
Citation: Zhang, J.; Wang, Z.; Han,

G.; Qian, Y. Heuristic Surface Path

Planning Method for AMV-Assisted

Internet of Underwater Things.

Sustainability 2023, 15, 3137.

https://doi.org/10.3390/su15043137

Academic Editor: Ripon Kumar

Chakrabortty

Received: 4 January 2023

Revised: 27 January 2023

Accepted: 7 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Heuristic Surface Path Planning Method for AMV-Assisted
Internet of Underwater Things
Jie Zhang , Zhengxin Wang , Guangjie Han * and Yujie Qian

Department of Internet of Things Engineering, Hohai University, Changzhou 213022, China
* Correspondence: hanguangjie@gmail.com

Abstract: Ocean exploration is one of the fundamental issues for the sustainable development of
human society, which is also the basis for realizing the concept of the Internet of Underwater Things
(IoUT) applications, such as the smart ocean city. The collaboration of heterogeneous autonomous ma-
rine vehicles (AMVs) based on underwater wireless communication is known as a practical approach
to ocean exploration, typically with the autonomous surface vehicle (ASV) and the autonomous
underwater glider (AUG). However, the difference in their specifications and movements makes the
following problems for collaborative work. First, when an AUG floats to a certain depth, and an ASV
interacts via underwater wireless communication, the interaction has a certain time limit and their
movements to an interaction position have to be synchronized; secondly, in the case where multiple
AUGs are exploring underwater, the ASV needs to plan the sequence of surface interactions to ensure
timely and efficient data collection. Accordingly, this paper proposes a heuristic surface path planning
method for data collection with heterogeneous AMVs (HSPP-HA). The HSPP-HA optimizes the
interaction schedule between ASV and multiple AUGs through a modified shuffled frog-leaping
algorithm (SFLA). It applies a spatial-temporal k-means clustering in initializing the memeplex group
of SFLA to adapt time-sensitive interactions by weighting their spatial and temporal proximities and
adopts an adaptive convergence factor which varies by algorithm iterations to balance the local and
global searches and to minimize the potential local optimum problem in each local search. Through
simulations, the proposed HSPP-HA shows advantages in terms of access rate, path length and data
collection rate compared to recent and classic path planning methods.

Keywords: autonomous marine vehicles; data collection; heuristic surface path planning; time-
sensitive interaction; shuffled frog-leaping algorithm

1. Introduction

With the growing interest in futuristic ocean technology concepts proposed in recent
years, such as the oceanix city [1], smart coastal [2], underwater smart city [3], etc., the intel-
ligent control technology for marine vehicles is becoming one of the most important issues
in the implementation of the Internet of Underwater Things (IoUT) technologies. Accord-
ingly, autonomous marine vehicles (AMVs) are rapidly developing and are widely used in
practical tasks, typically the autonomous surface vehicle (ASV), autonomous underwater
glider (AUG), autonomous underwater vehicle (AUV), etc., which are commonly used in
seabed exploration to collect information on the distribution of underwater resources [4–6].
Accordingly, technical issues for controlling the AMVs, such as multi-vehicle collaboration,
path planning, obstacle avoidance, etc., have been introduced in recent years to enable
practical underwater exploration, and researchers have studied the innovation in terms of
algorithm design and system frameworks to find optimal solutions for efficient, safe and
energy-saving marine exploration tasks [7–9].

Depending on the characteristics of different subsea exploration tasks, AMVs are used
in different application scenarios. ASV usually plays the role of relaying exploration data
from the subsea and, therefore, tracks AMVs underwater on the sea surface. An AUV is
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usually equipped with a propeller drive, has a high speed and is often used when tracking
moving objects or when urgent detection is required [10]. An AUG is driven by buoyancy,
which is slower in speed but lower in energy cost and is usually used when long-duration
underwater exploration tasks in a large submarine area are required. It glides to a certain
depth, performs an underwater detection task and then floats to the surface or to a certain
depth for the next movement and meanwhile interacts with an ASV or land station [11–13].
This paper addresses the collaboration scenario between an ASV and AUG.

Figure 1 shows an example scenario of data collection by ASV and AUG collaboration.
Multiple AUGs travel underwater to collect subsea data by a predefined trajectory, and they
float up to a certain depth in each gliding cycle to interact with the ASV on the sea surface,
forming a series of temporal interaction points underwater. There are two exploration
routes with AUG exploration tasks, and the AUGs sail at different speeds so that the ASV
has to plan a surface path at the interaction points that occur at different times. In previous
works, the purposes of ASV path planning commonly target obstacle avoidance, energy
efficiency, path length optimization, etc. [14–16] with fixed interaction points. However, in
such a scenario with time-sensitive interaction points between ASV and AUGs, the ASV has
to schedule an efficient sequence of access to the interaction points of AUGs that occur at
specific times. Therefore, the ASV requires a path planning approach that takes into account
time-sensitive points. For such a task, this paper proposes a Heuristic algorithm-based
Surface Path Planning method for underwater data collection with heterogeneous AMVs
(HSPP-HA).

Figure 1. An example of collaboration between ASV and multiple AUGs.

Heuristic algorithms have been widely applied in the field of robot path planning [17,18],
where each search individual is updated according to the surrounding environment, and
then information is exchanged between individuals to determine the overall optimization
direction of the population. For example, the thermal exchange optimization (TEO) [19]
algorithm is a heuristic algorithm based on Newton’s law of cooling, where the temperature
represents a location and the search agent updates its temperature through heat exchange
and heat transfer; the water strider algorithm (WSA) [20] mimics the life cycle of water
striders, where each water strider represents a location and the strider populations exchange
information with each other through ripples to find the food, which represents the best
solution in a region; the shuffled frog-leaping algorithm (SFLA) [21] is a classical one
that emulates the frog foraging behavior, where frogs seek different leaping points in a
certain area to find food, during which each frog exchanges information through sharing
their memes. The proposed HSPP-HA modifies the SFLA to adopt the data collection
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scenario of ASV and AUG collaboration. First, the interaction points, which refers to food,
are clusters by a spatial-temporal k-means algorithm to initialize the input of the SFLA;
then, an adaptive iteration factor is designed so the SFLA adopts the heuristic iteration
into the path planning scenario; and finally, the amount of information carried by each
AUG, distance from ASV to each interaction point and required interaction period in each
interaction point are analyzed by several constraints in iterative optimization of the SFLA.

This paper has made the following contributions:

1. A surface path planning method for underwater data collection with heterogeneous
AMVs, named HSPP-HA, is proposed, which targets an application scenario where
underwater data are collected through the collaboration of an ASV on the surface and
multiple AUGs underwater based on underwater wireless communication and applies
a modified SFLA to schedule the data collection between ASV and AUGs for the time-
sensitive interactions between them;

2. An improved SFLA is designed with a spatial-temporal k-means algorithm and an
adaptive iteration approach. The spatial-temporal k-means algorithm clusters the
interaction points by their coordinates and times of occurrence to initialize the local
searches; meanwhile, an adaptive iteration factor enables balanced local and global
searches in optimizing the sequence of interactions and, furthermore, improves the
convergence ability.

The remainder of this paper is organized as follows. Section 2 introduces related
work; Section 3 describes the system model, including the task model, constraint model
and objective optimization model; Section 4 describes the detail of the proposed HSPP-
HA; Section 5 presents simulations to analyze the performance of the HSPP-HA; and the
conclusion follows in Section 6.

2. Related Works

The challenge of the proposed data collection scenario is that the ASV needs to access
a series of time-sensitive interaction points on the sea surface, which can be associated with
path planning [22], task assignment [23] and the traveling salesman problem (TSP) [24].
Some recent related research works are introduced below.

Chen et al. [25] proposed a task assignment and path planning scheme for multiple
AUVs to access multiple targets. The scheme targets optimizing the total sailing distance
of AUVs and the balance of moving tasks and uses an algorithm that attracts the AUV to
the static task point and pushes it away from the obstacles. Zhu et al. [26] also studied
the assignment of multiple targets to be accessed by multiple AUVs, which used a bio-
inspired neural network graph (BINN) to calculate the activity values of all AUVs for each
target and select the ones with high activity values for assignment, target and obstacle
locations were also calculated for activity values to guide the AUVs to travel. Wu et al. [27]
proposed a scheme for multiple AUVs to perform multiple rescue missions, which is
based on reinforcement learning (RL) to obtain different rewards based on the real-time
environment and assign suitable rescue missions to AUVs; multiple rescue regions exist
in each rescue mission, and then a particle swarm optimizer (PSO) is executed to plan
the optimal rescue path for the AUVs. Wang et al. [28] proposed a global and local path
planning scheme for the ASV, which applies the Theta* to plan a collision-free global path
and uses fuzzy decision-making and fine dynamic window to perform local optimization
to avoid obstacles, and then returns to the global path to continue traveling after avoiding
the obstacles. Hu et al. [29] proposed a collision-free path planning scheme that complies
with the convention on international regulations for preventing collisions at sea (COLREGs)
with a multi-objective PSO algorithm. In their optimization process, priority is given to
changing the ASV heading or velocity magnitude before considering the path length or
path smoothness. The contributions of this study show that path-planning techniques are
being innovated to design corresponding solutions for different problems in practice.

The path planning and task assignment contributions, including the above-mentioned
works, present solutions in terms of planning collision-free paths for a single robot, planning
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for multiple robots to access multiple target points and global and local path planning
for robots, but rarely consider time-sensitive accesses to multiple task points. The task of
targeted application background in this paper is similar to TSP, with the difference that the
task points need to consider both distance and time, and the algorithm designed needs to
ensure both a low total travel distance and access to as many task points as possible. The
following works introduce the contributions for solving TSP in application scenarios of
finding single or multiple routes.

Jian et al. [30] studied the multimodal optimization on TSP and proposed a niching re-
gression algorithm that uses a linear regression mechanism in partitioning the environment,
with each partition containing some task points, and the memetic algorithm is applied
to perform local search and finally determine multiple optimal TSP, which demonstrates
that it is feasible to solve multi-solution TSP using an effective meta-heuristic algorithm.
Cai et al. [31] studied the multi-objective TSP and proposed a Lin–Kernighan heuristic
algorithm, which uses the idea of decomposition to split the main problem into multi-
ple sub-problems and search for knowledge to transfer between individuals to finally
determine the optimal solution. Zhang et al. [32] studied dynamic TSP and proposed a
deep reinforcement learning algorithm with strong feature extraction capability for the
environment, which can quickly learn to return favorable actions for changing environ-
ments. The task points in this study are dynamically changing, which is different from the
traditional static task points. Sanyal et al. [33] studied large-scale TSP, and as the scale of
TSP increases, it leads to sub-optimal solution quality. They proposed a heuristic approach
based on Neuro-Ising, where the Neuro layer is a clustering operation of task points using
a graph neural network, and the Ising layer uses an Ising solver to solve each subregion
in parallel.

For solving TSP, various optimization solutions from different perspectives are pre-
sented, and they have solved related types of problems, such as large-scale TSP, multi-
solution TSP, multi-objective TSP and dynamic TSP. However, in practical tasks, there are
situations where the task point to be accessed is time-sensitive, and if it is not accessed
within its timeframe, then the information may be lost, or the task may fail. Therefore, our
work considers dynamic task assignments, and the optimization approach needs a trade-off
between the time and distance of interaction points. Accordingly, this paper presents the
design of an objective optimization model with an adaptive heuristic algorithm to plan a
path solution for ASV to access multiple interaction points of underwater AUGs.

3. System Model

This section describes the system model of the proposed HSPP-HA, including the task
model, the constraint model and the objective optimization model.

3.1. Task Model

The task model of the proposed HSPP-HA is described as follows. Multiple AUGs
collect data on the seafloor, and each AUG floats to a certain plane during each cycle to
transfer data to the ASV on the surface, which generates a series of interaction points with
different interaction times. The AUGs will buffer the collected data into their storages if the
ASV does not reach the interaction point when they float to the interaction points, and if
the ASV misses the interaction point several times, the data will be lost. Figure 2 represents
a series of interaction points generated from three AUGs on the water surface, where the
numbers are the order in which the AUGs move to the interaction points, and each AUG
knows the coordinates of interaction points, the sequence of time of occurrence and the
amount of data they carried. The blue, black and green dotted lines represent the top view
of the trajectories of three AUGs, and the red solid line is the path of the ASV to each of the
interaction points. The number next to each interaction point is their sequence, which is
associated with the time of their occurrence.
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Figure 2. An example diagram of the task model.

The purpose of HSPP-HA is to guide the ASV to each interaction point and maximize
data collection by optimizing the schedule for reaching the interaction points, which re-
quires considering not only the location of the interaction points but also the time of their
occurrence. Therefore, for the example scenario shown in Figure 2, the global interaction
points are clustered by their spatial-temporal properties, and the local searches are per-
formed with the heuristic algorithm to find the most optimal interaction schedule while
maximizing global data collection. There are some interaction points that are not scheduled
by the path of ASV, and those are the cases where ASV passes some interactions on purpose
in order to globally optimize data collection. The missed data may be collected by the next
interaction point of the same AUG if its buffer does not reach the threshold; if not, the data
are missed but still maximizes the global data collection.

3.2. Constraint Model

The interaction points have three factors, time, location and the information amount.
Accordingly, the path planning of HSPP-HA considers the constraints of time of occurrence
(Ct

i ), moving speed (Cv
i→j) and information load (Cq

i ) as follows.
Ct

i : Each interaction point occurs at a different time and should be given a different
priority. The time of occurrence of each interaction point is denoted as a time quantum,
expressed as:

ti =


0, ASV has reached
0, ASV decides not to access
1− i−1

N , else
(1)

where ti is a time quantum from 0 to 1; i is the order of time of occurrence of each interaction
point; N is the number of interaction points. Ct

i decides priorities of t1 > t2 > · · · > tN ,
which guarantees that the interaction point with a larger ti is given a higher access priority,
and if the interaction point has been accessed or decided not to be accessed, then the ti will
be reset to 0.
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Cv
i→j: To ensure that an ASV can reach an interaction point before it disappears, it

should have enough speed to sail between interaction points i and j within a specific time
period, expressed as:

dij∣∣Ti − Tj
∣∣ ∈ (0, vmax] (2)

where dij is the distance between interaction points i and j; T is the time when an interaction
point occurs.

Cq
i : Each interaction point provides a different amount of data because some AUGs

may not be able to interact with the ASV during an interaction cycle, thus buffering the data
to the next interaction point [34,35]. However, the buffer storage should be limited to ensure
that the data in the buffer can be transferred within an interaction period, expressed as:

qi ≤
BIi
D

(3)

where qi is the count of data collected by an AUG i, which is reset to 0 when it completes an
interaction; D is the amount of data collected by one interaction cycle; B is the bandwidth
of the wireless channel from AUG to ASV; and Ii is the interaction period for i.

In the proposed HSPP-HA, it is assumed that the ASV knows the information of each
interaction point, including the occurrence order, coordinates, the times of occurrence
ti, amount of information qi, the serial number i and its neighboring interaction points j
follow Cv

i→j.

3.3. Objective Optimization Model

The optimization objective of the proposed HSPP-HA are ti and qi introduced in the
constraints of Ct

i and Cq
i , respectively, and a gain factor Ni of accessing an interaction point.

Ni is related to the distance between an interaction point and its surrounding interaction
points follow constraint Cv

i→j in the next interaction period. An ASV can get higher gains
in data collection with higher Ni because there are more potential interactions in the
next interaction period. The objective optimization model of HSPP-HA mainly weighs
between ti and Ni, while the qi is used as a coefficient to indicate the degree of urgency
of an interaction point, and a fitness value fi of an interaction point is expressed by an
optimization function as follows:

fi =
1

µi × (ω1ti + ω2Ni)
(4)

where ω1 and ω2 are coefficients that follow ω1 + ω2 = 1; µi is a degree factor of qi,
indicating the possibility of data loss, which is expressed as µi = 1− 1

2qi ; and Ni is the
above-mentioned gain factor, which is expressed as follows:

Ni =
|dasv→q|+ (minj∈{Q−q} |dasv→j|)× (n− 1)

|dasv→i|+ ∑j∈{Q−i} |di→j|
(5)

q = arg min
j∈Q
|dasv→j| (6)

where da→b is the distance between a and b; Q is a set of interaction points surrounding i
and follow constraint Cv

i→j; j is each interaction point in Q; n is the number of interaction
points in Q. Figure 3 illustrates an example case where ASV decides an interaction points
to access, which describes the meaning of Ni.

In Figure 3, the closest interaction point to ASV is 6, and the closest one to interaction
point 6 is 8. In the case of the N7, there are five interaction points following constraint
Cv

5→j, j ∈ Q, therefore, N7 is related to |dasv→6 + 4× d6→8|, and the gain factor is calculated

by N7 = |dasv→6+4×d6→8|
|dasv→7+∑j∈{6,8,9,10} d7→j| .
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Finally, an ASV selects an interaction point by finding the minimum overall fitness
value of the interaction point.

P = arg min
i∈Q

(
n

∑
j=0

min( fi+j,(i+j)∈{Q−i}) (7)

where P is the selected interaction point.

Figure 3. An example of an ASV deciding on an interaction point to access based on the Ni.

4. Heuristic Surface Path Planning Method for Underwater Data Collection

This section presents the proposed HSPP-HA. The HSPP-HA includes a spatial-
temporal k-means clustering and an adaptive iteration approach.

The heuristic algorithm is a general framework for solving complex global optimiza-
tion problems [36], and SFLA [21] is a swarm intelligence heuristic algorithm that combines
the advantages of PSO and the memetic algorithm (MA) [37], where each frog exchanges
information and the worst frog is updated according to the best frog.

SFLA mainly consists of two parts, which are global search and local search. The local
search runs during the global search, and each round of global search is a mixed exchange
of frogs at the end of the local search to determine the best contemporary frog. Then, it
updates the population, assigns frogs and starts a new round of optimization. The local
search is that each memeplex completes the search within the region independently, and the
local search in each memeplex does not stop until the maximum number of iterations is
reached. When all memeplexes have finished searching, it means that the local search
is completed.

However, in the proposed task model, planning the optimal path between each inter-
action point should consider several attributes, such as location, time, data amount, etc.,
and multiple AUGs underwater will certainly bring about time-sensitive interaction points,
leading to high complexity of traditional SFLA. Furthermore, traditional SFLA is randomly
generated for some memeplexes initially, which may result in dividing searching points
with results in clustering interaction points with different times of occurrence into a region,
and due to the spatial-temporal nature of interaction points, randomly determined regions
are not guaranteed to provide a reliable search memeplex. Therefore, an improved SFLA is
designed for the task model with time-sensitive interaction points, which works as follows.

4.1. Spatial-Temporal Clustering

The global search process of SFLA searches the memeplexes over the entire region,
while the local search process searches for an optimized solution within a memeplex. Hence,
the HSPP-HA first clusters the interaction points to form multiple memeplexes, and since
the interaction points are time-sensitive; the clustering has to take into account their spatial
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and temporal proximities to group the interaction points having similar locations and
time of occurrence for efficient local searches. Accordingly, the spatial-temporal clustering
proposed in this paper uses the principle of the k-means algorithm and weights the spatial
and temporal proximities to form memeplexes. The details are as follows:

Assume there are N interaction points placed in a {x, y} region and the interaction
points are denoted as X = {X1, X2, · · · , XN}, where each interaction point i has the prop-
erties of two-dimensional coordinates and their time of occurrence. Since the time of
occurrence is denoted as a time quantum ti according to the constraint model in Section 3.2,
the coordinate of each interaction point (xi, yi) is normalized as ( xi

x , yi
y ), and, therefore,

the property of each interaction point i is denoted as Xi = ( xi
x , yi

y , ti).
According to the principle of k-means clustering [38], we denote the initial clusters

as M =
{

M1, M2, · · · , Mk
}

and the related cluster center as R, and then the temporal
proximity of an interaction point i to a cluster center j is expressed as:

PT
Xi→Rj

= |ti − tj| (8)

where PT is the temporal proximity. Then, the spatial proximity between them is ex-
pressed as:

PS
Xi→Rj

=


√

(xi−xj)2

x2 +
(yi−yj)2

y2 , if vi→j follow Cv
i→j

1, else
(9)

where PS is the spatial proximity; vi→j is the required speed for ASV to sail from i to
j, which can be calculated by the differences in their times of occurrence and physical
coordinates; and Cv

i→j is the speed constraint described in Section 3.2.
Finally, the joint proximity is expressed as:

PXi→Rj = η1PT
Xi−Rj

+ η2PS
Xi−Rj

(10)

where P is the joint proximity and η1 and η2 are weighting values calculated by solving the
following equation: 

η1 + η2 = 1
PT

AVG_Mj

PT
MAX_Mj

× η2 =
PS

AVG_Mj

PS
MAX_Mj

× η1
(11)

where PT
AVG_Mj and PS

AVG_Mj are the averaged temporal and spatial proximity, and PT
MAX_Mj

and PS
MAX_Mj are the maximum temporal and spatial proximity in Mj, respectively.

The proposed spatial-temporal k-means algorithm applies such joint proximity with
time of occurrence and coordinates in clustering the interaction point and the rest of the
processes are described by Algorithm 1.
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Algorithm 1: Spatial-temporal k-means clustering.

Input : N interaction points (Xi = {X1, X2, · · ·XN});
Maximum iteration numbers (hmax);
The number of regions (k);

Output : Regions (
{

M1, M2, · · ·Mk
}
);

1 Random selection of k regional centers Rj = {R1, R2 · · · Rk} from N interaction
points;

2 for h = 1 to hmax do
3 Set Mj = ∅, j ∈ [1, k];
4 for i = 1 to N do
5 Calculate the temporal proximity PT

Xi→Rj
by Equation (8);

6 Calculate the spatial proximity PS
Xi→Rj

by Equation (9);

7 Calculate the joint proximity PXi→Rj of Xi by Equations (10) and (11);
8 Determine the region marker µi = arg minj∈{1,2,··· ,k} PXi→Rj for Xi;
9 Divide Xi into the corresponding region Mµi = Mµi ∪ {Xi};

10 end
11 for j = 1 to k do
12 Update the new center R∗j ;
13 if R∗j 6= Rj then
14 Determine the regional center as R∗j ;
15 else
16 Determine the regional center as Rj;
17 end
18 end
19 h = h + 1;
20 end
21 Return regions Mj, j ∈ [1, k]

4.2. Shuffled Frog-Leaping with Adaptive Iteration Factor

This subsection introduces the modifications of SFLA with an adaptive iteration factor,
and the meaning of the variables associated with HSPP-HA is given in Table 1.

Table 1. Relevant parameters of HSPP-HA.

Parameters Definition

Mj Clustered memeplexes, j ∈ [1, k]
k Number of clusters
n Number of frogs in a cluster
S Frog populations = (k× n)
F(i) A frog, i ∈ S
f (i) Path fitness value of a frog, i ∈ S
q Number of selected frogs in a local search
SMj Sub-memeplex with q frogs, j ∈ [1, k]
PG Leaping vector of the best frog in each iteration
PB Leaping vector of the local optimal frog in an SM
PW Leaping vector of the local worst frog in an SM
F(q) The local worst frog in an SM
F′i (q) New frog after PW updates, i ∈ {1, 2, 3}
f ′i (q) Path fitness value of F′i (q), i ∈ {1, 2, 3}

In our task model, a frog’s behavior represents a path solution, which is a sequence of
accessed interaction points, and its leaping vector is a path between two interaction points.
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The population of frogs is denoted as {F(1), F(2), · · · F(S)} and each F(i) will have a f (i)
indicating a fitness value of a frog, which is calculated by Equation (4). The frogs are sorted
by ascending order, and the frog having the best fitness value is F(1), denoted as PG. Note
that the PG is updated with each round of global search until a global optimal solution is
obtained. The sorted frogs are assigned to Mj by the following:

Mj =
{

Fj(i)|Fj(i) = F(j + k× (i− 1))
}

(12)

where k is the number of memeplexes; j is the sequence of memeplexes; i is the sequence of
the frog population. Figure 4 explains the assignment expressed in Equation (12), where
the ordered S frogs are sequentially assigned to different Mj until the Sth frog is assigned.

Figure 4. An example diagram of frog assignment.

Next, each frog in Mj performs a local search process, which contains three types of
leap update mechanisms (LUM). The local search processes are performed during each
round of the global search process, where a local search is performed for each Mj to
determine the local optimal solution and update or eliminate the worst solution. Figure 4
illustrates a round of global iteration; when it finishes, the next step is exchanging the
global information.

q (q < n) frogs from Mj are selected according to the probability of pi =
2(n+1−i)

n(n+1) to

form a sub-memeplex SMj, which is used for the local search. The smaller the f (i) of a
frog, the higher the probability of being selected into the SMj. This selection process is
randomized to ensure that the q frogs selected fully reflect the distribution of fitness values
of frogs in that Mj. In the SMj, the best frog is denoted as PB, and the worst frog is F(q),
denoted as PW .

Figure 5 shows an example of a global iteration. At each iteration round, the population
S is updated to determine the optimal frog (red frog), Mj is a region containing n frogs,
and q frogs are selected from the n frogs to form SMj at each iteration time, and the frogs in
SMj and the other frogs in Mj are updated and exchanged after one iteration (green frog).
The frogs in SMj are sorted to get the best local frog (blue frog), the worst local frog (black
frog) and the other frogs (orange frogs). The red, orange and blue dotted lines indicate the
three types LUMs of PW , as described in the following.

F′i (q) = PW + λi (13)

λi =

{
min{dR×4ie, λmax}, positive updating
max{dR×4ie,−λmax}, negative updating

(14)

where F′i (q)(i = 1, 2, 3) is the updated solution of the worst solution PW under the
three types of LUMs; R is a random array between (0, 1) and d∗e means rounding up;
λi(i = 1, 2, 3) is the update factor among the three types LUMs;4i(i = 1, 2, 3) is the update
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methods of the three types LUMs; λmax is the maximum update factor among the three
types of LUMs, which controls the global search ability of the algorithm. The three types of
LUMs are as follows.

Figure 5. Schematic diagram of HSPP-HA.

The first type of LUM updates PW according to the PB in SMj, the update method41
is expressed by:

41 = PB − PW (15)

where41 is the vector difference between PB and PW . F
′
1(q) is obtained by executing the

first-type LUM. In this step, if the F′1(q) belongs to the feasible solution space, then the f ′1(q)
is calculated for this frog, and if the f ′1(q) is better than f (q), then the F(q) is replaced by
the F′1(q), otherwise, the second-type of LUM is performed.

In the traditional SFLA, if PW cannot be improved after updating according to PB,
a randomly generated frog in the feasible solution space replaces the old poor one. The ran-
dom generation eliminates the worst solution from the population and represents a fast
convergence speed but it is not conducive to the evolution of the overall population in our
task model. Therefore, an adaptive factor for generating a frog in each iteration is designed
for the second type of LUM, expressed by:

42 = δPB − PW , δ = e−(
t

tmax +r) (16)

where δ is the adaptive iteration factor, t is the number of current iterations; tmax is the max
number of iterations; r is a random number between (0, 1). The idea of such an approach
is PW should learn from PB since they belong to the same Mj, and at the early stage of
iterations, the learning behavior of the poor frog imitating the good frog should consider
the convergence speed and global search capacity of the algorithm, while ensuring that
it does not fall into a local optimum that a higher value of δ is preferable to speed up the
learning and guarantee a large search space; and at the late stage of iterations, it should
take into account the local search capacity of the algorithm for the accuracy of the solution.
Therefore, δ should be a smaller value to slow the learning and ensure the local search
capacity that eventually leads to balanced local and global searches.

Then, F′2(q) is obtained by the second-type LUM, and the same replacement process
as the first-type LUM is performed; if there are no frogs that can be replaced, then the
third-type LUM is performed, which is the global search. It updates PW by the globally best
frog PG under the current iteration round; the update method43 is expressed as follows:

43 = PG − PW (17)
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where43 is the vector difference between PG and PW . The third type of LUM is the last
operation of PW update, which ensures that the updated solution is not the worst solution
of the S. By the three types LUMs, the worst frog F(q) in SMj is optimally updated, and
the worst frog in Mj is eliminated. Meanwhile, the frogs in Mj are re-ordered incrementally
according to f (i) to determine the new Mj. The third type of LUMs loops until the search
in each Mj has reached the maximum iteration number and all Mj have been searched,
and finally returns the optimal path indicated by PG.

The Algorithm 2 describes the details of the proposed HSPP-HA.

Algorithm 2: The overall process of HSPP-HA.
Input : N interaction points;

The k output regions Mj of Algorithm 1;
Maximum iteration rounds (Tmax);
Maximum iteration numbers (tmax);

Output : Global optimal ASV path (PathASV);
1 Process I : Global search
2 Initialize the population S (n frogs, k Mj);
3 for T = 1 to Tmax do
4 Calculate f (i) for the frog by Eqaution (4);
5 Determine the PG under T by sorting the frogs incrementally according to f (i);
6 Assign the frogs to Mj by Eqaution (12);
7 Process I I : Local search
8 for j = 1 to k do
9 for t = 1 to tmax do

10 Random selection of q frogs to form SMj;
11 Determine the PB and PW in SMj;
12 Execute first-type LUM (Eqaution (15)), obtain F

′
1(q), and calculate

f
′
1(q);

13 if f
′
1(q) < f (q) then

14 Replace F(q) with F
′
1(q);

15 else
16 Execute second-type LUM (Eqaution (16)), obtain F

′
2(q),

and calculate f
′
2(q);

17 if f
′
2(q) < f (q) then

18 Replace F(q) with F
′
2(q);

19 else
20 Execute third-type LUM (Eqaution (17)), obtain F

′
3(q) replacing

F(q) and calculate f
′
3(q);

21 end
22 end
23 t = t + 1;
24 end
25 j = j + 1;
26 end
27 Perform the global information exchange between Mj, update S, and record

the PG;
28 T = T + 1;
29 end
30 Return PathASV ;
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5. Simulation and Analysis

In this section, the performance of the proposed HSPP-HA is analyzed through sim-
ulations by comparing with the SFLA [21], hierarchical multi-objective particle swarm
optimization (H-MOPSO) [29] and artificial jellyfish search (JS) [39].

H-MOPSO is an improvement of PSO where priorities are given to evaluation factors
for optimizing multiple objects. The optimal particles are stored in an archive after each
iteration, and then the particles are updated by the local optimal particles and the global
optimal particles in the archive, where the global optimal particles are selected from the
archive by the Roulette mechanism and such an operation improves the diversity of the
population to some extent. JS is a heuristic algorithm that emulates the food-fearching
behavior of jellyfish, where jellyfishes switch to active motion by following ocean currents
and to passive motion by following jellyfish swarms. The active and passive movements are
controlled by a time control function, and the logistic chaotic mapping is used in initializing
the jellyfish population.

Compared with the proposed HSPP-HA, they all aim to solve multi-objective op-
timization problems, but with different objectives. H-MOPSO improves the quality of
local and global searches by enriching the population, while HSPP-HA balances local and
global searches by adaptive convergence progress, JS applies the logistic chaotic mapping
in initializing the population that decreases the randomness, while HSPP-HA uses the
spatial-temporal clustering to adapt well to time-sensitive local search. The purpose of the
simulation is to verify the adaptability of the proposed adaptive convergence approach and
spatial-temporal clustering to the time-sensitive task model by comparing it with different
heuristic algorithms with different convergence mechanisms.

The simulations are performed in a two-dimensional space of 500 × 500 m with a
different number of interaction points generated by three AUGs at different times, and the
evaluation metrics are the ASV’s path length, access rate, data collection rate, path diagram
and the convergence performance of algorithms. The operating parameters of the four
methods are listed in Table 2, where the γ and β of JS are the motion coefficient of jellyfishes
following swarms and the distribution coefficient of jellyfish swarms, respectively; the
C1, C2, ω and S of H-MOPSO are the self-awareness learning factor, population cognitive
learning factor, inertia factor and population size, respectively.

Table 2. Parameter setting table for the four algorithms.

Algorithms Parameters Values

JS γ, β 0.1, 3
tmax, S 300, 600

SFLA k, n, q 10, 60, 25
λmax, Tmax, tmax 3, 30, 300

H-MOPSO C1, C2, ω 1.6, 2, 0.9
tmax, S 300, 600

Proposed
k, n, q, r 10, 60, 25, 0.8

λmax, Tmax, tmax 3, 30, 300
BI
D , xmax, ymax 3, 500, 500

Figure 6 illustrates an example of interaction points generated by multiple AUGs.
The dotted lines represent the top view of AUG trajectories, and the interaction points
occur in numerical order in the figure, which disappears after a certain period. Each AUG
carries a certain amount of data as it floats to the interaction point, and if the ASV misses
an interaction, the AUG will buffer the data to the next interaction point. However, only up
to three times because, in the case of more than three buffer instances, the buffered data
exceeds the transferable amount for one interaction period, which causes data loss. The goal
is to plan an optimized path for ASV on the sea surface as a way to sequentially access the
interaction points while collecting as much data as possible.
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Figure 6. An example diagram of the interaction points generated by three AUGs.

Figures 7–9 demonstrate histograms of the path lengths, access rate and data collec-
tion rate at different numbers of interaction points. The access rate is the rate at which
ASV accesses all the interaction points before they disappear, and the data collection rate
indicates the rate of data collected from all AUGs.

Figure 7. Comparison of path length under different numbers of interaction points.

In terms of path length (Figure 7) and access rate (Figure 8), the proposed HSPP-HA
shows the highest performances, as expected, and SFLA follows, which demonstrates
the adaptability of spatial-temporal clustering to our task model. H-MOPSO and JS show
lower performance because the temporal and spatial properties of each interaction point are
not correlated, thus confusing the path-planning decisions. Such a case can be explained
by the case of 50 interaction points in Figure 8 because a lower density of interaction
points results in a longer distance between them, so the paths planned between interaction
points with similar times of occurrence but longer distances lead to lower global access
rates. The proposed method outperforms SFLA because of the adaptive iteration approach.
Specifically in terms of data collection rate (Figure 9), since the adaptive iteration factor
well balances the global and local search, it shows significant improvements compared to
the original SFLA, where the data collection rate has increased by more than 20% in the case
of 300 interaction points and reached 98% in the case of 50 interaction points. H-MOPSO
and JS performed poorly in terms of data collection rate and even shows values similar
to the access rate in cases of 200 and 300 interaction points. This is because, in the case of
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high-density interaction points occurring at different times, the data missed but buffered to
the next interaction point are not collected in time.

Figure 8. Comparison of the access rate under different numbers of interaction points.

Figure 9. Comparison of the data collection rate under different numbers of interaction points.

In order to further analyze the detailed processes, the planned paths with four algo-
rithms are compared in Figure 10, where three AUGs work in a 100 × 100 m region and
generate 30 interaction points.

In Figure 10, the three dotted lines indicate the top view of the trajectories of three
AUGs, and the solid lines indicate the paths of ASV. Figure 10a shows the path under
H-MOPSO, where ASV successfully accessed 23 interaction points with an access rate
of 76.67%. In the case of interaction points 13, 15, 19 and 20 from AUG1, the data from
interaction points 13, 15 and 19 are not collected because they do not meet the Cq

i where
qi = 3; therefore, the ASV only collected the data buffered from 20 at interaction point 25.
In the case of interaction point 29, the path between interaction points 27 and 29 does not
meet the Cv

i→j, so the ASV gives up accessing interaction point 29 and directly accesses
interaction point 30 so that the data from interaction point 29 are lost. At this time, the data
collection rate is 86.67%, and the path length is 547.8 m. Figure 10b shows the path under
JS, where ASV successfully accessed 20 interaction points with an access rate of 66.67%,
and the data on interaction points 20 and 25 are not successfully collected for the same
reason. The data collection rate and path length are 93.33% and 501.3 m, respectively, which
shows improved performances compared to the H-MOPSO, albeit with a lower access rate.
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(a) H-MOPSO (b) JS

(c) SFLA (d) Proposed

Figure 10. ASV path diagram for four algorithms.

SFLA in Figure 10c results in a 70% access rate, 93.33% data collection rate and 436.8 m
path length, while the proposed method in Figure 10d results in a 73.33% access rate, 100%
data collection rate and 411.6 m path length. They brought higher data collection rates
because the spatial-temporal clustering is adopted and each path is scheduled according to
the occurrence time of the interaction points.

Table 3 summarizes the performance of the four algorithms in terms of path length,
access rate and data collection rate for different numbers of interaction points. The time
complexity of the four algorithms is also listed in the table. JS, SFLA and HSPP-HA are
O(∑ Ni) = O(N) where N is the population size, and i is the sequence of iterations. H-
MOPSO is O(N2) because it additionally searches the particles in an archive in each iteration.

Finally, the convergence ability of the four algorithms is compared with the opti-
mization function f (Equation (4)). Figure 11 compares the result where the number of
interaction points is 30. The optimal value of the proposed method shows the fastest con-
vergence, starting to converge at about the 80th iteration, while the H-MOPSO algorithm
starts to converge at about the 200th iteration, and the proposed method results in a better
optimal value after convergence, which demonstrates the ability of the proposed adaptive
iteration approach to avoid the local optimum. The convergence ability of HSPP-HA and
SFLA is better than JS, which indicates that the three types of LUMs mechanisms have
higher adaptability to our task model since the worst solutions are removed from the popu-
lation in each iteration and the time control function of JS may lead to the unbalanced local
and global search; and due to the spatial-temporal clustering in initializing the population,
HSPP-HA shows better convergence than SFLA, as expected. Regarding the H-MOPSO,
it shows the worst performance because the PSO mechanism may lead to local optimum
problems, especially in our task model where time-sensitive objectives constitute a complex
optimization environment, while HSPP-HA uses the adaptive convergence factor in each
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iteration that makes the algorithm have a strong global search capability in the early stage
that avoids the local optimum and leads to a strong local search capability in the later stage
that further improves the quality of the final solution.

Table 3. Statistical table for the four algorithms.

Algorithms
Number of
Interaction

Points

Path Length
(m)

Access Rate
(%)

Data
Collection
Rate (%)

Time
Complexity

H-MOPSO
30 547.80 76.67 86.67

100 989.35 65.00 69.00 O(N2)
200 1234.68 60.00 60.00

JS
30 501.30 66.67 93.33

100 956.49 75.00 78.00 O(N)
200 1199.16 63.00 62.00

SFLA
30 436.80 70.00 93.33

100 880.41 80.00 80.00 O(N)
200 1096.13 71.00 74.00

Proposed
30 411.60 73.33 100.00

100 727.58 89.00 96.00 O(N)
200 939.23 82.00 90.00

Figure 11. Convergence diagram of the four algorithms.

6. Conclusions

AMV collaboration is one of the fundamental technologies for practicing IoUT ap-
plications. Accordingly, this paper presents a heuristic surface path planning method for
interacting heterogeneous AMVs, named HSPP-HA, which is designed for an application
scenario of ASV on the sea surface, accessing a series of time-sensitive interaction points
generated by AUGs underwater. The HSPP-HA is based on SFLA with some improvements
for the application scenario, which are spatial-temporal clustering and an adaptive iteration
factor. The spatial-temporal clustering assigns interaction points of AMVs that are close
in time and location to the same access group for initializing a SFLA memeplex, which
has the advantage in scheduling time-sensitive interactions; the adaptive iteration factor
adjusts the convergence speed of SFLA in different iteration stages that balance the local
and global searches of the heuristic convergences that avoids the local optimum problem to
a certain extent. The simulations show that the proposed method has superiorities in terms
of generated path length, access rate of the time-sensitive interaction points, data collection
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rate and convergence performance compared to the classic and recent approaches. How-
ever, the proposed algorithm still has some space for improvement because the objective
optimization function does not take into account the motion constraint of the ASV, which
will be studied in our future work, and our future work will also focus on designing a
subsea path planning method for underwater AMVs that should take into account complex
underwater geography, irregular currents and dynamic obstacles.

Author Contributions: Conceptualization, J.Z. and Z.W.; methodology, J.Z. and Z.W.; validation, G.H.
and Y.Q.; formal analysis, J.Z. and G.H.; investigation, Z.W.; writing—original draft preparation, J.Z.
and Z.W.; writing—review and editing, J.Z., G.H. and Y.Q.; visualization, J.Z. and Z.W.; supervision,
G.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Fundamental Research Funds for the Central
Universities, No. B220202021, in part by the National Natural Science Foundation of China under
Grant No. 62072072, No. 61971206, No. 62002099 and in part by the Changzhou Foundation of
Science and Technology No. CJ20210144.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Oceanix. Available online: https://oceanix.com/ (accessed on 1 January 2023).
2. Tao, S.; Liu, H.; Wang, S.; Li, C. Construction of Smart Coastal Cities Based on Digital Government. J. Coast. Res. 2020, 110,

154–158. [CrossRef]
3. Atham, S.B.; Guleria, K. Smart City in Underwater Wireless Sensor Networks. In Energy-Efficient Underwater Wireless Communica-

tions and Networking; IGI Global: Hershey, PA, USA, 2021; pp. 287–301.
4. McMahon, J.; Plaku, E. Autonomous Data Collection With Dynamic Goals and Communication Constraints for Marine Vehicles.

IEEE Trans. Autom. Sci. Eng. 2022, 1–14. [CrossRef]
5. Han, G.; Qi, X.; Peng, Y.; Lin, C.; Zhang, Y.; Lu, Q. Early Warning Obstacle Avoidance-Enabled Path Planning for Multi-AUV-Based

Maritime Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022. [CrossRef]
6. Han, G.; Gong, A.; Wang, H.; Martínez-García, M.; Peng, Y. Multi-AUV Collaborative Data Collection Algorithm Based on

Q-Learning in Underwater Acoustic Sensor Networks. IEEE Trans. Veh. Technol. 2021, 70, 9294–9305. [CrossRef]
7. Chu, Z.; Wanf, F.; Lei, T.; Luo, C. Path Planning based on Deep Reinforcement Learning for Autonomous Underwater Vehicles

under Ocean Current Disturbance. IEEE Trans. Intell. Veh. 2022, 8, 108–120. [CrossRef]
8. Yang, J.; Huo, J.; Xi, M.; He, J.; Li, Z.; Song, H. A Time-saving Path Planning Scheme for Autonomous Underwater Vehicles with

Complex Underwater Conditions. IEEE Internet Things J. 2023, 10, 1001–1013. [CrossRef]
9. Zhang, J.; Sha, J.; Han, G.; Liu, J.; Qian, Y. A Cooperative-Control-Based Underwater Target Escorting Mechanism With Multiple

Autonomous Underwater Vehicles for Underwater Internet of Things. IEEE Internet Things J. 2022, 8, 4403–4416. [CrossRef]
10. Yu, F.; Chen, Y. Cyl-iRRT*: Homotopy Optimal 3D Path Planning for AUVs by Biasing the Sampling into a Cylindrical Informed

Subset. IEEE Trans. Ind. Electron. 2022. [CrossRef]
11. Wen, J.; Yang, J.; Li, Y.; He, J.; Li, Z.; Song, H. Behavior-Based Formation Control Digital Twin for Multi-AUG in Edge Computing.

IEEE Trans. Netw. Sci. Eng. 2022. [CrossRef]
12. Wen, J.; Yang, J.; Wei, W.; Lv, Z. Intelligent Multi-AUG Ocean Data Collection Scheme in Maritime Wireless Communication

Network. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3067–3079. [CrossRef]
13. Hu, W.; Chen, F.; Xiang, L.; Chen, G. Multi-ASV Coordinated Tracking With Unknown Dynamics and Input Underactuation via

Model-Reference Reinforcement Learning Control. IEEE Trans. Cybern. 2022, 1–10. [CrossRef] [PubMed]
14. Jeong, M.; Lee, E.; Lee, M. An Adaptive Route Plan Technique with Risk Contour for Autonomous Navigation of Surface Vehicles.

In Proceedings of the OCEANS MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–4.
15. Dubey, R.; Louis, S. VORRT-COLREGs: A Hybrid Velocity Obstacles and RRT Based COLREGs-Compliant Path Planner for

Autonomous Surface Vessels. In Proceedings of the OCEANS 2021: San Diego—Porto, San Diego, CA, USA, 20–23 September
2021; pp. 1–8.

16. Vagale, A.; Bye, R.; Osen, O. Evaluation of Path Planning Algorithms of Autonomous Surface Vehicles Based on Safety and
Collision Risk Assessment. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October
2020; pp. 1–8.

17. Yu, Z.; Si, Z.; Li, X.; Wang, D.; Song, H. A Novel Hybrid Particle Swarm Optimization Algorithm for Path Planning of UAVs.
IEEE Internet Things J. 2022, 9, 22547–22558. [CrossRef]

https://oceanix.com/
http://doi.org/10.2112/JCR-SI110-037.1
http://dx.doi.org/10.1109/TASE.2022.3217678
http://dx.doi.org/10.1109/TITS.2022.3157436
http://dx.doi.org/10.1109/TVT.2021.3097084
http://dx.doi.org/10.1109/TIV.2022.3153352
http://dx.doi.org/10.1109/JIOT.2022.3205685
http://dx.doi.org/10.1109/JIOT.2020.3026355
http://dx.doi.org/10.1109/TIE.2022.3177801
http://dx.doi.org/10.1109/TNSE.2022.3198818
http://dx.doi.org/10.1109/TNSE.2022.3164587
http://dx.doi.org/10.1109/TCYB.2022.3203507
http://www.ncbi.nlm.nih.gov/pubmed/36170391
http://dx.doi.org/10.1109/JIOT.2022.3182798


Sustainability 2023, 15, 3137 19 of 19

18. Qadir, Z.; Zafar, M.; Moosavi, S.; Le, K.; Mahmud, M. Autonomous UAV Path-Planning Optimization Using Metheuristic
Approach for Predisaster Assessment. IEEE Internet Things J. 2022, 9, 12505–12514. [CrossRef]

19. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110,
69–84. [CrossRef]

20. Kaveh, A.; Dadras Eslamlou, A. Water strider algorithm: A new metaheuristic and applications. Structures 2020, 25, 520–541.
[CrossRef]

21. Muzaffar, E.; Kevin, L.; Fayzul, P. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng.
Optim. 2006, 38, 129–154.

22. Yang, J.; Ni, J.; Xi, M.; Wen, J.; Li, Y. Intelligent Path Planning of Underwater Robot Based on Reinforcement Learning. IEEE Trans.
Autom. Sci. Eng. 2022. [CrossRef]

23. Abbasi, A.; MahmoudZadeh, S.; Yazdani, A. A Cooperative Dynamic Task Assignment Framework for COTSBot AUVs. IEEE
Trans. Autom. Sci. Eng. 2022, 19, 1163–1179. [CrossRef]

24. Scott, D.; Manyam, S.; Casbeer, D.; Kumar, M. A Lagrangian Algorithm for Multiple Depot Traveling Salesman Problem With
Revisit Period Constraints. IEEE Trans. Autom. Sci. Eng. 2022. [CrossRef]

25. Chen, M.; Zhu, D. A Workload Balanced Algorithm for Task Assignment and Path Planning of Inhomogeneous Autonomous
Underwater Vehicle System. IEEE Trans. Cogn. Dev. Syst. 2019, 11, 483–493. [CrossRef]

26. Zhu, D.; Zhou, B.; Yang, S. A Novel Algorithm of Multi-AUVs Task Assignment and Path Planning Based on Biologically Inspired
Neural Network Map. IEEE Trans. Intell. Veh. 2021, 6, 333–342. [CrossRef]

27. Wu, J.; Song, C.; Ma, J.; Wu, J.; Han, G. Reinforcement Learning and Particle Swarm Optimization Supporting Real-Time Rescue
Assignments for Multiple Autonomous Underwater Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6807–6820. [CrossRef]

28. Wang, N.; Xu, H. Dynamics-Constrained Global-Local Hybrid Path Planning of an Autonomous Surface Vehicle. IEEE Trans. Veh.
Technol. 2020, 69, 6928–6942. [CrossRef]

29. Hu, L.; Naeem, W.; Rajabally, E.; Watson, G.; Mills, T.; Bhuiyam, Z.; Raeburn, C.; Salter, I.; Pekcan, C. A Multiobjective
Optimization Approach for COLREGs-Compliant Path Planning of Autonomous Surface Vehicles Verified on Networked Bridge
Simulators. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1167–1179. [CrossRef]

30. Jian, S.; Hsieh, S. A Niching Regression Adaptive Memetic Algorithm for Multimodal Optimization of the Euclidean Traveling
Salesman Problem. IEEE TRansactions Evol. Comput. 2022. [CrossRef]

31. Xin, C.; Kang, W.; Yi, M.; Zheng, L.; Jun, Z.; Qing, Z. Decomposition-based Lin-Kernighan Heuristic with Neighborhood Structure
Transfer for Multi/Many-objective Traveling Salesman Problem. IEEE Trans. Evol. Comput. 2022. [CrossRef]

32. Zhang, Z.; Liu, H.; Zhou, M.; Wang, J. Solving Dynamic Traveling Salesman Problems With Deep Reinforcement Learning. IEEE
Trans. Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]

33. Sanyal, S.; Roy, K. Neuro-Ising: Accelerating Large-Scale Traveling Salesman Problems via Graph Neural Network Guided
Localized Ising Solvers. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2022, 41, 5408–5420. [CrossRef]

34. Mei, H.; Wang, H.; Shen, X.; Bai, W. An Adaptive MAC Protocol for Underwater Acoustic Sensor Networks With Dynamic Traffic.
In Proceedings of the OCEANS MTS/IEEE Charleston of the Conference, Charleston, SC, USA, 22–25 October 2018; pp. 1–4.

35. Qiao, G.; Zhao, Y.; Liu, S.; Ahmed, N. The Effect of Acoustic-Shell Coupling on Near-End Self-Interference Signal of In-Band
Full-Duplex Underwater Acoustic Communication Modem. In Proceedings of the 17th International Bhurban Conference
on Applied Sciences and Technology (IBCAST) of the Conference, Natl Ctr Phys, Islamabad, Pakistan, 14–18 January 2020;
pp. 606–610.

36. Eghbal, M.; Saha, T.; Hasan, K. Transmission expansion planning by meta-heuristic techniques: A comparison of Shuffled Frog
Leaping Algorithm, PSO and GA. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting of the Conference,
Detroit, MI, USA, 24–28 July 2011; pp. 1–8.

37. Duarte, B.; de Oliveira, L.; Teixeira, M.; Barbosa, M. A comparison of Genetic and Memetic Algorithms applied to the Traveling
Salesman Problem with Draft Limits. In Proceedings of the 47th Latin American Computing Conference (CLEI) of the Conference,
Cartago, Costa Rica, 25–29 October 2021.

38. Huang, M.; Zhang, K.; Zeng, Z.; Wang, T.; Liu, Y. An AUV-Assisted Data Gathering Scheme Based on Clustering and Matrix
Completion for Smart Ocean. IEEE Internet Things J. 2020, 7, 9904–9918. [CrossRef]

39. Jui, C.; Dinh, T. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021, 289, 125535.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2021.3137331
http://dx.doi.org/10.1016/j.advengsoft.2017.03.014
http://dx.doi.org/10.1016/j.istruc.2020.03.033
http://dx.doi.org/10.1109/TASE.2022.3190901
http://dx.doi.org/10.1109/TASE.2020.3044155
http://dx.doi.org/10.1109/TASE.2022.3181512
http://dx.doi.org/10.1109/TCDS.2018.2866984
http://dx.doi.org/10.1109/TIV.2020.3029369
http://dx.doi.org/10.1109/TITS.2021.3062500
http://dx.doi.org/10.1109/TVT.2020.2991220
http://dx.doi.org/10.1109/TITS.2019.2902927
http://dx.doi.org/10.1109/TEVC.2022.3211954
http://dx.doi.org/10.1109/tevc.2022.3215174
http://dx.doi.org/10.1109/TNNLS.2021.3105905
http://www.ncbi.nlm.nih.gov/pubmed/34520362
http://dx.doi.org/10.1109/TCAD.2022.3164330
http://dx.doi.org/10.1109/JIOT.2020.2988035

	Introduction
	Related Works
	System Model
	Task Model
	Constraint Model
	Objective Optimization Model

	Heuristic Surface Path Planning Method for Underwater Data Collection
	Spatial-Temporal Clustering
	Shuffled Frog-Leaping with Adaptive Iteration Factor

	Simulation and Analysis
	Conclusions
	References

