V + IRs)

n2kT

)
− 1
]

(2)

where Isd1 and Isd2 represent the first and second diode line currents, respectively, Issd1 and
Issd2 represent the corresponding diode saturation currents, and n1 and n2 represent the
corresponding ideal factors.

This model needs to estimate the values of Iph, Issd1, Issd2, n1, n2, Rs, and Rsh.

2.1.3. TDM

Figure 1c mentions the equivalent schematic of the TDM. Below is the electrical
expression of I [38–40].

I = Iph − Ish − ∑
j=1→3

Isdj = Iph −
V + IRs

Rsh
− ∑

j=1→3
Issdj

[
exp

(
q(V + IRs)

njkT

)
− 1

]
(3)

where Isdj, Issdj, and nj represent the jth diode line current, the saturation current, and the
ideal factor, respectively.

The TDM requires estimating the values of Iph, Issd1, Issd2, Issd3, n1, n2, n3, Rs, and Rsh.

2.1.4. PV Module

Figure 1d mentions the equivalent schematic of the PV module based on the SDM. A
PV module composed of Ns × Np cells inherently has a high complexity. Therefore, using
the SDM to construct PV modules is the first choice for most researchers. Equation (4) is
the electrical expression of the PV module’s current [4,41].

I = IphNp −
V + IRsNs/Np

RshNs/Np
− IssdNp

[
exp

(
q
(
V + IRsNs/Np

)
nNskT

)
− 1

]
(4)
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The PV module has the same parameters as the SDM (Iph, Issd, n, Rs, and Rsh).

2.1.5. PV Model Review

Although the SDM, with its simple structure and fair accuracy, is presented at the
very beginning of this section, it is not the earliest cell model. It is a development of the
ideal PV cell model (IPCM). Compared to the IPCM, which has a straightforward structure
consisting of only a current source and diode, the SDM simulates the flow resistance,
electrode resistance, and surface contact resistance, explains the physical behavior, and is
widely used in this problem [42]. To further improve the accuracy of the model’s simulated
conduct at low irradiance, a diode is added to the DDM to represent the loss of current in
the depletion region. However, the added unknown parameters increase the difficulty of
the solution. TDM has the potential to achieve higher accuracy than DDM after calculating
the leakage current and grain boundaries with the addition of a diode. Again, the solution
difficulty increases as the dimensionality of the problem increase.

In addition, there are many less commonly used improved diode models, such as
the modified 3-diode model [43], the SDM with capacitance [44], the Generalized Multi-
Dimension Diode Model [45], the Modified SDM (MSDM) [46], the Four Diode Model
(FDM) [47], the Modified DDM (MDDM) [48] and the Modified TDM (MTDM) [49]. We
note that metaheuristics have recently been used to solve the FDM and the modified SDM,
DDM, and TDM models. Thus, it would be a trend for future research to consider these
four models to find a cell model that matches the proposed method to achieve a balance
between solution difficulty and accuracy.

For the modules, in addition to the SDM presented in Section 2.1.4, the use of DDM and
TDM formations are also options considered by the researchers. Their accuracy and solution
difficulty performance are similar to their performance in the cell model. The appropriate
model-building module must be selected to fit the specific needs. In this paper, considering
that counting all the above models would cause duplication of content, excessive length,
and difficulty reading, only the computational results of the modules composed of SDM
components are summarized. The increased accuracy, increased difficulty in solving, and
increased computational resources due to the increase in diodes will be reflected in the
computational results of the cell model.

In addition, several specific PV models exist to achieve accurate modeling of PV
systems in specific situations. They are not commonly used for the time being, but are
of great interest. The dynamic PV model is one of them. It considers underdamped
currents, switching frequency harmonics, varying loads, and resonance of cables, and is
more suitable for grid-connected operation [50,51]. Its equivalent circuit diagram is shown
in Figure 2 [52].
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The model’s output current is shown as follows [53]:
I(s) = a21(s+b1)+b2(s−a11)

(s−a11)(s−a22)−a21a12
·VOC

s(
a11 a12
a21 a22

)
=

( −1
C(Rs+RC)

−Rs
C(Rs+RC)

Rs
L(Rs+RC)

−(RC RL+RC Rs+RLRs)
L(Rs+RC)

)
,
(

b1
b2

)
=

( 1
C(Rs+RC)

RC
L(Rs+RC)

)
(5)

where s is the time, Rs and the open circuit voltage Voc are usually known, the inductor L,
the resistor RC, and the capacitor C are unknown. Therefore, C, RC, and L are the parameters
to be extracted.

2.2. Problem Formulations

RMSE between the measured data and the calculated data usually serves as the
objective function [54–56]:

RMSE =

√√√√ 1
N

N

∑
k=1

f 2(V, I, x) (6)

where x represents the solution vector and N represents the actual data’s amount, and f (V,
I, x) calculates the current error in the following way.

For SDM:  f (V, I, x) = Iph − V+IRs
Rsh

− Issd

[
exp
(

q(V+IRs)
nkT

)
− 1
]
− I

x =
(

Iph, Issd, Rs, Rsh, n
) (7)

For DDM:{
f (V, I, x) = Iph − V+IRs

Rsh
− Issd1

[
exp

(
q(V+IRs)

n1kT

)
− 1
]
− Issd2

[
exp

(
q(V+IRs)

n2kT

)
− 1
]
− I

x = (IPV , Issd1, Issd2, Rs, Ish, n1, n2)
(8)

For TDM: f (V, I, x) = Iph − V+IRs
Rsh

− ∑
j→3

Issdj

[
exp

(
q(V+IRs)

njkT

)
− 1
]
− I

x = (IPV , Issd1, Issd2, Issd3, Rs, Ish, n1, n2, n3)
(9)

For PV module: f (V, I, x) = IphNp −
V+IRs Ns/Np

Rsh Ns/Np
− IssdNp

[
exp

(
q(V+IRs Ns/Np)

nNskT

)
− 1
]
− I

x =
(

Iph, Issd, Rs, Rsh, n
) (10)

For the objective function RMSE, its computation requires solving methods with the
ability to solve implicit functions. Commonly used are deterministic and metaheuristic
methods. Several deterministic methods, including Newton Raphson [24], Lambert W
function [25], Levenberg Marquardt [57], and Berndt–Hall–Hall–Hausman [58], have suc-
cessfully solved the non-linear problem. However, it does not mean that deterministic
methods can tackle the challenge of initial value sensitivity well. Due to challenges such as
non-linearity and non-convexity, metaheuristics are considered to be the best solution for
solving this issue.

2.3. Indicators Summary

Varied algorithmic settings substantially affect the results of metaheuristic methods
and various indicators can evaluate the results from diverse aspects. Hence, we summarize
the approach and case settings and the performance evaluation indicators. Usually, the
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literature has drawn characteristic curves to visualize the accuracy of the extracted parame-
ters. Nevertheless, when the parameters’ difference is not very large, some general and
objective indicators are used as the basis for evaluating the advantages and disadvantages
of different methods. Here, we highlight the commonly used indicators to compare them:

• Individual absolute error (IAE): it represents the difference between the actual and
simulated current values [28,30];

• Sum of IAEs (SIAE) and mean IAEs (MIAE): they are more holistic in evaluating the
accuracy of the simulated data [29,59];

• RMSE: it focuses on overall assessment of the data’s dispersion [31,60];
• Friedman test (FT), Wilcoxon rank sum test (WRT), and Wilcoxon signed rank test

(WST): they broaden evaluation scales from statistical perspectives;

IAE = | f (V, I, x)| (11)

SIAE =
N

∑
k=1

IAE (12)

MIAE =
1
N

N

∑
k=1

IAE (13)

• In addition, a few works in the literature also use evaluation indicators such as the
sum of squares of power, current, and voltage errors (ERR) [61].

3. Methods and Results

Metaheuristics have no special data or environment requirements and have high
robustness and accuracy in this studied issue, which is also the reason that they have
been frequently used. Different metaheuristics were inspired by various things when
they were developed. Figure 3 categorizes the metaheuristics into four genres by the
type each one simulates, i.e., evolution-based methods (GA, DE, JAYA), human social
activity-based methods (GSK, SDO, TLBO), animal activity-based methods (PSO, ABC,
GWO, WOA, HHO), and natural phenomenon-based methods (TGA, SOS, FPOA). In this
section, the widely used metaheuristics for solving this issue, namely GA, DE, PSO, ABC,
GWO, JAYA, TLBO, and WOA, are selected and briefly described. They share a high degree
of similarity in the optimization process. For brevity, Figure 4 gives the general flowchart
of metaheuristics.

3.1. GAs

The survival of the fittest phenomenon inspires the evolutionary algorithm, i.e., ge-
netic algorithm. A solution is encoded as binary chromosomes, and all chromosomes are
updated through iteration and fitness assessment. Selection, crossover, and mutation are
the iteration’s three primary operations. The first operation is related to the fitness value
and usually uses roulette, random traversal sampling, and ranked selection. The second
operation improves exploitation by changing the subsequence of random loci between chro-
mosomes, and the third operation improves exploration by changing genes on individual
chromosomes [62].

In [63], the authors used GA in 30XLS and 34XLS PV modules. Characteristic curves
were plotted to visualize the accuracy. However, the method of validating the results was
relatively simple. In [64], an adaptive genetic algorithm (AGA) was designed, employing
the Pearson residual reduction and minimum mean square error reduction techniques.
Relevant manufacturer data at different temperatures verified the AGA’s accuracy. How-
ever, it lacked the comparison under different light intensities, and the validation was too
homogeneous. For intelligent algorithms, more data-based optimization often means more
accurate results. Therefore, Harrag et al. [65] combined genetic algorithms with neural
networks and proposed a metaheuristic based on genetic neural networks (GNN). GNN’s
effectiveness was verified on the SDM and DDM with the RMSE.
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Table 1 lists essential information on GA variants. Among them, the squared error for
GA was 5.8297 × 10−8 and 3.0751 × 10−7, which is highly accurate, but there is a lack of
comparison algorithms to judge the competitiveness of this result. AGA did not give any
numerical RMSE values. The minimum RMSE for GNN reached the order of 1 × 10−3, yet
almost all recent state-of-the-art algorithms reached the order of 1 × 10−4. The GA variants’
performance is not ranked in this section, as the current GA variants did not use the same
metric function.
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ever, it lacked the comparison under different light intensities, and the validation was too 
homogeneous. For intelligent algorithms, more data-based optimization often means 
more accurate results. Therefore, Harrag et al. [65] combined genetic algorithms with neu-
ral networks and proposed a metaheuristic based on genetic neural networks (GNN). 
GNN’s effectiveness was verified on the SDM and DDM with the RMSE. 

Table 1 lists essential information on GA variants. Among them, the squared error 
for GA was 5.8297 × 10−8 and 3.0751 × 10−7, which is highly accurate, but there is a lack of 
comparison algorithms to judge the competitiveness of this result. AGA did not give any 
numerical RMSE values. The minimum RMSE for GNN reached the order of 1 × 10−3, yet 
almost all recent state-of-the-art algorithms reached the order of 1 × 10−4. The GA variants’ 

Figure 4. Metaheuristics’ general flowchart.

Table 1. GAs’ essential information and metrics.

Method Main Contributors Case Algorithmic
Parameter Indicator TNFES Run

GA [63] Harrag et al., CCNS Laboratory, Department of Electronics,
Faculty of Technology, Ferhat Abbas University

30XLS NP = 100,
CP = 0.5, MP = 0.02 SE 10,000 -34XLS

AGA [64] Kumari et al., School of Electrical Engineering, VIT University - C1 = 0.01, C2 = 0.001 - - -

GNN [65] Wang et al., Zhengzhou University of Aeronautics SDM NP = 30 RMSE 9000 80
DDM NP = 50 RMSE 15,000 80

3.2. DEs

DE is fast in converging, simple in structure, and easy to implement [66,67]. As a
population-based metaheuristic, DE has the same three operations with GA. DE individuals
achieve mutation by adding different weight coefficients to the product of the difference
between two individuals. The crossover is used to produce a trial vector from the target
individual and the mutant vector. The selection usually chooses a greedy selection scheme
to retain fitter individuals.

In [68], an improved adaptive DE (IADE) with exponential scaling factor (F) and
crossover rate (CR) based on automatic performance updates was presented. The results’
accuracy was verified using PV data with different temperatures and light intensities in
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terms of mean RMSE and fitted plots. Biswas et al. [61] designed a novel successful history-
based DE (L-SHADE) with a linear reduced population size (NP) technique. Its parameter
estimation was implemented using three particular points. The results showed that the
error was almost zero. In [23], Chin et al. designed a differential evolution based on three
points to improve the speed and accuracy of L-SHADE. In [69], an enhanced adaptive
differential evolution (EJADE) was implemented by cross-ranking and dynamic population
reduction techniques, and the algorithm’s reliability was verified well. Xiong et al. [70]
designed a new method (QILDE) for developing optimal value fields by adding quadratic
interpolation to the crossover step. Applications of QILDE to six different PV models
showed its strong competitiveness in different cases. In [71], a new method (EBLSHADE)
based on SHADE with the linear population size reduction technique and greedy vari-
ation technique was designed. Its practical application in PV models demonstrated its
importance in optimizing PV model parameters. In [72], dynamic control factors, including
mutation and crossover, were designed and introduced into DE to form the new method
called DEDCF. In [73], the authors designed a directed permutation differential evolution
(DPDE) using the information on the direction of movement of populations and individu-
als, and applied it to a solar cell model. Hu et al. [41] designed a novel DE (RLDE) with
reinforcement learning that adjusts the value of F by the Q-learning to achieve automatic
parameter tuning, and compared RLDE with other methods, showing its superior robust-
ness and accuracy. A heterogeneous differential evolution (HDE) was built in [74] with
two improved mutation methods, a heterogeneous technique and an information exchange
technique. It was demonstrated that the performance of HDE was representative in multi-
ple dimensions through its application to the problems covered in this study. Kharchouf
et al. [75] introduced Lambert’s W function and metaheuristic techniques to DE for pref-
erential F and CR, and named the method MSDE. It demonstrated high success through
application. In [76], a novel DE (FADE) capable of optimizing F and CR was designed by
employing fuzzy selection techniques and adaptive parameter tuning techniques. SIAE
and RMSE demonstrated its excellent accuracy and robustness.

Tables 2 and 3 show the essential information and numerical metrics for each DE’s
variant, respectively. It is noticeable that there are many recent studies on DE, and most
of them have obtained excellent performance. Regarding resource consumption, DE3P
has the least, at 2500, followed by EBLSHADE, DEDCF, MSDE, EJADE, QILDE, RLDE,
L-SHADE, DPDE, HDE, FADE, and IADE, respectively. Since ERRs were rarely used, data
for WRT, WST, FT, and IAE were unavailable for statistics, and SIAE and MIAE are similar,
we tabulate specific data for SIAE and various types of RMSE in Table 3 for comparison. To
achieve a comprehensive accuracy comparison across multiple cases, the SDM, DDM, and
Photowatt-PWP201 with the minimum RMSE values are used for the combined ranking.
According to the FT results, MSDE (1.333) ranks first, followed by DEDCF (1.667), EJADE
(4.333), QILDE (4.333), RLDE (4.333), HDE (4.667), DPDE (5.333), and EBLSHADE (5.833).
However, EBLSHADE achieves excellent accuracy even though it is in last place, so future
research in DE could further focus on reducing resource consumption and achieving
improved performance in multiple accuracy evaluation metrics.

3.3. PSOs

PSO is a hot topic in artificial intelligence. The particle’s new position is a combination
of the current position and the updated velocity. The updating of the velocity is composed
of three parts, and the first part is the current velocity scaled by the weight factor (w). The
second part is the individual best position to steer the current position under the weight of
the learning factor (c1) and a random variable (r1). The third part is the global best position
to steer the current position under the weight of the learning factor (c2) and a random
variable (r2). The r1 and r2 are unrelated, as are the c1 and c2 [77,78].
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Table 2. DEs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

IADE [68] Jiang et al., School of Computer Engineering,
Nanyang Technological University

SDM Iteration = 8000,
a = ln2, b = 0.5 RMSE -

30
Photowatt-PWP201 30

SL80CE-36M -

L-SHADE [61]
Biswas et al.,

School of Electrical and Electronic Engineering,
Nanyang Technological University

Kyocera KC200GT NP = 50,
F = rand (0.1, 0.5),

CR = rand (0.1, 0.5)
ERR 50,000 30Shell SQ85

Shell ST40

DE3P [23]
Chin et al., Centre of Electrical Energy Systems,

School of Electrical Engineering, Universiti
Teknologi Malaysia

SDM
NP = 50, F = 0.7, CR = 0.8

RMSE
SIAE
MIAE

2500 35Photowatt-PWP201
STM6-40/36
STP6-120/36

EJADE [69] Li et al., School of Computer Engineering, Hubei
University of Arts and Science

SDM

NPmax = 50, NPmin = 4 RMSE

10,000

30
DDM 20,000

Photowatt-PWP201 10,000
STM6-40/36 15,000
STP6-120/36 15,000

QILDE [70]
Xiong et al., Guizhou Key Laboratory of Intelligent
Technology in Power System, College of Electrical

Engineering, Guizhou University

SDM

F = rand (0.1, 1),
CR = rand (0, 1)

RMSE
FT

10,000 50
DDM 20,000 50

Photowatt-PWP201 10,000 50
STM6-40/36 30,000 50
STP6-120/36 30,000 50

Sharp ND-R250A5 30,000 50

EBLSHADE [71]
Song et al., School of Computer Science and

Technology, Shandong Technology and
Business University

SDM
NP = 50, H = 100,
w1 = 0.2, w2 = 0.6,

pmin = 0.05, pmax = 0.2
RMSE

IAE

4000 30
DDM 10,000 30

Photowatt-PWP201 5000 30
STM6-40/36 10,000 30
STP6-120/36 15,000 30

DEDCF [72] Parida et al., Department of Electrical Engineering,
ITER, Siksha O Anusandhan

SDM NP = 10D,
F = rand (0.1, 0.9),
CR = rand (0, 1)

RMSE
MIAE

10,000 50
DDM 14,000 50

Photowatt-PWP201 10,000 50

DPDE [73] Gao et al., Faculty of Engineering, University
of Toyama

SDM
NP = 18D,

H = 5,
p = 0.11

RMSE
SIAE
WRT

FT

50,000 30

DDM
TDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

RLDE [41] Hu et al., School of Computer Science, China
University of Geosciences

SDM
NP = 30,

f = −0.1 or 0 or 0.1,
CR = 0.9

RMSE 30,000 30
DDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

HDE [74] Wang et al., School of Software, Yunnan University

SDM

NP = 30,
p = 0.1

RMSE
WRT

FT
50,000 30

DDM
TDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

MSDE [75] Kharchouf et al., University Abdelmalek Essadi, FSTT
SDM

NP = 10D,
F = 0.7, CR = 0.8 RMSE

10,000

30DDM 14,000
Photowatt-PWP201 10,000

STM6-40/36 10,000

FADE [76]
Dang et al., Institute for Electrical Power and
Integrated Energy of Shaanxi Province, Xi’an

University of Technology

Photowatt-PWP201 NP = 25,
uFinit = 0.7, CRinit = 0.5

RMSE
SIAE

75,000 30STM6-40/36
STP6-120/36

Ben et al. [79] applied PSO to the SDM and compared it with other methods, con-
cluding that PSO outperformed other methods with data supporting. In [80], Ni et al.
presented an adaptive elite mutation technique for PSO (PSO-AEM) for a domain search of
the optimal global position of PSO, and found that PSO-AEM had a faster speed and higher
accuracy. Merchaoui et al. [81] found that PSO was prone to premature convergence, so an
adaptive mutation technique was proposed and introduced into PSO to form an improved
MPSO. MPSO achieved good IAE and RMSE values and fitted the characteristic curves
well at different temperatures and light intensities. In [82], Guaranteed Convergent Particle
Swarm Optimization (GCPSO) was presented to avoid premature convergence. In [83], an
enhanced leader PSO (ELPSO) using five mutation operators to enhance the leader was
designed, following the idea that a high-quality leader could pull the solution towards
the excellent region. The identification results showed that ELPSO effectively improved
the quality of PSO solutions. In [84], the authors presented an improved PSO (SAIW-PSO)
which used the simulated annealing technique to control w and introduced a deterministic
method for optimizing the current values. The fitting results supported the view that
SAIW-PSO was accurate, fast, and effective. Kiani et al. [85] designed a dynamic inertia
weight PSO (DEDIWPSO) with a double exponential function to mitigate the premature
convergence. This method demonstrated excellent validity, reliability, and accuracy in
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the issue covered in this work. The authors in [86] implemented PSO in parallel (PPSO)
on a modern graphics processing unit (GPU). They demonstrated the very high accuracy
and short elapsed time of PPSO by estimating multiple PV models’ parameters. In [87],
an enhanced PSO (PSO-ST) was developed using sinusoidal chaos and tangential chaos
techniques to adjust the weight and learning factors. Inspired by cuckoo search random
reselect parasitic nests, Fan et al. [88] developed a new method (PSOCS) by combining the
random reselection strategy with PSO. The application results showed PSOCS’s stability
and effectiveness.

Table 3. DEs’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

IADE [68]
SDM - 9.8900 × 10−4 - - -

N/APhotowatt-PWP201 - 2.4000 × 10−3 - - -
SL80CE-36M - 1.15 × 10−2 - - -

DE3P [23]
SDM 0.0172 8.1291 × 10−4 - - -

N/APhotowatt-PWP201 0.0505 2.422747 × 10−3 - - -
STM6-40/36 0.0210 1.774 × 10−3 - - -
STP6-120/36 0.2091 1.4091 × 10−2 - - -

EJADE [69]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 5.13 × 10−17

4.333
DDM - 9.8248 × 10−4 9.8363 × 10−4 9.8602 × 10−4 1.36 × 10−6

Photowatt-PWP201 - 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 3.27 × 10−17

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 5.94 × 10−18

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 2.33 × 10−17

QILDE [70]

SDM 0.01770381 9.8602 × 10−4 9.8603 × 10−4 9.8616 × 10−4 2.7839 × 10−8

4.333
DDM 0.01731807 9.8248 × 10−4 9.8480 × 10−4 9.8968 × 10−4 1.5868 × 10−6

Photowatt-PWP201 0.04178701 2.4251 × 10−3 2.4257 × 10−3 2.4370 × 10−3 2.2436 × 10−6

STM6-40/36 0.02177419 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 1.1295 × 10−17

STP6-120/36 0.27797426 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 2.8518 × 10−14

Sharp ND-R250A5 0.21759981 1.1183 × 10−2 1.1183 × 10−2 1.1183 × 10−2 5.1647 × 10−10

EBLSHADE [71]

SDM - 9.8602 × 10−4 9.8602 × 10−4 - 1.9169 × 10−15

5.833
DDM - 9.8295 × 10−4 9.8574 × 10−4 - 1.2825 × 10−6

Photowatt-PWP201 - 2.4251 × 10−3 2.4251 × 10−3 - 2.8821 × 10−17

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 - 6.40591 × 10−14

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 - 8.0544 × 10−16

DEDCF [72]
SDM - 7.730062 × 10−4 - - -

2DDM - 7.419648 × 10−4 - - -
Photowatt-PWP201 - 2.05296 × 10−3 - - -

DPDE [73]

SDM 0.02153 9.86021877891470
× 10−4

9.86021877891542
× 10−4

9.86021877891588
× 10−4

2.57114481592195
× 10−17

5.333DDM 0.021276 9.82484827161920
× 10−4

9.82549779378988
× 10−4

9.83081420487992
× 10−4

1.51333797156833
× 10−7

TDM 0.021275 9.82484851785319
× 10−4

9.83096769943567
× 10−4

9.86188097663681
× 10−4

1.02284590208062
× 10−6

Photowatt-PWP201 0.048924 2.42507486809506
× 10−3

2.42507486809511
× 10−3

2.42507486809514
× 10−3

1.82238517018742
× 10−17

STM6-40/36 0.021903 1.72981370994065
× 10−3

1.72981370994068
× 10−3

1.72981370994070
× 10−3

1.09732017119964
× 10−17

STP6-120/36 0.317128 1.66006031250851
× 10−2

1.66006031250854
× 10−2

1.66006031250855
× 10−2

7.66886076234863
× 10−17

RLDE [41]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 3.4834 × 10−17

4.333
DDM - 9.8248 × 10−4 9.8695 × 10−4 9.8457 × 10−4 1.7498 × 10−6

Photowatt-PWP201 - 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 6.3084 × 10−17

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 1.5784 × 10−17

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.9764 × 10−16

HDE [74]

SDM 0.021527 9.86021877891313
× 10−4

9.86021877891456
× 10−4

9.86021877891534
× 10−4

4.56994495305984
× 10−17

4.667DDM 0.021275 9.82484851785123
× 10−4

9.84154478759700
× 10−4

9.86021877891565
× 10−4

1.67264373173134
× 10−6

TDM 0.021275 9.82484851785213
× 10−4

9.82852008467139
× 10−4

9.88358683960422
× 10−4

1.08111146060101
× 10−6

Photowatt-PWP201 0.048924 2.42507486809496
× 10−4

2.42507486809504
× 10−4

2.42507486809510
× 10−3

3.15406568173825
× 10−17

STM6-40/36 0.021903 1.72981370994065
× 10−3

1.72981370994068
× 10−3

1.72981370994070
× 10−3

7.89430228096153
× 10−18

STP6-120/36 0.31713 1.66006031250847
× 10−2

1.66006031250851
× 10−2

1.66006031250855
× 10−2

1.86128634500124
× 10−16

MSDE [75]

SDM - 7.7692 × 10−4 - - -

1.333DDM - 7.63 × 10−4 - - -
Photowatt-PWP201 - 1.7298 × 10−3 - - -

STM6-40/36 - 2.0529 × 10−3 - - -

FADE [76]
Photowatt-PWP201 0.0489237 2.42507 × 10−3 2.42507 × 10−3 2.42507 × 10−3 -

N/ASTM6-40/36 0.0219033 1.72981 × 10−3 1.72981 × 10−3 1.72981 × 10−3 -
STP6-120/36 0.3171278 1.66006 × 10−2 1.66006 × 10−2 1.66006 × 10−2 -

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.
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Tables 4 and 5 combine the essential information and numerical metrics of the PSO’s
variants. In the past five years, there have been numerous studies on PSO. Regarding
resource consumption, PSO-AEM has the lowest TNFES of 10,000, followed by PSOCS,
PSO, ELPSO, MPSO, SAIW-PSO, DEDIWPSO, PSO-ST, GCPSO, and PPSO. Regarding the
ranking of MIN RMSE metrics, DEDIWPSO is first, followed by PSO-ST, GCPSO, MPSO,
PPSO, and PSOCS. Although DEDIWPSO has the highest accuracy, it consumes massive
computational resources. Hence, a considerable reduction in computational resource
consumption while keeping accuracy constant is worthy of further research.

Table 4. PSOs’ essential information and metrics.

Method Main Contributors Case Algorithmic
Parameter Indicator TNFES Run

PSO [79]

Ben et al., Laboratory of Electronics,
Signal Processing and Physical

Modeling, Faculty of Sciences of
Agadir Ibn Zohr University

SDM
NP = 50,

Iteration = 1000,
w = 0.4, c1 = c2 = 2

RMSE
IAE - -

PSO-AEM [80]
Ni et al., Institute of Equipment

Supervision and Inspection; Suzhou
Nuclear Power Research Institute

- NP = 50 - 10,000 -

MPSO [81]

Merchaoui et al., Electrical
Department, National Engineering

School of Monastir, University
of Monastir

SDM NP = 60,
Iteration = 2000,

w = 0.4,
c1 = c2 = 2

RMSE
IAE

- -
DDM

Photowatt-
PWP201

IFRI250-60

GCPSO [82]
Nunes et al., Department of

Electromechanical Engineering,
University of Beira Interior

SDM
NP = 20D,

Iteration = 10,000,
w = 0.55,

c1 = 1, c2 = 2

RMSE
SIAE

- 100

DDM
Photowatt-

PWP201
Sharp

ND-R250A5

ELPSO [83]
Rezaee et al., Department of Electrical
Engineering, Lashtenesha-Zibakenar

Branch, Islamic Azad University

SDM NP = 991, c1 = 1, c2 = 2
RMSE

IAE

101,000

30DDM NP = 1489, c1 = 1,
c2 = 2 151,500

STM6-40/36 NP = 991, c1 = 1, c2 = 2 101,000

SAIW-PSO [84]
Kiani et al., Department of Electrical

Engineering, University of
Engineering and Technology, Taxila

SDM NP = 100,
Iteration = 10,000, RMSE - 100

DDM

DEDIWPSO [85]
Kiani et al., Department of Electrical

Engineering, University of
Engineering and Technology, Taxila

SDM
NP = 100,

Iteration = 10,000,
winit = 0.8

RMSE
IAE

- 30
DDM

Photowatt-
PWP201

JKM330P-72

PPSO [86]
Gao et al., Department of Electrical

and Computer Engineering, National
University of Singapore

SDM DDM: NP = 6400,
Others: NP = 3200,

w = 0.5, c1 = 2.5,
c2 = 1.6

RMSE

640,000

30DDM 2,560,000
Photowatt-

PWP201 640,000

PSO-ST [87]
Kiani et al., Department of Electrical

Engineering, University of
Engineering and Technology, Taxila

SDM

NP = 100,
Iteration = 10,000,

RMSE
SIAE

- 30
DDM

Photowatt-
PWP201

JKM330P-72

PSOCS [88]
Fan et al., College of Electrical and

Electronic Engineering,
Wenzhou University

SDM

NP = 30 RMSE 20,000
30DDM

Photowatt-
PWP201

SM55
-KC200GT

ST40
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Table 5. PSOs’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

MPSO [81]

SDM - 7.7301 × 10−4 - - -

4
DDM - 7.4444 × 10−4 - - -

Photowatt-PWP201 - 2.0530 × 10−3 - - -
IFRI250-60 - 7.5589 × 10−3 - - -

GCPSO [82]

SDM 0.01763274 7.730063 × 10−4 7.730063 × 10−4 7.730065 × 10−4 4.055839W-11

2.667
DDM 0.01637239 7.182745 × 10−4 7.301380 × 10−4 7.417141 × 10−4 5.371802 × 10−6

Photowatt-PWP201 0.04400032 2.046535 × 10−3 2.046535 × 10−3 2.046536 × 10−3 1.105194 × 10−10

Sharp ND-R250A5 0.21867809 7.697717 × 10−3 7.697717 × 10−3 7.697719 × 10−3 2.395516 × 10−10

ELPSO [83]
SDM - 7.7301 × 10−4 7.7314 × 10−4 7.7455 × 10−4 3.4508 × 10−7

N/ADDM - 7.4240 × 10−4 7.5904 × 10−4 7.9208 × 10−4 9.4291 × 10−6

STM6-40/36 - 2.1803 × 10−3 2.2503 × 10−3 3.7160 × 10−3 2.9211 × 10−4

SAIW-PSO [84]
SDM - 7.73006 × 10−4 7.73006 × 10−4 7.73006 × 10−4 5.49562 × 10−15

N/ADDM - 7.41937 × 10−4 7.42261 × 10−4 7.54275 × 10−4 1.41853 × 10−6

DEDIWPSO [85]

SDM - 7.730062 × 10−4 7.730062 × 10−4 7.730062 × 10−4 5.18668 × 10−15

1.5
DDM - 7.182306 × 10−4 7.187462 × 10−4 7.318100 × 10−4 2.486129 × 10−6

Photowatt-PWP201 - 2.03992 × 10−3 2.03992 × 10−3 2.03992 × 10−3 2.995389 × 10−15

JKM330P-72 - 4.3113 × 10−2 4.3113 × 10−2 4.3113 × 10−2 -

PPSO [86]
SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 7.0798 × 10−13

5.167DDM - 9.8248 × 10−4 9.8323 × 10−4 9.8602 × 10−4 1.3436 × 10−6

Photowatt-PWP201 - 2.4250 × 10−3 2.4250 × 10−3 2.4250 × 10−3 2.8947 × 10−13

PSO-ST [87]

SDM 0.0214710 7.73006 × 10−4 7.73006 × 10−4 7.73006 × 10−4 5.18622 × 10−15

1.833
DDM 0.0212734 7.183701 × 10−4 7.187382 × 10−4 7.218291 × 10−4 1.318531 × 10−6

Photowatt-PWP201 0.055499 2.03992 × 10−3 2.03992 × 10−3 2.03992 × 10−3 2.91529 × 10−15

JKM330P-72 - 4.3114 × 10−2 4.3114 × 10−2 4.3114 × 10−2 6.2983 × 10−17

PSOCS [88]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8603 × 10−4 1.7459 × 10−9

5.833

DDM - 9.8297 × 10−4 1.0286 × 10−3 1.4133 × 10−4 9.9217 × 10−5

Photowatt-PWP201 - 2.4251 × 10−3 2.4252 × 10−3 2.4282 × 10−3 5.9113 × 10−7

SM55 - 3.8067 × 10−3 - - -
KC200GT - 2.5402 × 10−2 - - -

ST40 - 7.3431 × 10−4 - - -

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

3.4. ABCs

ABC was designed with several key members: a nectar source, nectar, and three types
of bees [89]. The nectar amount from the flower represents the function value, and the
food location means the solution. The nectar source and employed and onlooker bees are
in quantity the same and the nectar source corresponds to the employed bees. Onlooker
bees rely on nectar and employed bees to find flowers, and scout bees randomly fly to seek
flowers near the hive [90].

In [91], the authors combined TLBO and ABC to design a method (TLABC) that
included three search phases. The employed bee stage combined a teaching mechanism, the
onlooker bee stage combined a learning mechanism, and the reconnaissance bee combined
a generalized reversal mechanism. In [92], Wu et al. designed a new ABC (ABCTRR)
by combining ABCs’ exploiting capability with the trust-region reflective technique’s
exploiting capability. In [93], a new algorithm (IABC) was designed to solve ABC’s early
convergence issue by dividing the employed bee into two parts, one unchanged and the
other searching the domain of the optimal global position. The identified parameters
illustrated the high accuracy of IABC. For the integration of exploitation and exploration
well, Tefek [94] combined ABC with a local search method to develop a new approach
(ABC-Ls). Comparison revealed that ABC-Ls were more accurate, faster, and more stable.
In [95], the authors compared ABC with PSO, showing that ABC outperformed PSO in all
aspects of the results. In [96], a fitness distance balance mechanism was applied to TLABC
to reconstruct a new method (FDB-TLABC). Experimental results confirmed the excellent
performance of FDB-TLABC.
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In Table 6, ABC-TRR has the least TNFES, followed by ABC, TLABC, IABC, ABC-
Ls, and FDB-TLABC. There is an order-of-magnitude difference in resource consumption
between ABC-TRR and the other variants of ABC. Table 7 compiles the experimental results.
FDB-TLABC ranks first in combined MIN RMSE, followed by ABC-Ls, ABC-TRR, and
TLABC. Therefore, achieving another increase in accuracy with less resource consumption
for ABC is a priority for future research.

3.5. GWOs

GWO is a population-based metaheuristic with only two parameters [97]. Chase,
encirclement, harassment, and attack are the hunt’s four phases. Based on wolf rank, four
types of wolves are included in GWO, with alpha being the strongest, followed by beta,
delta, and omega. Wolves’ mean solutions are in the solution space and are allowed to
reposition. GWO only keeps the three optimal solutions, with other wolves responsible for
position updating.

Table 6. ABCs’ essential information and metrics.

Method Main Contributors Case Algorithmic
Parameter Indicator TNFES Run

TLABC [91]
Chen et al., School of Electrical
and Information Engineering,

Jiangsu University

SDM NP = 50,
limit = 200,
scale factor

F = rand (0, 1)

RMSE
SIAE

50,000 30
DDM

Photowatt-
PWP201

ABC-TRR [92]
Wu et al., College of Physics and

Information Engineering,
Fuzhou University

SDM NP = 10,
limit = 10

RMSE
SIAE

1000

1000DDM NP = 10,
limit = 20 5000

Photowatt-
PWP201

NP = 10,
limit = 10 1000

IABC [93]
Xu et al., College of Mathematics

and Physics, Inner Mongolia
University for Nationalities

SDM
NP = 50,
limit = 50

RMSE
IAE

50,000 -
DDM

ABC-Ls [94]
Tefek et al., Department of

Computer Engineering, Osmaniye
Korkut Ata University

SDM NP = 100,
limit = 250

RMSE
IAE

50,000 30DDM NP = 100,
limit = 500

Photowatt-
PWP201

NP = 100,
limit = 250

Best-so-far
ABC [95]

Garoudja et al., Centre de
Développement des Technologies

Avancées, CDTA

SDM NP = 150,
limit = 750

RMSE 35,000 -LG395N2W

FDB-
TLABC [96]

Duman et al., Electrical
Engineering, Engineering and

Natural Sciences Faculty,
Bandirma Onyedi
Eylul University

SDM
NP = 50,

limit = 200,
scale factor

F = rand (0, 1)

RMSE
SIAE
MIAE

50,000 51
DDM 70,000 51

Photowatt-
PWP201 50,000 51

STM6-40/36 50,000 -
STP6-120/36 50,000 -
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Table 7. ABCs’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

TLABC [92]
SDM 0.02152738 9.86022 × 10−4 9.98523 × 10−4 1.03970 × 10−3 1.86022 × 10−5

3.667DDM 0.00135397 9.84145 × 10−4 1.05553 × 10−3 1.05553 × 10−3 1.55034 × 10−4

Photowatt-PWP201 0.04880919 2.42507 × 10−3 2.42647 × 10−3 2.44584 × 10−3 3.99568 × 10−6

ABC-TRR [92]
SDM 0.02152687 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 6.15 × 10−17

3DDM 0.02127522 9.824849 × 10−4 9.825556 × 10−4 9.860219 × 10−4 4.95 × 10−7

Photowatt-PWP201 0.04892367 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 9.68 × 10−17

IABC [93] SDM - 9.8602 × 10−4 - - - N/A
DDM - 9.8248 × 10−4 - - -

ABC-Ls [94]
SDM - 9.8602 × 10−4 - - -

2DDM - 9.8257 × 10−4 - - -
Photowatt-PWP201 - 2.4251 × 10−4 - - -

Best-so-far
ABC [95]

SDM - 0.027 - - - N/ALG395N2W - 0.013 - - -

FDB-
TLABC [96]

SDM 0.017633 7.7301 × 10−4 - - -

1.333
DDM 0.017001 7.4194 × 10−4 - - -

Photowatt-PWP201 - 2.054 × 10−3 - - -
STM6-40/36 - 1.7319 × 10−3 - - -
STP6-120/36 - 1.4251 × 10−2 - - -

The “NA” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

Vinod et al. [98] pioneered the use of GWO for the SDM, and the results showed
that GWO had a high degree of accuracy. The study [99] found that more populations
performed better, so a multi-group grey wolf optimizer (MGGWO) was developed. The
results showed that MGGWO was excellent in speed and accuracy. A new GWO (OL-
BGWO) was designed in [100], which combined an orthogonal learning mechanism to
improve the local exploration capability of GWO. OLBGWO’s performance was evaluated
in different PV models, and the results showed its excellent speed and accuracy. In [101],
an improved GWO (I-GWO) was developed by introducing a hunting search mechanism
based on dimensional learning. Ramadan et al. [102] introduced a domain search strategy
to implement an improved GWO (IGWO) and demonstrated the algorithm’s accuracy in
two PV cases.

The relevant information and experimental results of the variants of GWO are sum-
marized in Tables 8 and 9. I-GWO has the lowest resource consumption, followed by
OLBGWO, GWO, MGGWO, and IGWO. Regarding overall accuracy ranking, OLBGWO
is first and I-GWO is second. It is worth noting that MGGWO achieves a MIN RMSE of
4 × 10−4 on the SDM, a value not performed by any of the other algorithms counted. Vari-
ants of GWO use more computational resources, so there is much room for improvement
in reducing the consumption of computational resources for GWO.

3.6. JAYAs

JAYA, which means victory in Sanskrit, combines survival of the fittest with the leader
leading the population [103]. A key feature of JAYA is that there are no control parameters
and no initial derivation information. When updating iteratively, the superior solution is
approached quickly, and the inferior solution is moved away quickly.
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Table 8. GWOs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

GWO [98]

Vinod et al., Department of Electrical
Engineering, Speciality of Optmization
in Engineering, National Institute of

Technology, Silchar, India

SDM NP = 50 RMSE, IAE 50,000 -

MGGWO [99]
AlShabi et al., Mechanical and Nuclear
Engineering Department, University

of Sharjah, Sharjah, UAE
SDM NP = 20 RMSE, MIAE 1,000,000 -

OLBGWO [100] Xavier et al., Bule Hora University

SDM
NP = 30, Orthogonal
experiment levels: 3,

Orthogonal experiment
factors: 4

RMSE
SIAE
WRT

30,000 30

DDM
Photowatt-

PWP201
ST40

KC200GT

I-GWO [101]

Yesilbudak, Department of Electrical
and Electronics Engineering, Faculty

of Engineering and Architecture,
Nevsehir Haci Bektas V eli University

SDM

NP = 15 RMSE
IAE

25,000 50
DDM
TDM

Photowatt-
PWP201

IGWO [102]
Ramadan et al., Department of

Electrical Engineering, Faculty of
Engineering, Aswan University

TDM NP = 1000,
Iteration = 5000,

r1 = rand, r2 = rand
RMSE - 30Photowatt-

PWP201

Table 9. GWOs’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

GWO [98] SDM - 9.94378 × 10−4 - - - N/A

MGGWO [99] SDM - 4 × 10−4 - - - N/A

OLBGWO [100]

SDM - 9.86 × 10−4 9.86 × 10−4 9.86 × 10−4 1.4 × 10−8

1.333
DDM - 9.83 × 10−4 9.85 × 10−4 9.86 × 10−4 1.78 × 10−6

Photowatt-PWP201 - 2.4 × 10−3 2.4 × 10−3 2.4 × 10−3 2.4284 × 10−9

ST40 - 9.5666 × 10−4 - - -
KC200GT - 2.48 × 10−2 - - -

I-GWO [101]

SDM 0.02152728 9.8602 × 10−4 - - -

1.667
DDM 0.02127500 9.824852 × 10−4 - - -
TDM 0.02128348 9.8251 × 10−4 - - -

Photowatt-PWP201 0.04892353 2.425075 × 10−3 - - -

IGWO [102]
TDM - 9.8331 × 10−4 9.84 × 10−4 9.85 × 10−4 6.60404 × 10−7

N/APhotowatt-PWP201 - 2.4276291 × 10−3 2.432 × 10−3 2.438 × 10−3 5.26003 × 10−6

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

In [104], the authors designed an improved JAYA (IJAYA) that adaptively adjusted
weights and optimized the algorithm performance using chaotic elite learning methods.
IJAYA showed highly competitive performance in several PV models with excellent accu-
racy and reliability. An improved JAYA (EOJAYA) was developed in [105] by introducing
an elite opposition mechanism to modify the update scheme. In [106], the Nelder-Mead
algorithm was introduced to boost JAYA and this method’s effectiveness was verified well
in the SDM. In [107], a PGJAYA was designed to digitize the performance of individuals
in a probabilistic manner as a guide to improve the search method. Adaptive chaotic
perturbation techniques were employed to elevate the solution’s overall quality. The PV
model parameters estimated by PGJAYA proved its accuracy and robustness. Luu and
Nguyen [108] introduced an adaptive population size mechanism to form a modified JAYA
(MJA), and verified its performance and feasibility in the SDM and DDM. Jian et al. [109]
developed a modified JAYA (LCJAYA) by introducing a logical chaotic mapping mecha-
nism and a chaotic mutation mechanism in the update phase and search strategy of JAYA,
respectively. LCJAYA’s reliability and accuracy was verified in different PV cases. In [110],
a simple improved JAYA (CLJAYA) was designed by integrating learning techniques, and
its efficiency and accuracy was demonstrated in benchmark functions and PV models.
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In [111], the authors improved a new JAYA (EJAYA) using an adaptive operator mech-
anism, a population size adjustment mechanism, and an opposition learning technique.
The extraction of PV parameters demonstrated the effectiveness of EJAYA under different
conditions. An enhanced chaotic JAYA (CJAYA) was developed in [112] by introducing an
adaptive weighting strategy and three chaotic mechanisms including sine, tent, and logistic
mappings. Saadaoui et al. [113] improved JAYA (MLJAYA) through three techniques: adap-
tive weighting, multiple learning, and chaotic perturbation. Jian and Cao [114] developed
a chaotic second-order oscillation JAYA (CSOOJAYA) by using second-order oscillation
factors, chaotic logistic mapping, and a mutation mechanism. The behavior of CSOOJAYA
in solving the studied issue was demonstrated with good reliability and accuracy.

The essential information and experimental results of the variants of JAYA are sum-
marized in Tables 10 and 11. Among them, the TNFES of EJAYA ranks first with 30,000,
followed by CLJAYA, IJAYA, PGJAYA, LCJAYA, CJAYA, CSOOJAYA, EO-Jaya, and Jaya-NM.
Regarding overall accuracy ranking, CLJAYA ranks first, followed by LCJAYA, EJAYA, ML-
JAYA, PGJAYA, CSOOJAYA, and IJAYA in order. In terms of computational resources, the
JAYA variants consume more. Regarding specific values of FT, the difference between most
variants is small, so further research on JAYA could go towards reducing the consumption
of computational resources.

Table 10. JAYAs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

IJAYA [104] Yu et al., School of Electrical
Engineering, Zhengzhou University

SDM

NP = 20 RMSE
IAE

50,000 30DDM
Photowatt-

PWP201

EO-Jaya [105]
Wang et al., Department of Systems

Engineering and Engineering
Management, City University of

Hong Kong

SDM

NP = 150 RMSE 1,500,000 50DDM

Jaya-NM [106]

Luo et al., School of Computer and
Communication Engineering,

University of Science and Technology
Beijing (USTB)

SDM NP = 150 RMSE 1,500,000 -

PGJAYA [107] Yu et al., School of Electrical
Engineering, Zhengzhou University

SDM

NP = 20 RMSE 50,000 30DDM
Photowatt-

PWP201

MJA [108]
Luu et al., Faculty of Electronics

Technology, Industrial University of
Ho Chi Minh City

SDM
NPinit = 10D, NPmin = D,

r = rand (−0.5, 0.5), RMSE - 30DDM

LCJAYA [109]
Jian et al., School of Optical Electrical

and Computer Engineering, University
of Shanghai for Science

and Technology

SDM

NP = 20 RMSE 50,000 30DDM
Photowatt-

PWP201

CLJAYA [110]
Zhang et al., School of Electrical and

Information Engineering,
Tianjin University

SDM

NP = 20 RMSE
MIAE

20,000
-DDM 50,000

Photowatt-
PWP201 30,000

EJAYA [111]
Yang et al., School of Computer

Science, China University
of Geosciences

SDM

NP = 30,
rate Ra = 0.3

RMSE
WST

30,000 30

DDM
Photowatt-

PWP201
STM6-40/36
STP6-120/36

CJAYA [112]
Premkumar et al., Department of

Electrical and Electronics Engineering,
GMR Institute of Technology

SDM NP = 30
RMSE

IAE
WST

50,000 30DDM NP = 50
STM6-40/36 NP = 80
STP6-120/36 NP = 80

MLJAYA [113]
Saadaoui et al., Laboratory of Materials

and Renewable Energies, Faculty of
Science, Ibn Zohr University

SDM
NP = 30, F = 3randn RMSE

SIAE
- 30DDM

Photowatt-
PWP201

CSOOJAYA [114]
Jian et al., School of Optical Electrical

and Computer Engineering, University
of Shanghai for Science

and Technology

SDM

NP = 20 RMSE
IAE

50,000 30DDM
Photowatt-

PWP201
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Table 11. JAYAs’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

IJAYA [104]
SDM - 9.8603 × 10−4 9.9204 × 10−4 1.0622 × 10−3 1.4033 × 10−5

6.5DDM - 9.8293 × 10−4 1.0269 × 10−3 1.4055 × 10−3 9.8325 × 10−5

Photowatt-PWP201 - 2.4251 × 10−3 2.4289 × 10−3 2.4393 × 10−3 3.7755 × 10−6

EO-Jaya [105] SDM - 9.8603 × 10−4 - - - N/A
DDM - 9.8262 × 10−4 - - -

Jaya-NM [106] SDM - 9.8602 × 10−4 - - - N/A

PGJAYA [107]
SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 1.4485 × 10−9

3.833DDM - 9.8263 × 10−4 9.8582 × 10−4 9.9499 × 10−4 2.5375 × 10−6

Photowatt-PWP201 - 2.425075 × 10−3 2.425144 × 10−3 2.426764 × 10−3 3.071420 × 10−7

MJA [108] SDM - 9.860218 × 10−4 9.860218 × 10−4 9.860218 × 10−4 1.99 × 10−17
N/A

DDM - 9.824848 × 10−4 9.8260 × 10−4 9.860218 × 10−4 6.46 × 10−7

LCJAYA [109]
SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 5.6997 × 10−16

3.5DDM - 9.8250 × 10−4 9.8308 × 10−4 9.8602 × 10−4 1.3118 × 10−6

Photowatt-PWP201 - 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.415229 × 10−16

CLJAYA [110]
SDM - 9.8602 × 10−4 - - -

3.167DDM - 9.8249 × 10−4 - - -
Photowatt-PWP201 - 2.425075 × 10−3 - - -

EJAYA [111]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 6.80 × 10−17

3.5
DDM - 9.8248 × 10−4 9.8448 × 10−4 9.8602 × 10−4 1.51 × 10−6

Photowatt-PWP201 - 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−4 6.39 × 10−17

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 1.47 × 10−17

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 2.68 × 10−16

CJAYA [112]

SDM - 9.8625 × 10−4 9.8878 × 10−4 9.8991 × 10−4 4.5584 × 10−8

N/A
DDM - 1.0145 × 10−3 1.01458 × 10−3 1.0365 × 10−3 7.5514 × 10−5

STM6-40/36 - 1.7242 × 10−3 1.7289 × 10−3 1.7845 × 10−3 1.4751 × 10−7

STP6-120/36 - 1.6285 × 10−2 1.6299 × 10−2 1.6302 × 10−2 3.2565 × 10−7

MLJAYA [113]
SDM 0.01781248 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 -

3.667DDM 0.0176 9.8294 × 10−4 1.0618 × 10−3 1.42102 × 10−3 -
Photowatt-PWP201 0.04686375 2.4250748 × 10−3 2.44395 × 10−3 2.49419 × 10−3 -

CSOOJAYA [114]
SDM - 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 4.717305 × 10−17

3.833DDM - 9.824849 × 10−4 9.824849 × 10−4 9.824849 × 10−4 5.576332 × 10−17

Photowatt-PWP201 - 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.699858 × 10−17

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

3.7. TLBOs

TLBO is a group metaheuristic developed based on the influence of teachers on
students [115]. TLBO assumes that student outcomes are related to teacher competence.
As the best in the group, the teacher teaches the students and raises the group’s average
achievement by a random factor. Students learn from each other at random coefficients
during the learning phase and are led by the better of the two at random.

Chen et al. [116] suggested a generalized opposition-based learning mechanism for
TLBO (GOTLBO). GOTLBO was demonstrated with excellent performance in benchmark
functions and parameter extraction cases. To target different stages’ effectiveness, Yu
et al. [117] developed a self-adaptive TLBO (SATLBO) concerning elite learning mechanisms
in the teacher stage and diverse learning mechanisms in the learner stage. SATLBO achieved
competitive RMSE values in several PV models. Ramadan et al. [118] developed an
enhanced TLBO (ETLBO) with controlled parameters replacing random parameter values
and highlighted its effectiveness and competitiveness by extracting PV model parameters.
Xiong et al. [21] developed an either/or TLBO (EOTLBO). To improve the generalizability
of the method, EOTLBO replaced the mean with the learner median at the teacher stage. A
random learner was added to the EOTLBO at the learner stage to improve the exploration
capacity. The authors argued that it was inefficient for individuals to go through both
teacher and learner stages, so EOTLBO implemented an either/or mechanism to choose
one stage based on a chaotic map. EOTLBO showed excellent competitiveness, accuracy,
and reliability. Abdel-Basset et al. [119] designed a modified TLBO (MTLBO). Individuals
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in both stages were divided into three strata of ground performance. Individual updates
within each stratum did not interfere with each other. MTLBO was demonstrated with
high accuracy in five PV models. Li et al. [120] developed an optimized TLBO (DMTLBO).
The authors introduced the idea of dynamic self-adaption to the teacher stage and the idea
of inter-comparison to the learner stage to further explore the capabilities of each stage.
DMTLBO’s accuracy, speed, and competitiveness were confirmed in different cases.

The essential information and experimental results of the TLBO variants are summa-
rized in Tables 12 and 13. In the crucial information, GOTLBO has the least computational
resources, followed by EOTLBO, SATLBO, MTLBO, DMTLBO, and ETLBO. In the accuracy
ranking, EOTLBO comes first, followed by DMTLBO, MTLBO, and SATLBO. GOTLBO
and ETLBO are not included because of missing values for some of the selected cases in
the ranking. A direct comparison of the values in Table 13 reveals that the MIN RMSE of
GOTLBO and ETLBO, which are early variants, struggle to outperform the other TLBO
variants of recent years. An upward trend in the improvement of TLBO can be observed.
However, the consumption of computational resources, unlike the development of accu-
racy, does not decrease significantly with the approaching number of years. Therefore, a
reduction in the use of computational resources needs to be considered in future studies
of TLBO.

Table 12. TLBOs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

GOTLBO [116] Chen et al., School of Electrical and
Information Engineering,

Jiangsu University

SDM NP = 20, SDM: Jr = 0.1,
DDM: Jr = 0 RMSE 10,000 30DDM 20,000

SATLBO [117]

Yu et al., Key Laboratory of Advanced
Control and Optimization for

Chemical Processes, Ministry of
Education, East China University of

Science and Technology

SDM

NP = 40 RMSE 50,000 30DDM
Photowatt-PWP201

ETLBO [118]
Ramadan et al., Department of

Electrical Engineering, Faculty of
Engineering, Aswan University

SDM
NP = 200,

Iteration = 5000,
RMSE

IAE
- -DDM

STM6-40/36
STP6-120/36

EOTLBO [21]
Xiong et al., Guizhou Key Laboratory

of Intelligent Technology in Power
System, College of Electrical

Engineering, Guizhou University

SDM

NP = 50
RMSE
WRT

FT
20,000 50DDM

Photowatt-PWP201
Sharp ND-R250A5

MTLBO [119]
Abdel-Basset et al., Faculty of
Computers and Informatics,

Zagazig University

SDM

NP = 50 RMSE 50,000 30
DDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

DMTLBO [120]

Li et al., Guizhou Key Laboratory of
Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM

NP = 50 RMSE
SIAE

50,000 30
DDM

Photowatt-PWP201
STM6-40/36
STP6-120/36
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Table 13. TLBOs’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

GOTLBO [116] SDM - 9.87442 × 10−4 1.33488 × 10−3 1.98244 × 10−3 2.99407 × 10−4
N/A

DDM - 9.83177 × 10−4 1.24360 × 10−3 1.78774 × 10−3 2.09115 × 10−4

SATLBO [117]
SDM - 9.86022 × 10−4 9.87795 × 10−4 9.94939 × 10−6 2.30015 × 10−6

3.667DDM - 9.828037 × 10−4 9.981111 × 10−4 1.047045 × 10−3 1.951533 × 10−5

Photowatt-PWP201 - 2.425075 × 10−3 2.425428 × 10−3 2.429130 × 10−3 7.410517 × 10−7

ETLBO [118]

SDM - 9.86022 × 10−4 - - -

N/A
DDM - 9.8241 × 10−4 - - -

STM6-40/36 - 1.7759 × 10−3 - - -
STP6-120/36 - 1.6172 × 10−2 - - -

EOTLBO [21]

SDM - 9.86021878 × 10−4 9.86021878 × 10−4 9.86021878 × 10−4 4.12665088 ×
10−17

1.667DDM - 9.82484852 × 10−4 9.84733697 × 10−4 9.89424104 × 10−4 1.69176118 × 10−6

Photowatt-PWP201 - 2.42507487 × 10−3 2.42507487 × 10−3 2.42507487 × 10−3 3.61995116 ×
10−17

Sharp ND-R250A5 - 1.11833356 × 10−2 1.11839904 × 10−2 1.12154997 × 10−2 4.54767027 × 10−6

MTLBO [119]

SDM - 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 1.9292748 × 10−17

2.667
DDM - 9.824849 × 10−4 9.824855 × 10−4 9.825026 × 10−4 3.3000000 × 10−9

Photowatt-PWP201 - 2.4250749 × 10−3 2.4250749 × 10−3 2.4250749 × 10−3 1.3070107 × 10−17

STM6-40/36 - 1.7298137 × 10−3 1.7298137 × 10−3 1.7298137 × 10−3 5.9363718 × 10−18

STP6-120/36 - 1.66006031 × 10−2 1.66006031 × 10−2 1.66006031 × 10−2 8.0041380 × 10−17

DMTLBO [120]

SDM 0.0178 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.07 × 10−17

2
DDM 0.0176 9.8248 × 10−4 9.8406 × 10−4 9.8638 × 10−4 1.53 × 10−6

Photowatt-PWP201 0.0411 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 2.15 × 10−17

STM6-40/36 0.0215 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 5.74 × 10−14

STP6-120/36 0.2741 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 4.55 × 10−10

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

3.8. WOAs

WOA consists of an attack prey phase responsible for exploitation and a search prey
phase responsible for exploration [121,122]. The bubble net attack consists of two mech-
anisms, i.e., encircling prey and spiral update position, both of which have the same
probability of being selected. The encircling prey mechanism can determine any position
between the present and best individuals within a specific range related to the parameter a,
which decreases from 2 to 1 as the optimization proceeds. In the spiral position update, the
individual’s position is determined by the spiral equation between the whale and the prey.
In the search phase, individuals are updated similarly to the encircling prey mechanism,
except that a random individual replaces the optimal individual.

An improved WOA (IWOA) was developed in [123] to address the premature conver-
gence of WOA. IWOA adjusted the encircling prey mechanism and modified the updating
search phase to enhance the exploration, diversity, and robustness. Experiments in different
PV models showed that IWOA extracted parameters with fast convergence, high quality,
good robustness, and competitiveness. In [124], Elazab et al. pioneered the application
of WOA to this studied problem. Comparisons with other algorithms demonstrated that
WOA can fit PV data more accurately. To further enhance the ability of WOA to cope
with the studied problem, Xiong et al. [18] developed a variant of WOA (MCSWOA) by
modifying the search strategy of WOA using DE’s mutation equation. A crossover op-
erator was designed to improve the algorithm’s applicability in different dimensions. A
selection operator was designed to ensure that the optimization process would not worsen
at any time. The perfect convergence curves, RMSE values, SIAE values, and ranking
indicated that MCSWOA was characterized by high accuracy, competitiveness, and fast
convergence. Pourmousa et al. [125] designed a Springy WOA (SWOA) by adding a
deletion stage to the WOA. Peng et al. [126] developed a new approach (ISNMWOA) by
combining the Nelder-Mead simplex technique with WOA. The results demonstrated that
ISNMWOA’s performance was significantly higher than WOA and it ran faster than other
high-performance methods.



Sustainability 2023, 15, 3312 22 of 45

The essential information and experimental results of the variants of GWO are sum-
marized in Tables 14 and 15. WOA has the least computational resources, followed by
ISNMWOA, MCSWOA, IWOA, and SWOA, in order. In Table 15, SWOA has the highest
overall MIN RMSE ranking, followed by ISNMWOA, IWOA, and MCSWOA. SWOA has
high accuracy but consumes a lot of computational resources, with 5000 iterations at a
population size of 30. The accuracy of ISNMWOA is close to that of SWOA, and TNFES at
20,000 is much lower than SWOA but still needs further improvement.

Table 14. WOAs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

WOA [124]
Elazab et al., Electrical Power and
Machines Department, Faculty of

Engineering, Ain Shams University
KC200GT NP = 30,

Iteration = 500, - 15,000 -

IWOA [123]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM
NP = 50,

Iteration = 2000,
RMSE
SIAE

WRT, FT
- 50DDM

Photowatt-PWP201

MCSWOA [18]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of
Electrical Engineering,

Guizhou University

SDM

NP = 50
RMSE
SIAE

FT
50,000 50

DDM
Photowatt-PWP201

STM6-40/36
STP6-120/36

Sharp ND-R250A5

SWOA [125]
Pourmousa et al., Department of

Electrical Engineering, Iran University
of Science and Technology

SDM
NP = 30,

Iteration = 5000,
RMSE

IAE
- 30DDM

TDM
Photowatt-PWP201

ISNMWOA [126]
Peng et al., Department of Computer

Science and Artificial Intelligence,
Wenzhou University

SDM

NP = 30 RMSE
SIAE

20,000 -DDM
TDM

Photowatt-PWP201

Table 15. WOAs’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

IWOA [123]
SDM 0.01770338 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 5.12 × 10−16

2.667DDM 0.01735511 9.824849 × 10−4 9.826140 × 10−4 9.860219 × 10−4 9.86 × 10−5

Photowatt-
PWP201 0.04176116 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.90 × 10−17

MCSWOA [18]

SDM 0.01770381 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 4.8373 × 10−10

3.167

DDM 0.01730633 9.8250 × 10−4 1.0078 × 10−3 1.1903 × 10−3 3.7264 × 10−5

Photowatt-
PWP201 0.04178694 2.4251 × 10−3 2.4252 × 10−3 2.4270 × 10−3 3.2927 × 10−7

STM6-40/36 0.02177346 1.7298 × 10−3 1.7311 × 10−3 1.7364 × 10−3 1.0774 × 10−6

STP6-120/36 0.27780418 1.6601 × 10−2 1.6632 × 10−2 1.6741 × 10−2 2.6486 × 10−5

Sharp ND-R250A5 0.21759970 1.1183 × 10−2 1.1187 × 10−2 1.1244 × 10−2 9.1358 × 10−6

SWOA [125]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 -

2
DDM - 9.8249 × 10−4 9.8250 × 10−4 9.8251 × 10−4 -
TDM - 9.8033 × 10−4 9.8051 × 10−4 9.8154 × 10−4 -

Photowatt-
PWP201 - 2.4250 × 10−3 2.4250 × 10−3 2.4250 × 10−3 -

ISNMWOA [126]

SDM 0.021527008 9.8602 × 10−4 - - -

2.167
DDM 0.021275213 9.8248 × 10−4 - - -
TDM 0.021275347 9.8248 × 10−4 - - -

Photowatt-
PWP201 0.048923833 2.4251 × 10−3 - - -

3.9. Hybrids

The above methods used for the studied problem are partially dominated by a single
metaheuristic algorithm. In addition to them, hybrid approaches that combine two and
more metaheuristics are also popular for solving this problem. The motivation behind the
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hybrid approaches is integrating diverse features of different algorithms to equilibrate the
global and local search abilities.

In [127], Xiong et al. devised an approach (DE/WOA) that took full advantages
of DE and WOA to balance diversity and convergence. Long et al. [128] developed an
approach (GWOCS) introducing the opposing learning mechanism of cuckoo search (CS)
for the three optimal individuals preserved by GWO to achieve improved performance.
The results of benchmark functions and PV models supported the authors’ expectations
of performance improvement. Rizk et al. [129] developed a new method (PSOGWO) by
mixing GWO and PSO to make full use of their exploration and exploitation advantages.
Different PV models demonstrated the excellent performance of PSOGWO. Li et al. [130]
designed a DE-based adaptive TLBO (ATLDE) by mixing DE with TLBO and adjusting the
teaching and learning stages using a ranking probability mechanism. Experimental results
supported ATLDE’s competitiveness. In [131], the authors effectively combined DE with
Harris Hawks Optimization (HHO) to form a new method (HHODE), and demonstrated
the effectiveness of the improvement using RMSE values for the extracted PV parameters.
Yu et al. [132] devised a new method (HAJAYADE) by replacing the two parameters of JAYA
adaptively. Then, the method combined DE and introduced a mutational operator and an
adaptive chaos mechanism to ensure its performance. Devarapalli et al. [133] improved the
updated approach of a hybrid of GWO and sine cosine algorithm (HGWOSCA) to gain an
enhanced method (EHGWOSCA). Singh et al. [47] hybridized the Dingo Optimizer and
PSO to form a new hybrid algorithm (HPSODOX) and developed a four-diode PV model
to reveal HPSODOX’s performance. The results supported the validity of the algorithm
improvement. Weng et al. [134] integrated a Backtracking Search Algorithm with TLBO to
form a new method (TLBOABC) and verified the method’s effectiveness well.

The essential information and experimental results of the hybrid methods are summa-
rized in Tables 16 and 17. TLBOBSA has the lowest computational resource consumption,
followed by ATLDE, DE/WOA, GWOCS, and HAJAYADE. TLBOBSA has the highest over-
all ranking for MIN RMSE, followed by DE/WOA, HAJAYADE, and GWOCS. TLBOBSA
ranks the highest in resource consumption and accuracy, indicating that a suitable hybrid
scheme can achieve significant performance. It should be noted that the MIN RMSE of
HPSODOX, although very small, needs more basic information, and there are no repeated
runs for the experiment, so it is impossible to evaluate the performance of this method for
the time being.

3.10. Others

New methods usually lead to breakthroughs in specific problems, since they bring dif-
ferent search mechanisms. Therefore, researchers favor novel approaches and their variants
in exploring the PV model parameter extraction, and have provided some new approaches.

Naeijian et al. [135] developed a Whippy Harris Hawk Optimization (WHHO) that
handled the worst individual by adding elimination cycles to improve all-around perfor-
mance. The simulation results demonstrated the fast convergence of WHHO and the high
robustness and accuracy for the extracted parameters. Xiong et al. [4] used a Gaining-
Sharing Knowledge-based algorithm (GSK) for the issue addressed in this work for the
first time. They demonstrated the high accuracy, robustness, and competitiveness of GSK
in different PV models. Sallam et al. [136] developed an improved GSK (IGSK) using a
boundary constraint processing mechanism, a linear population size reduction technique,
and knowledge rate adaptive technology. Xiong et al. [137] applied Supply and Demand
Based Optimization (SDO) and pioneered a comparison between SDO and several ad-
vanced methods in extracting PV model parameters, which powerfully demonstrated the
feasibility and competitiveness of SDO. Diad et al. [138] used a Tree Growth Algorithm
(TGA) to tackle the issue, and the RMSE values showed the TGA’s good accuracy. Abbassi
et al. [139] provided PV model parameters extracted by a Salp Swarm Algorithm (SSA) and
demonstrated its accuracy and competitiveness with multiple metrics. Sharma et al. [140]
solved this problem using Tunicate Swarm Algorithm (TSA) and verified TSA’s accuracy,
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feasibility, and competitiveness with simulations. Gupta et al. [141] designed a chaotic
TSA (CTSA) to tackle the issue, and the results supported its accuracy and competitiveness.
Ramadan et al. [142] developed Chaotic Game Optimization (CGO) for the issue and con-
firmed its good performance. Long et al. [143] designed a Hybrid Seagull Optimization
(HSOA) with three mechanisms, differential mutation, memory-guided and non-linear
control, and tested it in different PV models. Shaban et al. [144] employed Rungakuta
Optimizer (RUN) to tackle the issue. The simulation results demonstrated RUN’s excel-
lent competitiveness, convergence, and robustness. In [145], the authors used a Flower
Pollination Optimization Algorithm (FPOA) for the TDM’s parameters with industrial
samples. The results supported the high-performance of FPOA in the TDM. In [146], the
authors used the Symbiotic Organisms Search (SOS) method to tackle the issue. The results
powerfully demonstrated the superiority of SOS.

Table 16. Hybrids’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

DE/WOA [127]
Xiong et al., Guizhou Key Laboratory

of Intelligent Technology in Power
System, College of Electrical

Engineering, Guizhou University

SDM NP = 40,
F = rand (0.1, 1),
CR = rand (0, 1)

RMSE
MIAE

50,000 50DDM
Photowatt-PWP201

GWOCS [128]
Long et al., Key Laboratory of
Economics System Simulation,
Guizhou University of Finance

and Economics

SDM

NP = 30
RMSE

IAE
FT

50,000 30DDM
Photowatt-PWP201

STM6-40/36

PSOGWO [129]
Rezk et al., College of Engineering at
Wadi Addawaser, Prince Sattam Bin

Abdulaziz University

Photowatt-PWP201 Iteration = 1200
RMSE
MIAE

- -STE4/100 Iteration = 6000
FSM Iteration = 2000

ATLDE [130] Li et al., School of Computer Science,
China University of Geosciences

SDM
NP = 50,
F = rand,
CR = 0.9

RMSE
SIAE
WRT

30,000 30DDM
STM6-40/36
STP6-120/36

HHODE [131]
Ndi et al., Technology and Applied

Sciences Laboratory, University
of Douala

SDM Iteration = 3000 RMSE - 20DDM

HAJAYADE [132]

Yu et al., School of Management
Science and Engineering, Nanjing
University of Information Science

and Technology

SDM

NP = 20,
CR = 0.5

RMSE
WST

50,000 30
DDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

EHGWOSCA [133]
Devarapalli et al., Department of EEE,

Lendi Institute of Engineering
and Technology

SDM

Iteration = 500 ERR - 30
DDM

Shell S75
Shell CS6K280M

Shell ST40

HPSODOX [47]
Singh et al., Electrical and

Instrumentation Engineering
Department, Thapar Institute of

Engineering and Technology

SDM
- RMSE

FT
- -DDM

TDM
FDM

TLBOBSA [134]
Weng et al., Department of Computer

Science and
Artificial Intelligence,
Wenzhou University

SDM

NP = 30 RMSE
SIAE

20,000 30DDM
TDM

Photowatt-PWP201



Sustainability 2023, 15, 3312 25 of 45

Table 17. Hybrids’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

DE/WOA [127]

SDM 0.01770392 9.860219 ×
10−4

9.860219 ×
10−4

9.860219 ×
10−4 3.545178 × 10−17

2.333DDM 0.01731808 9.824849 ×
10−4

9.829703 ×
10−4

9.860377 ×
10−4 9.152178 × 10−7

Photowatt-
PWP201 0.04178725 2.425075 ×

10−3
2.425092 ×

10−3
2.425442 ×

10−3 6.270718 × 10−8

GWOCS [128]

SDM - 9.8607 × 10−4 9.8874 × 10−4 9.9095 × 10−4 2.4696 × 10−6

3.5
DDM - 9.8334 × 10−4 9.9411 × 10−4 1.0017 × 10−3 9.5937 × 10−6

Photowatt-
PWP201 - 2.4251 × 10−3 2.4261 × 10−3 2.4275 × 10−3 1.1967 × 10−6

STM6-40/36 - 1.7337 × 10−3 1.7457 × 10−3 1.7528 × 10−3 1.0447 × 10−5

PSOGWO [129]

Photowatt-
PWP201 0.06292 3.06 × 10−3 - - -

N/ASTE4/100 0.00384 3.0574 × 10−4 - - -
FSM 0.16023 9.14 × 10−3 - - -

ATLDE [130]
SDM 0.0177 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.44 × 10−17

N/ADDM 0.0173 9.8218 × 10−4 9.8372 × 10−4 9.8603 × 10−4 1.37 × 10−6

STM6-40/36 0.0218 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 8.22 × 10−18

STP6-120/36 0.2780 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.02 × 10−16

HHODE [131] SDM - 1.4664 × 10−3 - - - N/A
DDM - 1.5978 × 10−3 - - -

HAJAYADE [132]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 0

2.833

DDM - 9.8294 × 10−4 9.8641 × 10−4 9.96 × 10−4 2.8534 × 10−6

Photowatt-
PWP201 - 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 3.2215 × 10−15

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 3.6569 × 10−16

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 1.6606 × 10−2 9.2421 × 10−7

HPSODOX [47]

SDM - 6.4923 × 10−9 - - -

N/A
DDM - 6.5120 × 10−9 - - -
TDM - 6.5424 × 10−9 - - -
FDM - 6.5656 × 10−9 - - -

TLBOBSA [134]

SDM 0.021526887 9.86902 × 10−4 9.8602 × 10−4 9.8603 × 10−4 5.64965 × 10−10

1.667
DDM 0.021312577 9.8155 × 10−4 1.1334 × 10−3 2.2181 × 10−3 3.0012 × 10−4

TDM 0.021263898 9.82553 × 10−4 1.2081 × 10−3 3.0608 × 10−3 4.9433 × 10−4

Photowatt-
PWP201 0.048923676 2.42507 × 10−3 2.42535 × 10−3 2.43167 × 10−3 1.21238 × 10−6

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

Most of the above methods are applications of newly proposed metaheuristics in recent
years, and their essential information and experimental results are summarized in Tables 18
and 19. SSA has the smallest TNFES, followed by IGSK, RUN, GSK, SDO, TSA, HSOA,
CTSA, SOS, WHHO, and TGA. WHHO and TGA achieve the same combined MIN RMSE
ranking, followed by GSK, IGSK, HSOA, and SOS, in that order. It is worth noting that
RUN, as the original algorithm, obtained more accurate parameter values with not many
computational resources. TGA achieved the most efficient MIN RMSE values for DDM
and TDM, and GSK received enough accuracy to compare with many advanced algorithms
with not many computational resources. This suggests that exploring the application of
new methods may make it easier to achieve a solution to the issue.
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Table 18. Other methods’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

WHHO [135]
Naeijian et al., Department of
Electrical Engineering, Babol

Noshirvani University of Technology

SDM
NP = 30,

Iteration = 5000,
RMSE

IAE
- 30DDM

TDM
Photowatt-PWP201

GSK [4]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM
NP = 30,

kr = 0.9, kf = 0.5, K = 10,
p = 0.1

RMSE
SIAE

FT

30,000

30
DDM 50,000

Photowatt-PWP201 30,000
STM6-40/36 30,000
STP6-120/36 30,000

IGSK [136]
Sallam et al., The Faculty of
Computers and Information,

Zagazig University

SDM
NPinit = 25,

kr = 0.9, kf = 0.5, K = 10,
p = 0.1

RMSE
WST

10,000

30
DDM 20,000

Photowatt-PWP201 10,000
STM6-40/36 15,000
STP6-120/36 15,000

SDO [137]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM

NP = 20
RMSE
SIAE
WRT

FT

50,000 50
DDM

PVM 752 GaAs
STM6-40/36
STP6-120/36

TGA [138]
Diab et al., Electrical Engineering

Department, Faculty of Engineering,
Minia University

SDM

NP = 500,
Iteration = 500, RMSE - -

DDM
TDM

PVM 752 GaAs
Photowatt-PWP201

STE 20/100

SSA [139]
Abbassi et al., University of Kairouan,

Institute of Applied Sciences and
Technology of Kasserine (ISSATKas)

TITAN-12-50 NP = 30,
Iteration = 100,

RMSE
IAE - 30

TSA [140]
Sharma et al., Research and

Development Department, University
of Petroleum and Energy Studies

Photowatt-PWP201 NP = 30 RMSE,
SIAE, FT 50,000 30

CGO [142]
Ramadan et al., Department of

Electrical Engineering, Faculty of
Engineering, Aswan University

TDM Iteration = 1000 RMSE
IAE

- 15Photowatt-PWP201

HSOA [143]
Long et al., Key Laboratory of
Economics System Simulation,
Guizhou University of Finance

and Economics

SDM NP = 30,
fcmax = 2, fcmin = 0,

F = 0.5

RMSE
SIAE

FT
50,000 20DDM

Photowatt-PWP201

RUN [144] Shaban et al., Faculty of Computers
and Information, Minia University

SDM NP = 30,
Iteration = 1000,

a = 20, b = 12

RMSE
IAE
FT

- 30DDM
TDM

FPOA [145]
Chellaswamy et al., Department of
ECE, Lords Institute of Engineering

and Technology
Sample2, Sample5 β = 1.45, Sp = 0.85 MIAE - -

CTSA [141]

Gupta et al., Electrical and
Instrumentation Engineering

Department, Thapar Institute of
Engineering and Technology

DDM NP = 50,
Iteration = 1000

RMSE
SIAE

- -TDM

SOS [146]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM
NP = 50

RMSE
SIAE
WRT

50,000 50DDM
Photowatt-PWP201
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Table 19. Other methods’ experiment results.

Method Case SIAE MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

WHHO [135]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 -

2.667
DDM - 9.82487 × 10−4 9.8249 × 10−4 9.8250 × 10−4 -
TDM - 9.80751 × 10−4 9.8085 × 10−4 9.8149 × 10−4 -

Photowatt-
PWP201 - 2.4250 × 10−3 2.4250 × 10−3 2.4250 × 10−3 -

GSK [4]

SDM 0.0174 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.18 × 10−17

3

DDM 0.0175 9.8248 × 10−4 9.8280 × 10−4 9.8602 × 10−4 8.72 × 10−7

Photowatt-
PWP201 0.0411 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 1.04 × 10−9

STM6-40/36 0.0218 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 6.25 × 10−18

STP6-120/36 0.2829 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.44 × 10−16

IGSK [136]

SDM - 9.8602188 × 10−4 9.8602188 × 10−4 9.8602188 × 10−4 3.5821018 ×
10−17

3.33

DDM - 9.8248485 × 10−4 9.8272774 × 10−4 9.8602188 × 10−4 8.9578942 × 10−7

Photowatt-
PWP201 - 2.4250749 × 10−3 2.4250749 × 10−3 2.4250749 × 10−3 2.9226647 ×

10−17

STM6-40/36 - 1.7298137 × 10−3 1.7298137 × 10−3 1.7298137 × 10−3 7.0155794 ×
10−18

STP6-120/36 - 1.6600603 × 10−2 1.6600603 × 10−2 1.6600603 × 10−2 1.7069489 ×
10−16

SDO [137]

SDM 0.01770381 9.8602 × 10−4 9.8603 × 10−4 9.8616 × 10−4 2.5141 × 10−8

N/A
DDM 0.01730620 9.8250 × 10−4 9.8822 × 10−4 1.0271 × 10−3 8.8518 × 10−6

PVM 752 GaAs 0.00593491 2.3487 × 10−4 3.1727 × 10−4 3.7700 × 10−4 2.7687 × 10−5

STM6-40/36 0.02177419 1.7298 × 10−3 1.7703 × 10−3 1.9500 × 10−3 4.5108 × 10−5

STP6-120/36 0.27797428 1.6601 × 10−2 1.6683 × 10−2 1.6866 × 10−2 7.1751 × 10−5

TGA [138]

SDM - 9.750530454421328
× 10−4 - - -

2.667

DDM - 8.488244232381
× 10−4 - - -

TDM - 8.251052783901371
× 10−4 - - -

PVM 752 GaAs - 9.037521972258222
× 10−4 - - -

Photowatt-
PWP201 - 3.819491771269

× 10−3 - - -

STE 20/100 - 9.28071173 ×
10−4 - - -

SSA [139]
TITAN-12-

50(366) - 2.9681 × 10−04 - - -
N/ATITAN-12-

50(810.2) - 1.5777 × 10−06 - - -

TSA [140] Photowatt-
PWP201 0.0594 5.06 × 10−4 1.45 × 10−3 2.34 × 10−2 1.25 × 10−3 N/A

CGO [142]
TDM - 9.82 × 10−4 9.82 × 10−4 9.82 × 10−4 1.24841 × 10−9

N/APhotowatt-
PWP201 - 2.425075 × 10−3 2.425092 × 10−3 2.4251 × 10−3 1.44688 × 10−8

HSOA [143]

SDM 0.0177065 9.8602 × 10−4 1.0479 × 10−3 1.1683 × 10−3 5.3832 × 10−5

4
DDM 0.017402 9.8376 × 10−4 1.1175 × 10−3 1.7642 × 10−3 1.9107 × 10−4

Photowatt-
PWP201 0.041788 2.4251 × 10−3 2.4251 × 10−3 2.4253 × 10−3 4.1556 × 10−8

RUN [144]
SDM - 9.86242 × 10−4 1.479894 × 10−3 2.444572 × 10−3 4.30699 × 10−4

N/ADDM - 9.87168 × 10−4 1.481762 × 10−3 2.947571 × 10−3 5.14117 × 10−4

TDM - 9.89133 × 10−4 1.581238 × 10−3 6.239595 × 10−3 1.078762 × 10−3

CTSA [141] DDM 0.2621 1.0239 × 10−8 2.1185 × 10−8 9.6017 × 10−8 3.9865 × 10−8
N/A

TDM 0.0075 1.0036 × 10−6 3.4906 × 10−6 9.4766 × 10−6 2.7057 × 10−6

SOS [146]
SDM 0.0181 9.8609 × 10−4 1.0245 × 10−3 1.1982 × 10−3 5.2184 × 10−5

5.333DDM 0.0182 9.8518 × 10−4 1.0627 × 10−3 1.3498 × 10−3 9.6141 × 10−5

Photowatt-
PWP201 0.0421 2.4251 × 10−3 2.4361 × 10−3 2.5103 × 10−3 1.7503 × 10−5

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

4. Whole Analysis and Research Prospects

This section presents metaheuristic methods in solving the studied problem. We collect
their data for an overall analysis and give some research prospects.
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4.1. Data Analysis

In the third part, the final results of many methods are relatively convergent. For
SDM, the RMSE is mainly distributed around 9.8206 × 10−4 and the rest is concentrated
around 7.7301 × 10−4. The DDM’s primary distribution is around 9.8248 × 10−4, with a
secondary allocation of 7.42 × 10−4 to 7.1823 × 10−4. For the TDM, the main distribution is
between 9.8331 × 10−4 and 9.8033 × 10−4, with higher precision than the main distribution
interval, being 8.2511 × 10−4 for TGA and 6.5424 × 10−9 for HPSODOX. For Photowatt-
PWP201, the main distribution is around 2.4251 × 10−3, the secondary distribution is
around 2.0399 × 10−3, and the best-performing TSA reaches 5.06 × 10−4. STM6-40/36 is
mainly distributed at 1.7298 × 10−3. STP6-120/36 is primarily distributed at 1.6601 × 10−2

nearby; the best-performing FDB-TLABC achieved 1.4251 × 10−2. However, the different
approaches rarely use the same cases and evaluation indicators, and the results may differ
between models. Therefore, some well-performed variants of metaheuristics that used the
RMSE indicators are selected for further comparison in Table 20, i.e., ABC-TRR, RLDE,
OLBWOA, CSOOJAYA, DEDIWPSO, EOTLBO, IWOA, TLBOBSA, IGSK, HSOA, and SOS.

Table 20. Various methods’ RMSE results.

Method Case MIN
RMSE

Mean
RMSE

MAX
RMSE

STD of
RMSE Rank

ABC-TRR [92]
SDM 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 6.15 × 10−17

5.958DDM 9.824849 × 10−4 9.825556 × 10−4 9.860219 × 10−4 4.95 × 10−7

Photowatt-PWP201 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 9.68 × 10−17

RLDE [41]
SDM 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 3.4834 × 10−17

5.125DDM 9.8248 × 10−4 9.8695 × 10−4 9.8457 × 10−4 1.7498 × 10−6

Photowatt-PWP201 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 6.3084 × 10−17

OLBGWO [100]
SDM 9.86 × 10−4 9.86 × 10−4 9.86 × 10−4 1.4 × 10−8

4.583DDM 9.83 × 10−4 9.85 × 10−4 9.86 × 10−4 1.78 × 10−6

Photowatt-PWP201 2.4 × 10−3 2.4 × 10−3 2.4 × 10−3 2.4284 × 10−9

CSOOJAYA [114]
SDM 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 4.717305 × 10−17

4.917DDM 9.824849 × 10−4 9.824849 × 10−4 9.824849 × 10−4 5.576332 × 10−17

Photowatt-PWP201 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.699858 × 10−17

DEDIWPSO [85]
SDM 7.730062 × 10−4 7.730062 × 10−4 7.730062 × 10−4 5.18668 × 10−15

2.5DDM 7.182306 × 10−4 7.187462 × 10−4 7.318100 × 10−4 2.486129 × 10−6

Photowatt-PWP201 2.03992 × 10−3 2.03992 × 10−3 2.03992 × 10−3 2.995389 × 10−15

EOTLBO [21]
SDM 9.86021878 × 10−4 9.86021878 × 10−4 9.86021878 × 10−4 4.12665088 × 10−17

4.5DDM 9.82484852 × 10−4 9.84733697 × 10−4 9.89424104 × 10−4 1.69176118 × 10−6

Photowatt-PWP201 2.42507487 × 10−3 2.42507487 × 10−3 2.42507487 × 10−3 3.61995116 × 10−17

IWOA [123]
SDM 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 5.12 × 10−16

6.375DDM 9.824849 × 10−4 9.826140 × 10−4 9.860219 × 10−4 9.86 × 10−5

Photowatt-PWP201 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.90 × 10−17

TLBOBSA [134]
SDM 9.86902 × 10−4 9.8602 × 10−4 9.8603 × 10−4 5.64965 × 10−10

8.292DDM 9.8155 × 10−4 1.1334 × 10−3 2.2181 × 10−3 3.0012 × 10−4

Photowatt-PWP201 2.42507 × 10−3 2.42535 × 10−3 2.43167 × 10−3 1.21238 × 10−6

IGSK [136]
SDM 9.8602188 × 10−4 9.8602188 × 10−4 9.8602188 × 10−4 3.5821018 × 10−17

4.333DDM 9.8248485 × 10−4 9.8272774 × 10−4 9.8602188 × 10−4 8.9578942 × 10−7

Photowatt-PWP201 2.4250749 × 10−3 2.4250749 × 10−3 2.4250749 × 10−3 2.9226647 × 10−17

HSOA [143]
SDM 9.8602 × 10−4 1.0479 × 10−3 1.1683 × 10−3 5.3832 × 10−5

9.333DDM 9.8376 × 10−4 1.1175 × 10−3 1.7642 × 10−3 1.9107 × 10−4

Photowatt-PWP201 2.4251 × 10−3 2.4251 × 10−3 2.4253 × 10−3 4.1556 × 10−8

SOS [146]
SDM 9.8609 × 10−4 1.0245 × 10−3 1.1982 × 10−3 5.2184 × 10−5

10.083DDM 9.8518 × 10−4 1.0627 × 10−3 1.3498 × 10−3 9.6141 × 10−5

Photowatt-PWP201 2.4251 × 10−3 2.4361 × 10−3 2.5103 × 10−3 1.7503 × 10−5

The variants of metaheuristics that used the SIAE indicators are selected for fur-
ther comparison in Figure 5, i.e., SOS, HSOA, GSK, TLBOBSA, DE/WOA, ISNMWOA,
MCSWOA, IWOA, DMTLBO, PSO-ST, GCPSO, MLJAYA, I-GWO, HDE, DPDE, QILDE,
ABC-TRR, and TLABC. Moreover, these methods were generally tested in the SDM, DDM,
and Photowatt-PWP201 module. Here, the module only means the Photowatt-PWP201.
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• The STD of RMSE reflects the results’ robustness, MIN RMSE means the results’ accuracy,
and other RMSEs denote the range and sharpness of the fluctuations in the results.
The SDM, DDM and Photowatt-PWP201 models of DEDIWPSO had the MIN RMSE
(7.730062 × 10−4, 7.182306 × 10−4, and 2.03992 × 10−3), mean RMSE (7.730062 × 10−4,
7.187462 × 10−4, and 2.03992 × 10−3), MAX RMSE (7.730062 × 10−4, 7.3181 × 10−4,
and 2.03992 × 10−3) and STD (5.18668 × 10−15, 2.486129 × 10−6, and 2.995389 × 10−15).
It is followed by IGSK with MIN RMSE (9.8602188 × 10−4, 9.8248485 × 10−4, and
2.4250749× 10−3), mean RMSE (9.8602188 × 10−4, 9.8272774 × 10−4, and 2.4250749×
10−3), MAX MRSE (9.8602188 × 10−4, 9.8602188 × 10−4, and 2.4250749 × 10−3) and
STD (3.5821018 × 10−17, 8.9578942 × 10−7, and 2.9226647 × 10−17). Then, EOTLBO,
OLBGWO, CSOOJAYA, RLDE, ABC-TRR, IWOA, TLBOBSA, HSOA, and SOS followed.

• Figure 4 shows the combined FT ranking for the SDM, DDM, and Photowatt-PWP201.
It combines the absolute accuracy of the methods in a wide range of cases. GSK ranks
first, followed by MCSWOA, IWOA, GCPSO, QILDE, DE/WOA, DMTLBO, HSOA,
MLJAYA, SOS, TLABC, PSO-ST, ABC-TRR, I-GWO, HDE, TLBOBSA, ISNMWOA, and
DPDE. GSK, as a new method achieving the highest accuracy, demonstrates the need
to explore the performance of new schemes in this issue. It is worth noting that the
rankings of the same methods in different PV models may differ, which indicates that
different PV models have varied preferences for algorithms.

• TNFES is related to the computational resources consumed, with a lower TNFES
representing a lower computational burden. For the SDM and module, ABC-TRR had
the fewest TNFES (1000) while other methods basically used a TNFES of 50,000. For
the DDM, ABC-TRR had the fewest TNFES (5000), while most of the rest consumed a
TNFES of 50,000.
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4.2. Analysis of Temperature and Irradiance Influences

When the irradiance or temperature changes, the current output of the PV cell will also
change, and therefore several unknown parameters representing the output characteristics
of the PV cell will also change. The GSK algorithm with high accuracy is used in this section
to identify the sampled data at different temperatures or irradiances in order to explore
their patterns. The data are taken from the KC200GT module in Simulink.

4.2.1. Uniform Irradiance and Temperature

Eight cases under uniform conditions were set up to explore the effects of irradiance
and temperature separately. The cases can be divided into five irradiances at 25 ◦C: 1000,
800, 600, 400, and 200 W/m2 and four temperatures at 1000 W/m2: 25, 40, 55, and 70 ◦C.
Their I-V and P-V output characteristics are shown in Figures 6 and 7. In the figures, the
output current increases with increasing irradiance, and the maximum power point voltage
decreases with increasing temperature.
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From the above characteristic plots, it is evident that when environmental factors
change, corresponding parameters change accordingly to achieve a high degree of fit to the
output curve. The unknown parameters extracted using GSK are illustrated in Table 21.
When the irradiance is the variable, Iph increases linearly with increasing irradiance, and Rs
decreases in a non-linear fashion with increasing irradiance. When the temperature is the
variable, Iph increases weakly with increasing temperature, and Issd increases in a non-linear
manner. Meanwhile, the RMSE increases with decreasing temperature, indicating that the
lower the temperature, the lower the identification result’s accuracy.

Table 21. Parameters of the KC200GT at different irradiances and temperatures.

Radiation
/W/m2

Temperature
/◦C Iph/A Issd/µA n Rs/Ω Rsh/Ω RMSE

Variable Fixed

1000 25 8.22920506 2.19226333 ×
10−10 0.34555194 149.79495733 52.64769156 2.87908987 ×

10−3

800 25 6.58249378 2.57655463 ×
10−10 0.34314866 190.38069917 52.99842155 2.40659465 ×

10−3

600 25 4.93738274 2.27177693 ×
10−10 0.34433472 250.19011038 52.72470592 3.70428705 ×

10−3

400 25 3.29180014 1.99109819 ×
10−10 0.34972198 372.27107651 52.42424407 1.44743443 ×

10−3

200 25 1.64555637 2.50815014 ×
10−10 0.34381397 769.17560620 52.94945965 1.23547582 ×

10−3

Fixed Variable

1000 25 8.22811095 2.49012735 ×
10−10 0.34410634 152.34953496 52.92528529 5.10117026 ×

10−3

1000 40 8.30308470 2.50259970 ×
10−9 0.34496529 149.56870789 52.70878667 4.12556209 ×

10−3

1000 55 8.37565108 2.31628311 ×
10−8 0.34480573 153.53100022 52.79148663 8.96621362 ×

10−3

1000 70 8.45187588 1.62391869 ×
10−7 0.34518787 146.10502751 52.62434432 1.10992599 ×

10−2

Some methods counted in Section 3 simulated PV modules at different irradiances and
temperatures. The methods are gathered together, as illustrated in Table 22. The methods’
quantity is 22, indicating that the proportion of methods discussing these cases is low and
that more consideration needs to be placed on these cases in future research work. Most of
the 22 methods discussed irradiance and temperature together, and the cases they used
most frequently are SM55, ST40, and KC200GT. Thus, other cases could be added to these
three implementations in the future so that further generalizability can be demonstrated.

Table 22. Various methods with different irradiance and temperature experiments.

Method Case Radiation Temperature Describe

FDB-TLABC [96] SM55, ST40, KC200GT
√ √

Experiments were designed for five sets of
irradiances at 25 ◦C and three sets of

temperature at 1000 W/m2, with RMSEs
consistently lying in the order of 1 × 10−5 in

the three modules, much better than L-SHADE,
LSHADE-EPSIN, and LSHADE-SPACMA.

IADE [68] SL80CE-36M
√ √

Four sets of discriminative parameters and
minimum RMSEs (0.0115, 0.006, 0.0071, 0.0154)
were obtained from experiments fitting PV data

for four different sets of environmental
parameters at two temperatures and two

irradiances in random combinations.
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Table 22. Cont.

Method Case Radiation Temperature Describe

DE3P [23] SM55, RSM50, ST40
√ √

Experiments were carried out with five sets of
irradiances at constant temperature and three

sets of temperature at constant irradiance, with
a maximum RMSE of 0.0148 in the results,

which is still an acceptable error.

EJADE [69] SM55, KC200GT
√ √

The optimal average RMSE was obtained
consistently with eight competing algorithms
for experiments at different irradiances and

temperatures. The RMSEs were of order
1 × 10−4 at 25 ◦C for 200~800 W/m2 and 1 ×

10−3 for the other experiments.

AGA [64] - -
√

A PV cell fitting experiment at different
temperatures was designed, and the initial and

post-simulation parameter values for the
standard case were given.

GWO [98] - -
√

Ten sets of experiments at different
temperatures (−5 ◦C~45 ◦C) were designed

and showed an enormous advantage in
comparison experiments with MMA, with
RMSEs almost of order 1 × 10−3 overall.

OLBGWO [100] ST40, KC200GT
√ √

The experimental design was the same as that
of FDB-TLABC. The ST40 module’s RMSEs

were at or near the 1 × 10−4 order of
magnitude. In the KC200GT module, the
RMSEs were at or near the 1 × 10−3 order

of magnitude.

EJAYA [111] SM55, KC200GT
√ √

The experimental design was the same as
EJADE. The SM55 experiments’ RMSEs were in

order 1 × 10−4, and the other experiments’
RMSEs were in order 1 × 10−3.

MPSO [81] SM55, ST40, KC200GT
√ √

The experimental design was the same as
FDB-TLABC. In the KC200GT, the RMSEs were
of order 1 × 10−3; in the other experiments, the

RMSEs were of order 1 × 10−4.

GCPSO [82] Sharpe ND-R250A5
√ √

Five experiments with different temperatures
and irradiances were designed to obtain high

fitting accuracy, with an RMSE of order
1 × 10−3.

DEDIWPSO [85] JKM330P
√ √

Experiments were designed for five different
irradiances and temperatures, RMSE values

were obtained consistently, and all RMSEs were
of order 1 × 10−3.

PSO-ST [87,88] JKM330P
√ √ The same experimental design as DEDIWPSO,

with RMSEs of order 1 × 10−3 and standard
deviations of RMSEs on order 1 × 10−17.

PSOCS [88] SM55, ST40, KC200GT
√ √ The experimental design was the same as

FDB-TLABC, with RMSE concentrated at the
order of magnitude 1 × 10−2 and 1 × 10−3.

EOTLBO [21] Sharpe ND-R250A5
√ √

The experimental design was the same as
GCPSO, with RMSEs concentrated at orders

1 × 10−2 and 1 × 10−3, and significantly better
than the ten comparative algorithms in the text.

MTLBO [119] SM55, ST40
√ √

The experimental design was the same as
FDB-TLABC, whose RMSEs were concentrated

on orders 1 × 10−3 and 1 × 10−4 and
converged slightly faster than ITLBO.
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Table 22. Cont.

Method Case Radiation Temperature Describe

WOA [124] KC200GT
√ √

The fitting experiments were implemented with
SDM, DDM, and TDM. The SDM error was

1.6%, the DDM error was 0.3%, and the TDM
error was 0.08%. It indicates that, with

sufficient computational resources, TDM >
DDM > SDM in terms of accuracy.

ISNMWOA [126] SM55, ST40, KC200GT
√ √

The experimental design was the same as
FDB-TLABC, with the RMSEs concentrated on
orders 1 × 10−3 and 1 × 10−4. It showed that

ISNMWOA still has high accuracy at low
temperatures and irradiance.

SWOA [125] SM55, SW255,
KC200GT

√ √
Experiments were designed for five irradiances

and seven temperatures. The RMSEs were
concentrated around 1 × 10−2 for the

irradiance experiments and around 1 × 10−3

for the temperature experiments.

DE/WOA [127] JAM6-60-295W-4BB
√ √

Experiments with five irradiances and four
temperatures were implemented. Significantly

better RMSEs were consistently achieved
compared to seven competing algorithms, and
all results were concentrated around 1 × 10−5.

HPSODOX [47] - \
√

Seven sets of experiments from −5 to 25 ◦C
were designed. Of these, the RMSEs were

located in order 1 × 10−9 at 25 ◦C and in order
1 × 10−8 at different temperatures.

TLBOBSA [134] SM55, KC200GT
√ √ The experimental design was the same as

EJADE. The experimental results were similar
to EJAYA and slightly worse overall.

IGSK [136] SM55, ST40
√ √

The experimental design was the same as
MTLBO, with 11 RMSEs at the 1 × 10−4 order

of magnitude and 6 RMSEs at the 1 × 10−3

order of magnitude in 17 experiments.

The “
√

” means that there are temperature or irradiance experiments in the literature.

4.2.2. Partial Shade Conditions

Four groups of KC200GTs were connected in series to obtain the multi-peak curve
exhibited by the output of the PV power system when partially shaded (PSC). Four sets
of comparison tests were designed: standard case (STC: 4 × 1000 W/m2), type I partial
shading (PSC-1: 1000, 800, 400, 400 W/m2), type II partial shading (PSC-2: 800, 600, 400,
200 W/m2), and type III partial shading (PSC-3: 800, 600, 400, 400 W/m2). The output
characteristics are shown in Figure 8. In the figure, STC has a single peak, PSC-1 and PSC-3
have three peaks, and PSC-2 has four. Additionally, STC has only one irradiance, PSC-1
and PSC-3 have three irradiances, and PSC-2 has four irradiances. Therefore, the PV’s
peaks are related to the irradiance types on the series-connected PV modules.

The mathematical models developed in Section 2 cannot generate multiple inflection
points. Thus, the characteristic curve of the PSC fitted using these mathematical models
will still have only one inflection point, and the accuracy of the fit will be very low. It is
reflected in a large minimum RMSE. The extracted parameters are shown in Table 23, and
it is clear that the RMSE at STC is much lower than that at PSC. Although the correspond-
ing mathematical model was developed by Chellaswamy et al. [147], it requires human
judgment and input of the number of modules to be shaded, which is difficult to achieve
in reality. Therefore, more mathematical models need to be developed in future work to
improve the accuracy of the parameters of the extracted PSCs. It is important to note that,
due to the presence of parallel diodes in the system, the PV modules are in an idle state
when the output current of the system is more significant than its photogenerated current.
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The mathematical models developed to simulate the output characteristics of the PSC must
take this critical point into account.
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Table 23. Parameters of the KC200GT at partial shade conditions.

Case Iph/A Issd/µA n Rs/Ω Rsh/Ω RMSE

STC 8.22879884 2.32498946 × 10−10 1.37930864 × 100 602.77198763 211.10041272 1.31085496 × 10−6

PSC-1 8.40661915 3.20394383 × 10−15 1.62587931 × 10−16 18.94997935 149.17780560 6.96889061 × 10−1

PSC-2 6.93947342 1.16187272 × 10−14 2.40441463 × 10−16 20.81282985 155.76285151 3.71532656 × 10−1

PSC-3 6.52880635 5.19579219 × 10−12 1.10570546 × 10−14 28.77275463 188.22179994 4.55796025 × 10−1

4.3. Analysis of Modified Diode Models’ Works

The MSDM, MDDM, and MTDM all consider the quasi-neutral zone’s losses. It is
reflected in the circuit diagram by selecting a diode branch and adding a series resistor Rsm.
The improved model adds an unknown parameter compared to the pre-improved model.
Their circuit diagram is shown in Figure 9.
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where nD represents the number of diodes in the cell model.
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In this subsection, two papers from the last three years are chosen to present the results
of metaheuristic approaches to solving the above models. Ramadan et al. [48] improved
the Bald Eagle Search algorithm (IBES), employing decay equations to achieve adaptive
learning factors. Abdelminaam et al. [49] pioneered the use of Turbulent Flow Optimization
of Water (TFWO) for the parameter extraction of PV cells with a new objective function
(PE5DSSE). Their extraction results are illustrated in Table 24.

Table 24. Results of the modified diode models.

Parameter IBES MSDM TFWO MSDM IBES MDDM TFWO MDDM IBES MTDM TFWO MTDM

Iph/A 0.760713 0.760774525 0.760494 0.760783023 0.760473235 0.760780283
Rs/Ω 0.032091 0.037372671 0.015196 0.036835645 0.013865736 0.036749141
Rsh/Ω 54.30519 53.7186078 54.05261 55.8909553 55.47156858 55.52672891
Rsm/Ω 0.00352 0.5 0.02792 0.01025276 0.027870684 0.5

Issd1/µA 3.71 × 10−7 3.23 × 10−7 1.00 × 10−10 9.17 × 10−7 1.00 × 10−10 7.63 × 10−7

Issd2/µA - - 6.69 × 10−7 2.07 × 10−7 7.52 × 10−7 2.47 × 10−9

Issd3/µA - - - - 1.00 × 10−10 2.24 × 10−7

n1 1.4835 1.48118376 1.00 1.999992291 1.133059042 2
n2 - - 1.525277 1.443600817 1.537322148 2
n3 - - - - 1.004574508 1.450312839

PE5DSSE - 2.5278 × 10−5 - 2.51 × 10−5 - 2.509 × 10−5

MIN RMSE 9.61 × 10−4 - 7.49 × 10−4 - 7.39055 × 10−4 -
Mean RMSE 1.507 × 10−3 - 1.201 × 10−3 - 7.64 × 10−4 -
MAX RMSE 2.847 × 10−3 - 3.378 × 10−3 - 7.81 × 10−4 -

STD of RMSE 7.61 × 10−4 - 8.95 × 10−4 - 2.21 × 10−5 -

In Table 24, for MSDM, the parameter that differs most between IBES and TFWO is
Rsm. For MDDM, IBES and TFWO are similar in Iph and Rsh, and the other parameters
differ more. For MTDM, IBES and TFWO are almost identical in Iph and Rsh, and the
other parameters differ more. As they use different objective functions, it is impossible to
compare the accuracy of the two.

In IBES, the MIN RMSE is 9.88 × 10−4 for TDM and 9.86 × 10−4 for SDM and DDM.
In TFWO, the PE5DSSE is 2.5278 × 10−5 for SDM, 2.51 × 10−5 for DDM and 2.51 × 10−5

for TDM. It indicates that the addition of Rsh did improve the accuracy by a small margin.
Therefore, applying MSDM, MDDM, MTDM, and the PV module models constructed from
them to future studies will be an effective way to improve the accuracy further.

4.4. Analysis of Dynamic Models’ Works

The above results are for static models. This subsection starts with several representative
metaheuristics for solving dynamic models to analyze their parameter extraction results.

Yousri et al. [52] developed CHCLPSO by combining heterogeneous integrated learn-
ing PSO with chaotic optimization techniques. HROA was developed along similar lines
to CHCLPSO, a hybrid of the chaotic mapping mechanism with the Rao_1 algorithm by
Wang et al. [53]. Elaziz et al. [51] developed EMPA by an effective combination of DE and
the Marine Predator algorithm.

For the results of the dynamic model, CHCLPSO provides parameters of RC = 7.3149 Ω,
C = 3.81307× 10−7 F, and L = 7.3251× 10−6 H. EMPA provides parameters of RC = 7.315 Ω,
C = 3.1831 × 10−7 F, and L = 7.3251 × 10−6 H. Their difference is insignificant, indicating
that both methods have similar solving power. The MIN and Mean RMSEs for CHCLPSO
are 8.45045 × 10−3, and the STD is 1.13566 × 10−12. The MIN, Mean, and MAX RMSEs for
HROA are 6.709393 × 10−3, and the STD is 5.209153 × 10−18. The Mean RMSE for EMPA
makes it clear that HROA has the best accuracy and robustness, followed by EMPA and
CHCLPSO. However, CHCLPSO is at the same level of accuracy as EMPA, and both have
a minor STD. This indicates that EMPA and CHCLPSO have converged early, and their
further improvement needs to start from exploration. For HROA, it achieves the optimal
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RMSE value, but 6.709393 × 10−3 is still a significant error and there is room for further
optimization of the accuracy of the solution.

It is worth mentioning that the model of dynamics is suitable for grid-connected
operation. However, there has been little research related to it since its introduction,
and especially little research on metaheuristic methods to optimize the dynamic model.
Therefore, it has broad application and research prospects and is a crucial research direction
for the future.

4.5. Whole Analysis

Pursuant to scholarly opinion and statistical results, Table 25 analyses the positive
and negative properties of various metaheuristics. They can help beginners to understand
cutting-edge research.

Table 25. Various methods’ positive and negative properties.

Type Positive Negative

GAs

• Using probabilistic mutation techniques
• Fast handling of non-linear problems [63]
• Easily contribute to the convergence and

accuracy of other methods [65]

• Reliance on the initialized populations’ quality
• Lower accuracy of solution than advanced methods

DEs

• Simple and precise implementation
• Steady and fast
• Extensible, with many variants
• Employing adequate parameter tweaking

mechanisms ensures an overall improvement in
the algorithm’s capabilities in specific
problems [41,68,76]

• The parameters’ decision shapes the results
• Computing resources are underutilized

PSOs

• Straightforward code
• Fast merit search
• Low fluctuant solution and efficient
• Supports parallel operation for faster and greater

accuracy [86]
• For the problems in this paper, PSO secured

quality solutions [82,83]

• Excessive parameters and empirical reliance
• Converge prematurely
• Prone to converge to local optimum in multi-peaked

issues

ABCs

• Superb exploration [92]
• Rapid convergence [89]
• Simplicity implementation [93]
• Fits PV characteristic curves more accurately

than PSO [95]
• Premium performance in combination with

alternative methods [91,94]

• Weak exploitation
• Parameters and performance are strongly correlated

GWOs

• A few parameters
• Flexibility and simplicity
• Well-aligned exploration and exploitation [97]
• Tackling PV parameter estimation issues with

small errors [98]

• Poor handling issues with numerous variables
• Exploitation requires reinforcement [100]
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Table 25. Cont.

Type Positive Negative

JAYAs

• No parameters
• Efficient and succinct
• Adaptive control factor optimizes accuracy and

stability [104,107]
• Mixing different methods of consideration

facilitates performance improvement [106,111]

• Weak exploration [108]
• Pseudo-random operators restricted pervasiveness
• Performance degradation in multi-dimensional

issues [103]

TLBOs

• No parameters
• Universal in optimization issues
• Competitive in large scale issues [115]
• Diverse variants enhance behavior when

employed for specific problems [118,120]

• Slow convergence [116]
• Mandatory structures squandering resources [21]
• Inadequate balance of exploration and

exploitation [117,118]

WOAs

• A few parameters
• Simple structure
• Intense exploitation competency [123]
• Variant with outstanding solutions

quality [125,126]

• Premature convergence [18]
• Poor in convergence and precision
• Performance degradation in complex issues

GSKs
• Intense exploration competency [4]
• Competitive in multidimensional issues
• Fits PV characteristic curve accurately [136]

• Excessive parameters
• Weak exploitation

SDOs
• A few parameters
• Simple structure
• Well-balanced exploration and exploitation [137]

• Poor in convergence
• Needs improvement in solution quality [39]

HHOs
• Fewer mechanisms, simpler calculations [148]
• Fast convergence [135]
• Suitable for multimodal scenarios [55]

• Excessive parameters
• Premature convergence

TGAs
• Simple structure
• High accuracy of identification results
• Highly competitive [138]

• Excessive parameters
• Slow convergence
• Excessive consumption of computational resources

SOSs
• No parameters
• Simple structure
• Superb exploration [146]

• Weak exploitation
• Excessive resources consumption

FPOAs

• Fewer parameters
• Easy to implement
• Simple structure
• More accurate than PSO and DE [145]

• Premature convergence
• Slow convergence

For the different applied metaheuristics, we find the following challenges.

1. The promotion of GA has been rare in recent years, and accuracy is supposed to
be enhanced.

2. DE’s convergence rate and PSO’s accuracy could improve.
3. ABC is weakly exploited and significant in parameter settings.
4. GWO and WOA have few parameters and struggle with multi-dimensional issues.
5. JAYA and TLBO’s promotions are flawed in accuracy.
6. Hybrid approaches may complicate the implementation and introduce additional pa-

rameters.
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7. New approaches are not sufficiently balanced for specific issues. For example, GSK,
SDO, TGA, and SOS are under-exploited, and HHO and FPOA are under-explored.

The challenges above are all tailored to specific metaheuristics. Moreover, several
additional challenges remain for the parameter extraction problem.

1. TNFES is a sign of computational resources, yet its value is almost pitched at 50,000.
Reducing TNFES without compromising accuracy is imperative.

2. More diodes in the cell model may increase the extraction accuracy. Recently, a four
diode model was proposed [47] and the results showed good fitting effect. However,
more diodes also indicate more parameters that need to be extracted and solutions
are also more intractable. Hence, selecting a suitable PV model for an algorithm
is challenging.

3. Some of the literature used too few PV cases to demonstrate metaheuristics’ generaliz-
ability.

4. Metaheuristics’ effectiveness is devoid of practical engineering applications.
5. More and exact measured data means more accurate extraction results, but obtaining

sufficient high-precision measurements is challenging and costly.
6. In engineering, running time is pivotal. Hence, cutting running times is a challenge.
7. Multiple matrices are imperative to signal the competitiveness of metaheuristic results,

yet some of the literature adopted few matrices for comparison.

4.6. Research Prospects

The previous section summarizes the challenges in studies, and this section suggests
some research directions. They are an essential reference for researchers in developing
their plans.

For specific metaheuristics:

1. Exploration techniques such as chaotic mapping and second-order oscillation mech-
anisms can be considered to incorporate into GA. They are envisaged to augment
accuracy and robustness.

2. DE might be combined with exploitation-based metaheuristics, such as the Search
Backtracking Algorithm, or with search mechanisms that accelerate the convergence.
PSO demands more diversity-raising search mechanisms such as trust region reflec-
tion, taboo search, and fitness distance balance. Additionally, studies on adapting
their parameters are well-tried.

3. ABC considers introducing neighborhood search and adaptive mechanisms to speed
up the convergence.

4. For GWO and WOA, adaptive operators could be inserted to improve applicability in
the face of high-dimensional issues.

5. JAYA and TLBO could borrow the exploration-type mechanisms in CSOOJAYA,
MTLBO, and EBLSHADE to improve the overall performance.

6. Hybrid methods can identify contributing components through component analysis
and remove unimportant components to alleviate implementation redundancy.

7. New methods can adopt adaptive learning, neighborhood search, chaotic mapping,
and algorithmic blending techniques to enhance their behavior.

Regardless of the specific techniques, any approach to raise the metaheuristics is
to employ complementary improvements to balance exploration and exploitation and,
ultimately, fit to the studied issue.

In addition to research directions for metaheuristics, some potential directions for
application scenarios include the following areas:

1. For the parameter extraction, diminishing computational resources’ consumption
is at stake. Reducing TNFES while maintaining the same accuracy by introducing
different techniques, i.e., local search and reinforcement learning, is a direction worthy
of further research.
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2. Some methods are feasible for low-dimensional issues, and some deliver better per-
formance for high-dimensional issues. Meanwhile, the selection of MSDM, MDDM,
MTDM, and FDM with 6, 8, 10, and 11 unknown parameters to be included in the cell
model is a future research direction for further performance improvement. Hence, it
would be interesting to pick the right algorithm improvement to render PV models
with desirable accuracy.

3. For the issue of too few employed cases, more cases are considered in future research to
reveal the methods’ generalizability. Examples include cases at different temperatures
and irradiances and cases in partial shade.

4. The real-time extraction of PV models’ parameters at different operating conditions
is highly suggested. It is excellent work to accurately model the dynamics of photo-
voltaics for practical engineering problems.

5. Faced with the problem of little measured data, inserting deep learning techniques
such as neural networks to eliminate erroneous data and expand the amount of data
for metaheuristic methods is an effective way to facilitate the extraction accuracy.

6. The graphical processing unit (GPU) allows different solutions to be updated simulta-
neously to raise the efficiency. Thus, metaheuristic methods’ speed improvements can
be geared toward direct runtime reductions through GPU-like devices.

7. More performance evaluation indicators can demonstrate metaheuristic methods’
overall effectiveness more comprehensively. Therefore, introducing more multifaceted
indicators is necessary to enhance persuasiveness.

5. Conclusions

PV generation is playing a more significant role in the future energy landscape. Mean-
while, accurate PV models can support the PV systems’ accurate assessment, efficiency
improvement, fault analysis, and simulation. Thus, this paper reviewed different meta-
heuristics employed in the PV model parameters extraction. In our work, (a) the PV
models and problem formulations were explained; (b) different metaheuristics and their
developments and applications were summarized; (c) the algorithmic parameter settings,
various evaluation indicators, independent running numbers, and computational resources
(TNFES) were assembled; (d) the final results of various algorithms were compared, and
especially RMSE and SIAE were ranked; (e) the unknown parameters and RMSE variation
patterns in different environments were analyzed; and (f) a comprehensive analysis of the
challenges encountered by metaheuristics in solving the studied issue was presented, and
some ideas for future research were outlined.

This study can assist beginners in gaining an introductory and systematic perspective
on the issue. It may also provide a reference direction for further research when unfamiliar
researchers understand the application of metaheuristics to this engineering problem.
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