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Abstract: This study aims to produce a spatial model for sustainable land management in landslide-
prone areas, based on exploring non-stationary relationships between landslide events, geomorpho-
logical and anthropogenic variables on tropical hillsides, especially in Taji Village, Jabung District,
East Java Province, Indonesia. A series of approaches combine in this research, and methods are used
to construct independent and dependent variables so that GWR can analyze them to obtain the best
model. Transformation of categorical data on microtopography, landform, and land cover variables
was carried out. When modelled, landscape metrics can explain landslide events in the study area
better than distance metrics with adj. R2 = 0.75 and AICc = 2526.38. Generally, local coefficient maps
for each variable are mapped individually to reveal their relationship with landslide events, but in
this study they are integrated to make it more intuitive and less confusing. From this map, it was
found that most of the variables that showed the most positive relationship to the occurrence of
landslides in the study area were the divergent footslopes. At the same time, the negative one was
plantation land. It was concluded that the methodological approach offered and implemented in this
study provides significant output results for the spatial analysis of the interaction of landslide events
with geomorphological and anthropogenic variables locally, which cannot be explained in a global
regression. This study produces a detailed scale landslide-prone conservation model in tropical hill
areas and can be reproduced under the same geo-environmental conditions.

Keywords: landslide; geographical regression analysis; land management

1. Introduction

Land degradation for several countries is one of the problems that can lead to disas-
ters [1,2] by causing a reduction or loss of land productivity, resulting in economic losses.
Based on [3] 25% of land area worldwide is degraded, and as much as 24 billion tons
of fertile soil are lost every year due to degradation. Land degradation not only causes
disasters, but disasters also cause land degradation, one of which is landslides.

Landslides are natural disasters that usually occur in mountainous or hilly areas.
These disasters often cause extensive economic losses and yearly fatalities [4]. Indonesia is
located above the confluence of three major plates, namely the Eurasian plate, the Pacific
plate and the Indo-Australian plate, reflecting high tectonic activity with a tropical climate
and intensive anthropogenic activity, which often causes natural disasters. According to
the Indonesian Disaster Information Data, landslides are ranked 3rd (9047 incidents) after
tornadoes (11,016 incidents) and floods (13,723 incidents) recorded since 1822 until now [5].
Landslide disasters in Java Island, Indonesia tend to be caused by high rainfall, which
often occurs in remote hilly areas that are prone to these events [6,7]. In the vicinity of
Mount Bromo, landslides occur due to precipitated volcanic material, steep slopes, and
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high rainfall which often damage road accessibility [8]. Landslides caused by high rainfall
are a global problem yearly [9]. Landslides in Taji Village—one of the villages in the Mount
Bromo area—are caused by high-intensity rains and extreme weather (La nina), and often
damage the connecting roads between villages which causes residents to be isolated, thus
hindering farmer and gardening activities in the fields. In addition, the houses of affected
residents have also occurred, but there were no fatalities.

In addition to high rainfall as a trigger, the phenomenon of slope instability that causes
landslides can also be affected by landform conditions in terms of morphology, morpho-
process, morphochronology, and morphoarrangement [10]. In addition, geomorphological
mapping in mountainous and hilly areas is the most complex type of information and
the most subjective for landslide hazard assessment [11]. However, geomorphological
mapping is selective because it only focuses on certain features in an area of interest with
a certain scale for a particular study. The latest remote sensing techniques, namely by
utilizing Unmanned Aerial Vehicles (UAV) data and Digital Terrain Models (DTM) can
expand their application in geomorphological and topographical mapping for the iden-
tification and mapping of landslide hazards [12–14] in more detailed area coverage at a
precise scale. In addition, recently, low-cost UAVs (more commonly called drones) have
become a trend among academics, practitioners and commercial circles because they are
effective in collecting large amounts of elevation data in a relatively short time, which can
change the perspective and analysis by geomorphologists to study geomorphometrics and
topography in certain landscapes [15,16].

One of the geomorphological features on a detailed scale is the microtopography
built from the DTM. Micro-topography is defined as topographic changes on a small scale
that is divided into seven units, including crest slope, upper side slope, head hollow,
lower side slope, flood terrace and riverbed [17,18]. Chimner dan Hart (1996) defines
microtopography into three units: hummock, pool and intermediate area. In terms of the
scope of soil development, microtopography is divided into two types: pit and mound
on soil morphology caused by fallen trees forming drumlin landforms [19,20]. Another
definition of microtopography is the difference in size and shape in the local terrain caused
by soil erosion, thus affecting the heterogeneity of habitat conditions such as moisture
and soil nutrients on a scale of 1 m2 or more [21,22] with Microtopographic types include
platform, gully, sink hole, scarp and ephemeral gully [23]. Thus, the definition and type of
microtopography is “variable”, which adjusts to the study in a particular field. In this study,
microtopography is defined as changes in local topography in terms of size and shape,
as seen from differences in morphology [24,25]. Morphological mapping is based on line
shape mapping, which focuses on identifying the types of slope bends using a symbology
system that is unambiguous, clear, and reproducible [26]. In other words, microtopography
is a reflection of its morphology.

In general, geomorphological features have a major influence on landslide events.
Anthropogenic activity also plays an important role in slope instability, part of which
is land cover [27,28], and even contributes positively to landslide events [29]. However,
land cover and geomorphological features are closely related, allowing different spatial
relationships to landslide events [30]. In addition, vegetation density can also explain the
pattern of landslide occurrence, but often has an inverse relationship, namely the higher
the vegetation density, the lower the landslide vulnerability [13,31].

Spatial modeling of landslide susceptibility is crucial for further understanding the
assessment of disaster mitigation and preventive measures to conserve land in landslide-
prone areas. Approaches for landslide hazard mapping are developing rapidly, starting
from combined methods to produce the best models to emerging innovations for model
updates. In general, they include the evaluation of landslide models using qualitative
approaches [32], quantitatively based on the relationship of controlling factors and land-
slides [33], and even a combination of both [34,35]. However, the spatial interaction
between landslide points and their controlling factors in the quantitative approach is not
explained [35], it only relies on stationary parameter estimation to examine the relationship
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between the two. One of the quantitative approaches, local regression analysis, can explain
these spatial interactions in a non-stationary manner [36]. Feuillet et al.’s (2014) study
examined the strength of the spatial relationship between paraglacial factors and landslide
events. In addition, the authors of [29] investigated the local spatial relationship between
land use change resulting from human intervention and landslide events. Research [24]
also explains that different vegetation classes on different microtopography give different
responses to the process of soil loss in the form of erosion. These studies prove that the
occurrence of landslides has a non-stationary relationship to the predictor variable, which
is at the same time better than global regression in general. However, the coverage area of
the two studies is on a regional scale.

In this context, there are rarely studies that discuss the spatial relationship between
landslide events and landslide control factors at a detailed scale, especially in the tropical
hills of Indonesia. In fact, the spatial relationship of landslides with their controlling factors
can provide information on the biggest factors causing landslides spatially. Consequently,
it will be known that the arrangement of the microtography and vegetation parts that have
a positive and negative effect on landslides. This information can be essential information
in the management of sustainable land management.

As previously explained, drones are currently becoming a trend and are applied for
specific purposes, as well as an alternative to optical satellite imagery data with very high
spatial resolution that are quite expensive, and user demands are also high. Thus, this study
aims to produce a detailed scale conservation model in landslide-prone areas based on
exploring the local spatial relationship between landslide events and micro-topographical
variables, land cover, and vegetation density at a detailed scale in a small hilly area in Taji
Village, Jabung District, Province East Java, Indonesia uses the Geographically Weighted
Regression (GWR) method.

2. Materials and Methods
2.1. Study Area

The study area is in the Bromo Tengger Semeru Area (Figure 1). Astronomically,
it is located at 7◦56′34.98’–7◦57’6.1” South Latitude and 112◦48’49”–112◦49’30.58” East
Longitude. The study area covers 61.2 ha with an average elevation of 1110 ± 59 masl. The
topographical characteristics in the study area are hillsides that are quite steep to steep
and cut by rivers to form a fairly deep valley. The use of agricultural land and plantations
tends to dominate in the study area. On land that is not vegetated erosion is found to
be more intensive. The geological conditions in the study area consist of lower quarter
volcanic rocks (i.e., Mount Gendis) during the middle Pleistocene. The rock materials
include volcanic breccias, tuff-breccias, lava, and agglomerates. In addition, areas with
andesitic rock deposits, namely lava and breccia-tuff, tend to be prone to landslides [37].
The complex topography configuration, high erosion rate, and rock materials in the study
area have great potential for future landslides.

2.2. Methodology

Exploration of spatial relationships locally using the GWR model between landslides
and microtopographical variables, landform, land cover, and vegetation density through
several stages, involved: (1) building a Digital Terrain Model (DTM) from overlapping
drone photos in the study area; (2) creating imagery orthomosaic based on dense point
cloud, mesh, and texture data; (3) preparing raw data in the form of orthomosaic imagery
acquired from UAV drones and landslide inventory via orthomosaic; (4) orthomosaic
imagery used for land cover analysis using the Geographically Object-based Image Analysis
(GEOBIA) method) based on spectral features, haralick texture, and shape index, which
then attribute selection is carried out for all features through WEKA software to produce
optimal land cover classification; (5) individual stand identification from orthomosaic image
interpretation for vegetation density analysis; (6) curvature-based landform classification
by classification system Pennock uses DTM; (7) micro-topography constructed through
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on-screen digitization based on elevation contour lines and the landscape appearance
of the study area, which is then zoning micro-topography using the Voronoi diagram
or Thiessen polygon method; (8) integrating landslide data, landform, land cover, and
vegetation densityinto microtopography zoning as a spatial unit based on the value of the
results of transforming categorical data into numeric (specifically for microtopography,
landform, and land cover); (9) using three types of model for each variable, namely Type I
model (proximity factor), Type II (Principal Component (PC) with the highest percentage
of eigenvalues on the landscape metric comprehensive index), and Type III (PC on the
landscape metric comprehensive index with the largest contribution using the Relief-F
attribute selection method from WEKA software) prepared for GWR model fitting; and 10)
local spatial relationship analysis based on the best fit GWR model with the four variables
bell is modeled simultaneously. This series of stages can be simplified through the research
flowchart in (Figure 2).
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2.3. Data Collection and Processing
2.3.1. Orthomosaic Image and Digital Terrain Model (DTM) from Unmanned Aerial
Vehicle (UAV)

Very high-resolution aerial photos were acquired through photogrammetric processing
using a UAV (a multirotor-type drone, the DJI Phantom 4). The Pix4Dcapture software [38]
is used for automatic flight control and aerial photo acquisition to retrieve information on
surface objects in the study area. In addition, geometric correction of orthorectified images
is also automatically performed in Pix4D. The mapping was carried out at an altitude of
about 70 m, producing an image with a spatial resolution of 2.4 cm per pixel. For the
flight path, forward and side overlap when shooting is set optimally at around 80% and
70%, respectively. This is due to reducing the canopy height error in vegetation, which
is a larger proportion than non-vegetation in the study area [39]. The aerial photos that
have been acquired are then processed using third-party software Agisoft PhotoScan [40]
to build orthomosaic images and Digital Terrain Models (DTM), which are often used
in previous research for experimental and other scientific fields, especially land cover
mapping [39,41–45].
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2.3.2. Landslide Inventory

The landslide inventory map was compiled from orthomosaic imagery, because histor-
ical data on past landslide events were not recorded. High-resolution imagery from Google
Earth with a timestamp also cannot help to identify landslide events because the scope and
scale in the study area is very detailed. A total of 14 landslide points were detected in the
study area (Figure 1). Then these landslide data are aggregated into micro-topographic
units as the dependent variable for the GWR model. Generally, landslides are denoted as a
binary class, namely, 0 (not landslide) and 1 (landslide). However, this does not represent
the actual landslide events when overlaid onto microtopographic units. In other words,
overlapping landslide areas do not always completely intersect with microtopographic
units because these spatial units certainly form non-uniform areas such as grids with a
fixed area shape. In addition, a statistical model for slope instability can use the percentage
of landslide area in each unit of analysis [33].

2.3.3. Microtopographic Zoning

The morphology to be mapped refers to the basic classification of Cooke dan Doornkamp
(1974), including cliff, an angular convex break of slope, an angular concave break of slope,
smoothly convex change in slope, smoothly concave change in slope, and convex and
concave too close together (breaks of slope and smooth change in slope, respectively).
However, the use of this classification is slightly subjective as there are no definitive rules
as to what an angular or smooth break of slope actually looks like, the extent to which
small undulations (<1 m) can or should be mapped, and where a break of slope no longer
occurs [26]. Apart from that, this research may change or add morphological classes
based on the landscape characteristics in the study area. The morphological mapping
process utilizes elevation contour lines from the DTM data that have been made. The
on-screen image interpretation technique [10,46] is used for morphological delineation
through observing contour line patterns and orthomosaic imagery to see the characteristics
of the landscape. Additionally, the output from the results of morphological mapping is
used for micro-topographical zoning.
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However, the spatial form of morphology is in the form of vector lines. Micro-
topographic zoning should be in the form of areas or polygons so that an approach is
needed to convert the form of spatial data. The buffer zone approach defines the area’s
boundaries within the morphological unit to the adjacent morphology. In fact, each unit’s
buffer zones can overlap because the buffer distance is fixed [47]. The expected output is
a flexible buffer zone that does not coincide, meaning that microtopographic zoning will
be formed when the buffer zone boundary in the morphological unit touches the buffer
zone boundary of the adjacent unit. Therefore, the Tyson polygon technique, also called
the Thiessen polygon, is used to overcome the problem of overlapping buffer zones. The
morphological output results are converted into points because vector lines consist of more
than one vertex point, so the Thiessen polygon technique can be executed. Then, each
point vertex whose area has been formed is aggregated based on the same ID, namely the
morphological unit. For more details, see the schematic diagram for microtopographic
zoning in (Figure 3).
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2.3.4. Landforms of the Pennock Classification System

The landform analyzed in this study includes the landform elements based on the
surface shape on the slopes of the hills, which are explained by topographical derivatives,
namely slope, plan curvature and profile curvature proposed by [48]. DTM data are used
for the classification of landforms that include: Convergent Shoulder (LF1); Convergent
Backslope (LF2); Convergent Footslope (LF3); Divergent Shoulder (LF4); Divergent Backs-
lope (LF5) and Divergent Footslope (LF6). Each of these landform classes is identified based
on the threshold value of the combination of degrees of slope and curvature described
in Table 1. In this study, the ArcGIS geomorphometric toolbox developed by Evans et al.
(2016) was used to classify the Pennock landform [49].

Table 1. Pennock landform classification criteria based on slope, plan curvature and profile curvature
by Pennock et al. (1987).

Profile Curvature (◦/m) Kemiringan Lereng (◦) Plan Curvature (◦/m) Elemen Bentuklahan

Concave (<−0.10)
Linear (>−0.10, <0.10)

Convex (>0.10)

>3.0 Concave (<0.0) Convergent Shoulder
>3.0 Concave (<0.0) Convergent Backslope
>3.0 Concave (<0.0) Convergent Footslope
>3.0 Convex (>0.0) Divergent Shoulder
>3.0 Convex (>0.0) Divergent Backslope
>3.0 Convex (>0.0) Divergent Footslope

This landform is closely related to the pattern of movement and distribution of water
flow, which can explain the morphological properties of the soil of each class of landform
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elements. In addition, it can also identify the morphoprocess of each landform feature,
being erosional on the surface and so can develop and trigger landslides [50].

2.3.5. Land Cover Classification

Geographical Object-Based Image Analysis (GEOBIA) is implemented as the first
stage for land cover classification from orthomosaic imagery [51]. GEOBIA is an image
segmentation method that groups a set of segments in an image based on a group of
pixels that display homogeneous features, namely spectral, radiometric, geometric, and
others [51–53]. This method is more suitable for very high-resolution imagery, namely
orthomosaic from drones, because it can show the presence of massive shadows, low
spectral information, and a low signal-to-noise ratio [54,55].

One of the algorithms in the GEOBIA approach is multi-resolution segmentation
(Baatz, 2000) that is implemented in the eCognition software to create a set of objects in the
image. For segmentation settings, the weights of all three bands (RGB) in the orthomosaic
image are equated to be segmented in the scale parameter 150, and the shape/compactness
homogeneity criterion is set to 0.3/0.5. In this study, several additional features such as
spectral, texture and shape were analyzed through eCognition in each object, followed by
feature selection using the Correlation-based Feature Selection (CFS) method in WEKA
software [56], as was done in previous research by Ma [56]. Later, the Random Forest (RF)
classifier was implemented for land cover classification [57,58] because it is less sensitive to
data dimensionality; however, the training sample size was small [57]. In addition, RF is
often used as a guided classification for GEOBIA because it can produce land cover and
land use maps with good accuracy, both images at medium and very high scales [59–61].
Finally, the randomized training and validation samples were used for the RF classifier. This
study used sample proportions of about 70% and 30% for training and validation samples,
respectively. Classification validation uses a confusion matrix followed by accuracy metrics,
namely overall accuracy and kappa coefficient [62,63].

2.3.6. Vegetation Density

The drone only carries a digital camera sensor, which can only photograph objects
in the visible spectrum, so it cannot calculate the vegetation density index that requires
the near-infrared band. Therefore, vegetation density was analyzed based on the number
of vegetation stands per microtopographic unit in km2. This is because the vegetation
pattern is related to geomorphic processes—including the morphology of the scars—in
topographical units [24,25].

2.4. Transformation of Categorical Data into Numeric on Microtopography, Landform and Land Cover

Microtopographic zoning, landform, land cover and vegetation density have been
constructed to be used as independent variables in the GWR model. However, microtopog-
raphy, landform and land cover variables are categorical data, which is a problem for the
regression model due to data redundancy. To fulfill the requirements in the GWR analysis it
is necessary to transform categorical data into numeric. Two data transformation analyses
were implemented in this study, namely the proximity factor to feature boundaries based
on Euclidean Distance and landscape metrics using FRAGSTATS developed by Dr. Kevin
McGarigal with Eduard Ene and Chris Holme as programmers [64]. Thus, this study offers
three types of data transformations to find the most suitable GWR model.

2.4.1. Type I Data Transformation

Type I data transformation is based on the distance to feature boundary metrics
(using Euclidean Distance) for each class of microtopographic, landform and land cover
variables. Previous studies in other fields also used data transformation based on distance
metrics, namely land cover variables for spatial modeling [65–67]. Technically, each class is
analyzed by distance metrics, where the closer to the class feature boundaries, the smaller
the distance value (in meters). In addition, the area within the class feature boundary is set
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to a minus value so that the closer to the midpoint within the class feature area, the greater
the distance value with a minus value. This setting is used to distinguish between classes
and non-classes and is also considered to represent conventional transformations, namely
class 0 (non-class) and 1 (class) dummy variables.

After that, the distance metrics for micro-topography, landform and land cover vari-
ables were calculated. Then, a zonal statistical analysis was carried out to calculate the av-
erage distance metric for each class that was then aggregated into micro-topographic units.

2.4.2. Type II Data Transformation

Landscape metric analysis is used to transform Type II data, especially the landform
and land cover variables as independent variables. This is because the unit of analysis used
for the GWR model is the microtopographical unit. In other words, microtopographic units
can only be transformed into Type I data. Landscape metrics reflect spatial pattern charac-
teristics. Generally, landscape metrics are often used as predictor variables for ecological
analyses, especially for evaluating changes in land cover and land use [68]. However, in
this study, landscape metrics—like the distance metric method—were used to transform
data into land cover and landform variable categories that could reduce redundancy [69].
In this study, 11 class-level based landscape metrics were taken from several previous stud-
ies [69–72] and implemented to each of the landform and land cover classes, respectively,
as shown in Table 2. Landscape metrics analysis utilizes the ‘landscape metrics’ package
(reimplementation of FRAGSTATS) rather than FRAGSTATS software via R language [73].
This is because it can calculate landscape metrics locally and simultaneously (Nowosad,
2022), i.e., per microtopographic unit.

Table 2. Summary of 11 landscape metrics (Hesselbarth et al., 2019a).

Metrik Rumus Range

Aggregation index (AI) AI =
[

gii
max−gii

]
(100) 0 ≤ AI ≤ 100

Class area (CA) CA = sum
(

AREA
[

patchij

])
CA > 0

Clumpiness index (CLUMPY)
Given Gi =

(
gii

(∑m
k=1 gik)−min ei

)
CLUMPY =

[
Gi−Pi

Pi
f or Gi < Pi&Pi < 0.5; else Gi−Pi

1−Pi

] −1 ≤ CLUMPY ≤ 1

Patch cohesion index
(COHESION) COHESION = 1−

(
∑n

j=1 pij

∑n
j=1 pij

√aij

)
×
(

1− 1√
Z

)−1
× 100 0 ≤ COHESION ≤ 100

Landscape division index
(DIVISION) DIVISION =

(
1−

n
∑

j=1

(
aij
A

)2
)

0 ≤ DIVISION ≤ 100

Edge density (ED) ED = ∑m
k=1 eik

A × 10, 000 ED ≥ 0

Largest patch index (LPI) LPI =
maxn

j=1(aij)
A × 100 0 < LPI ≤ 100

Landscape shape index (LSI) LSI = ei
min ei

LSI ≥ 0
Number of patches (NP) NP = ni NP ≥ 0

Patch density (PD) PD = ni
A × 10, 000× 100 0 < PD ≤ 1× 106

Percentage of class (PLAND) PLAND =
∑n

j=1 aij

A × 100 0 < PLAND ≤ 100

The 11 landscape metrics calculated for each land cover and landform class can
produce many features, causing multicollinearity and redundancy between metrics [74,75].
Therefore, the Principal Component Analysis (PCA) approach was implemented to reduce
dimensionality by compressing landscape metric features in each class, which was also
studied [75–80] From the results of PCA calculations, the highest percentage of eigenvalues
in the Principal Component (PC) is chosen to represent all landscape metrics for each land
cover and landform class, which is named the comprehensive index of landscape metrics.

2.4.3. Type III Data Transformation

The comprehensive index of landscape metrics is also used in transforming Type
III data but does not use (PC) with the highest percentage of eigenvalues. Instead, the
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PC shows the greatest contribution when it is linked to the landslide data. Odhiambo
Omuya et al. (2021) developed a combination of PCA and Information Gain methods
to reduce dimensionality while selecting the best features of a PC. The result is that it
can significantly improve the performance of machine learning classifiers compared to
other feature selection methods, including Correlation-based feature selection (CFS), Gain
Ratio, and Relief-F. Thus, this study uses the conceptual approach [76] but the aim is to
investigate the best PC for each landform and land cover class. In addition, the Relief-F
algorithm [77,78] is implemented because it can analyze target data (i.e., landslide data)
in numerical form. Relief-F calculates the average merits (AM) in each land cover class
and landform which show the ranking of PC attributes. The initial hypothesis for the
transformation of Type III data is that it is not always that the Principal Component with
the largest percentage of eigenvalues shows a strong contribution to the landslides in the
study area.

2.5. Geographically Weighted Regression Model Analysis

The GWR model was run to explore the local spatial relationships of landslides with
microtopographical variables, landform, land cover, and vegetation density. GWR is a
local regression developed by Brunsdon et al. (1998), an update of the Ordinary Least
Squares (OLS) method. The GWR model was built based on the percentage of landslide
area as the dependent variable and microtopography, landform, land cover, and vegetation
density—with all kinds of data transformations carried out—as independent variables that
are integrated with microtopographic units. GWR analysis was performed through the
GWR4 software originally developed by [79]. The GWR model formula is described as
follows [36]:

Yi = β0(µi, vi) +
p

∑
k=1

βk(µi, vi)xik + εi, i = 1, 2, . . . , n (1)

where (µi, vi) represents the coordinates of the observed data; β0(µi, vi) is the intercept
parameter at location i; p is the number of independent variables; βk(µi, vi) is the local
regression coefficient for the independent variable kth at location i; xik is kth independent
variable in ith unit; and εi is a random error. The regression coefficient is calculated using
the local weighted least squares function with the following formula:

β̂k(µi, vi) =
[

XTW(µi, vi)X
]−1

XTW(µi, vi)Y (2)

where W(µi, vi) is the spatial weighting matrix of the observation data at the sample point i
which represents the effect of sample point i around the regression point on other regression
points. In other words, the closer to the sample point i, the greater the influence of the local
regression parameter with a larger weight value, and vice versa. Then, the selection of the
kernel function is important to determine the scope of the degree of spatial autocorrela-
tion [80]. In this study, the adaptive bi-square kernel was used because the distribution of
observational data was not uniform [79]. Here is the bi-square kernel formula:

wij =

1−
(

dij

θi(k)

)2
2

if dij < θi(k) and wij = 0 otherwise (3)

where dij is the Euclidean distance between sample point j and point i; and θi(k) is a measure
of adaptive bandwidth that shows the spatial variation in the GWR model. Bandwidth
selection is also crucial because it measures how well the GWR model generalizes data
similar to the data that have been trained. The golden search function determines the
optimum bandwidth for the adaptive bi-square kernel function. The optimum bandwidth
is determined by the corrected Akaike Information Criterion (AICc) method [79]. The
AICc method is known to overcome the problem of over-fitting the model rather than the
cross-validation method [80]. When AIC is minimum, bandwidth size is the best.
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3. Results
3.1. Results of Mapping Microtopographic Zoning, Landforms, Land Cover, and Vegetation Density

Morphological mapping has been carried out systematically through a remote sens-
ing approach in the study area with a slight modification from the morphological map-
ping system by Cooke and Doornkamp, namely the Ridge and Valley classes divided
into major and minor. Thus, this study’s original morphological class numbered 8 was
updated to 15 classes (Figure 4). Then, thiessen polygons were applied to construct the
microtopographic zoning of each morphological class shown in (Figure 5). A total of
300 microtopographic units were formed in the study area. The symbolization system on
micro-topographic maps is based on a combination of colors and textures. Red, purple,
blue, brown, and green represent head scarp/cliff, ridge, valley, break of slope, and smooth
slope change, respectively.
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Figure 4. Morphological mapping with a modified geomorphological symbolization system.

Microtopography is part of the geomorphological study that has an essential role in
landslides. Microtopography is defined as changes in topography that can be identified
and mapped on a detailed scale. Based on Figure 4, the microtopography in the study
area is divided into four essential parts: (i) ridge, which is divided into the major ridge
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and minor ridge in the form of sharp and round; (ii) valley, which is divided into major
valley and minor valet in sharp and round form; (iii) break of slope which is divided
into angular convex, angular concave, and convex and concave too close; and (iv) smooth
change in slope, which is divided into convex, concave and convex and concave too
close together. Each form of microtopography has a different effect on landslides. The
movement of soil material will increase on sharp slope morphology. In addition, differences
in microtopography will also affect the value of the shape of the land surface in the form of
plan curvature and curvature profile. Both influence the acceleration and deceleration of
the water flow. In ridge microtopography, the water flow will be accelerated so that the
potential for material movement increases.
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Figure 5. Microtopographic Zoning Map from Morphology in the Study Area.

The pattern of microtopographic distribution in the study area can be said to be
heterogeneous. The southwestern part is dominated by ridge and valley morphology
with various class variations. The shape of the zoning in this area tends to be elongated,
reflecting the presence of hills. The major valley (sharp) with a large proportion of the area
is a perennial river channel stretching east to west. Then, the central part is formed by a
fragmented microtopography, namely the form of zoning with a relatively small proportion
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of areas and various morphological classes. This implies complex slope configurations and
slight fluctuations. The northeastern part is almost the same as the southwest, namely the
form of an elongated zonation, but the morphology is relatively fragmented. Meanwhile,
the northern part shows a more compact, elongated form of microtopographic zoning and
a large proportion of areas indicating a less volatile slope configuration.

Then, the shape-based landform variables by the Pennock system have been estimated
and classified. In contrast to microtopographic zoning, the Pennock landform in the
study area is defined by curvature and slope indices, namely profiles and plans with a
neighborhood radius of 40 m each. As shown in Figure 4a, the predetermined neighborhood
radius scale reflects the detailed landform pattern. Generally, in the Pennock method of
landform the slope is divided into three arrangements, covering the upper (shoulder),
middle (backslope), and lower (footslope), with almost the same proportions. However, the
Pennock method classifies a convergent/divergent backslope of around 3% of all existing
landforms in the study area. Meanwhile, the proportion of convergent/divergent shoulders
and footslopes is almost equal, but the spatial pattern still varies. In addition, the landform
in the study area tends to have a convex-concave pattern that repeats over short distances.

Class 1 hierarchical land cover classification on orthomosaic imagery based on GEOBIA
shows very good accuracy, with an overall accuracy of 98.26% and a kappa coefficient of
0.97. Table 3 presents the results of the confusion matrix calculation using the Random
Forest guided classification. The selection of attributes on spectral features, texture, and
shape index also influences satisfactory accuracy. Of the 27 features used as predictor
variables for classification, 13 features were selected based on the results of attribute
filtering using CFS (Correlation-based Feature) from WEKA software. In Figure 4b, most of
theland cover in the study area is dominated by herbaceous (45.77%) and forest (36.56%),
followed by bare soil (12.71%), shrub (3.58%), and built-up (1.36%). In addition, the density
of moderate to very high vegetation classes has spread from the north to northeast and
slightly in the center and southwest (Figure 6c).

Table 3. Results of land cover classification accuracy test from orthomosaic imagery based on the
confusion matrix.

Landcover Forest Shrub Herbaceous Bare Soil Built-up Total User Accuracy (%)

Forest 816 0 2 1 0 819 99.63
Shrub 4 177 5 1 0 187 94.65

Herbaceous 7 0 1050 2 0 1059 99.15
Bare soil 7 0 7 371 0 385 96.36
Built-up 3 0 3 3 125 134 93.28

Total 837 177 1067 378 125 Overall = 98.26%
Producer Accuracy (%) 97.49 100 98.4 98.15 100 Kappa = 0.97

3.2. Comprehensive Index Analysis of Landscape Metrics on Landform and Land Cover

A comprehensive index of landscape metrics for each land cover and landform class is
analyzed using the PCA algorithm to compress metric landscape features. As shown in
Tables 4 and 5, the highest percentage of eigenvalues is PC1, which is overall above 30%
and the eigenvalues are above 1. This indicates that the PC1 component has most of the
feature information from all landscape metrics, so it is used for data GWR Type II model
independent variable input. In addition, while each PC is associated with landslide data
and the results are not always PC1, it has a large contribution to explaining landslides in
the study area, though best represents all landscape metrics. Interestingly, the LF1 and LF6
classes show that PC6 contributes the most, although the eigenvalue is below 1. In fact,
negative AM values appear in PC1, namely classes LC2 and LC5, which means that it has
the lowest contribution among other classes to landslides, even though the negative AM
value is still used for the GWR model input.
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Table 4. Eigenvalues, merit values and ranking percentages of the main component’s contribution to
the landslide.

LF1 LF2 LF3 LF4 LF5 LF6

PC1
Eigen 4.18 4.52 3.89 3.81 4.99 4.51

% Eigen 37.98% 41.12% 35.42% 34.64% 45.44% 40.96%
AM 0.0147 −0.0005 −0.0003 0.009 −0.0002 0.0094

PC2
Eigen 2.36 2.19 2.28 2.58 1.9 2.23

% Eigen 21.44% 19.86% 20.74% 23.48% 17.30% 20.29%
AM 0.0059 0.01218 −0.0041 0.0016 0.00944 0.002

PC3
Eigen 1.92 1.81 1.65 1.77 1.78 1.63

% Eigen 17.42% 16.43% 15.02% 16.09% 16.19% 14.86%
AM 0.0108 −0.0042 0.01716 0.0264 −0.0001 0.0025

PC4
Eigen 1.55 1.36 1.41 1.45 1.28 1.56

% Eigen 14.08% 12.36% 12.81% 13.21% 11.67% 14.23%
AM −0.003 −0.0054 −0.007 0.0049 −0.0011 0.0037

PC5
Eigen 0.44 0.56 0.88 0.53 0.44 0.42

% Eigen 4.00% 5.16% 8.04% 4.82% 4.05% 3.83%
AM −0.003 −0.0067 −0.0012 0.0187 0.00039 7 × 10−5

PC6
Eigen 0.21 0.29 0.46 0.44 0.29 0.28

% Eigen 1.91% 2.68% 4.32% 4.07% 2.71% 2.58%
AM 0.0269 0.00359 −0.008 0.0154 0.00863 0.0241
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Table 5. The eigenvalues and eigen percentages of the principal component.

LC1 LC2 LC3 LC4 LC5

PC1
Eigen 4.87 7.39 3.45 4.47 6.63

% Eigen 44.27% 67.22% 31.33% 40.67% 60.29%
Merit −0.004 −0.0123 −0.003 0.0033 −0.0117

PC2
Eigen 2.24 1.69 3.1 2.72 1.84

% Eigen 20.38% 15.45% 28.22% 24.70% 16.69%
Merit −0.005 −0.013 0.01053 0.0405 −0.0119

PC3
Eigen 1.91 0.98 1.75 1.39 1.52

% Eigen 17.38% 8.95% 15.89% 12.67% 13.82%
Merit −0.01 −0.0147 −0.0012 0.0006 −0.0129

PC4
Eigen 1.15 0.56 0.98 0.95 0.64

% Eigen 10.42% 5.11% 8.98% 8.59% 5.81%
Merit 0.0038 −0.0145 0.00085 0.0334 −0.0141

PC5
Eigen 0.42 - 0.88 0.64 -

% Eigen 3.89% - 7.97% 5.78% -
Merit 0.0033 - 0.00503 0.0232 -

PC6
Eigen - - 0.5 0.46 -

% Eigen - - 4.57% 4.19% -
Merit - - 0.00644 0.0219 -

3.3. Model the Local Spatial Relationship between the Landslide and the Selected Independent
Variable Model Type for Priority Land Management Sustainability

In this study, the GWR model was implemented to investigate the spatial pattern
of local landslide relationships with independent variables collected in spatial units of
microtopographic areas. Table 6 shows the GWR fit model on the data group of predictor
variables influencing landslide events (microtopography, landform, land cover, and vegeta-
tion stand density), adjusted for R2 and AICc. All models use the Gaussian kernel, whose
bandwidth size is checked and calculated based on the Golden Search method. AICc is
used as a selection criterion to find the optimal bandwidth of 300 observational data.

Overall, in the univariate local sub-model the LC model Type I variable group indicates
the covariate most related to the landslide event, namely the value of adj. The highest R2

(0.789) and the lowest AICc (2478.33) are even more important than all the univariate and
multivariate sub-models analyzed. A multivariate model of two groups and three groups
of variables, the Type I model shows better performance (adj. R2 above 0.7) compared to the
Type II and Type II models. The univariate and multivariate sub-models, based on the type
of model, suggest that Type I shows the best fit model compared to Type II and Type III. In
addition, the Type III model is better than the Type II but performs lower than Type I. On
the other hand, the sub-model with all variable groups included shows a different pattern
of Type model results, namely Type III is the highest (adj R2 = 0.755) with the third lowest
AICc value (2526.38), after the LC group Type III (2515.51) and Type I (2478.33) sub-models.
Thus, the Type III group sub-model with four variables was chosen to provide additional
insight, namely the local spatial relationship experiment of the landslide. However, in
terms of calibration the fit model is not the best compared to other sub-models.

Table 6 is a summary of the results of univariate and multivariate comparisons of the
GWR model with four groups of predictor variables: microtopography (MT); landform (LF);
land cover (LC); and standing vegetation density (VD). Each predictor variable has sub-
variables for each class whose data form is divided into three types: proximity factor (Type
I); PC with the highest percentage of eigenvalues from the landscape metric comprehensive
index (Type II); and PC on the comprehensive metric index.

In the summary output of the GWR model (Table 6), the F-statistics in the ANOVA
comparison test shows that the entire GWR model significantly increases global model
performance (OLS). Thus, the null hypothesis of the GWR model being unable to improve
the performance of the global model is rejected. Figure 5 shows the local R2 generated from
the GWR, that the GWR model is fit to map local landslides, which are explained through
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the MT, LF, LC, and VD predictor variable groups that are modeled simultaneously. The
distribution of R2 in the study area tends to be homogeneous and clustered. About 80% of
the local model area has an R2 above 0.73, and at least 10% of the area in the southwestern
region shows that the local model is less fit (fit) with an R2 below 0.43. This implies that
additional covariates are needed to explain the slides in the study area, particularly the
southwest region. Then, the positive value of the standardized residual indicates over-
estimation. Likewise, negative values that appear indicate an underestimation. Overall, the
GWR model shows an over-/under-estimated distribution pattern that tends to be random
in the study area (Figure 7).

Table 6. Summary of univariate and multivariate GWR model comparison results.

Model
Model
Types

Global Regression vs. GWR

AICc Significance Test (with
99% Confident Interval) R2, Adjusted R

OLS GWR Diff. F-Statistic p-Value OLS GWR

MT Type I 2759.16 2625.24 133.92 5.52 <0.001 R2 = 0.36,
adj R2 = 0.32

R2 = 0.80,
adj R2 = 0.71

LF
Type I 2854.12 2738.12 116 4.08 <0.001 R2 = 0.07,

adj R2 = 0.05
R2 = 0.67,

adj R2 = 0.51

Type II 2796.78 2681.95 114.83 4.15 <0.001 R2 = 0.23,
adj R2 = 0.21

R2 = 0.69,
adj R2 = 0.57

Type III 2701.27 2667.08 34.19 2.66 <0.001 R2 = 0.44,
adj R = 0.43

R2 = 0.59,
adj R2 = 0.52

LC
Type I 2788.88 2478.33 310.55 10.12 <0.001 R2 = 0.24,

adj R2 = 0.23
R2 = 0.85,

adj R2 = 0.79

Type II 2764.29 2630.03 134.26 4.6 <0.001 R2 = 0.30,
adj R2 = 0.29

R2 = 0.73,
adj R2 = 0.64

Type III 2619.84 2515.51 104.33 3.94 <0.001 R2 = 0.57,
adj R2 = 0.56

R2 = 0.81,
adj R2 = 0.75

VD - 2850.2 2659.06 191.14 8.21 <0.001 R2 = 0.05,
adj R2 = 0.04

R2 = 0.61,
adj R2 = 0.54

LF + LC
Type I 2775.45 2588.26 187.19 6.08 <0.001 R2 = 0.31,

adj R2 = 0.28
R2 = 0.87,

adj R2 = 0.77

Type II 2748.56 2674.62 73.94 3.36 <0.001 R2 = 0.37,
adj R2 = 0.34

R2 = 0.66,
adj R2 = 0.56

Type III 2598.19 2565.58 32.61 2.44 <0.001 R2 = 0.62,
adj R2 = 0.60

R2 = 0.75,
adj R2 = 0.68

LF + LC + VD
Type I 2776.41 2612.5 163.91 5.6 <0.001 R2 = 0.31,

adj R2 = 0.28
R2 = 0.87,

adj R2 = 0.76

Type II 2748.15 2679.12 69.03 3.21 <0.001 R2 = 0.37,
adj R2 = 0.34

R2 = 0.66,
adj R2 = 0.55

Type III 2600.37 2573.24 27.13 2.3 <0.001 R2 = 0.62,
adj R2 = 0.60

R2 = 0.75,
adj R2 = 0.68

MT + LF +
LC + VD

Type I 2662.22 2608.1 54.12 3.08 <0.001 R2 = 0.58,
adj R2 = 0.54

R2 = 0.77,
adj R2 = 0.68

Type II 2667.68 2651.18 16.5 2.17 <0.001 R2 = 0.57,
adj R2 = 0.53

R2 = 0.68,
adj R2 = 0.59

Type III 2566 2526.38 39.62 2.72 <0.001 R2 = 0.69,
adj R2 = 0.66

R2 = 0.83,
adj R2 = 0.75

The local coefficients shown in Table 7 indicate that the relationship between the
landslide and the independent variables is non-stationary. The relationship varies spatially
with a range of magnitudes and directions. The independent variables in the MT, LF, LC,
and VD groups showed that the magnitude of the relationship varied in both negative and
positive directions in terms of min and max values. This can be interpreted as the presence
of an increasing variable that will also increase the occurrence of landslides, but the presence
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of variables can also reduce the occurrence of landslides. However, several independent
variables only show an inverse correlation to landslides, including Micro2, Micro6, LF3,
and LC3. This suggests that these four variables do not contribute to landslides within this
feature area. In addition, the variables LF4 and LF6 positively contribute to the occurrence
of landslides in all study areas in this feature. However, the VD variable has the smallest
relationship magnitude compared to the other variables, with a two-way relationship.
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Table 7. Statistical summary of the local regression coefficients of GWR for each independent variable
in the MT, LF, LC, and VD groups.

Variables Coefficients

Code Description Min Mean Max StdDev

Intercept −0.54209 23.27006 41.68737 8.60305
Microtopography

Micro1 Head scarp/cliff −2.03661 0.29145 1.11392 0.64287
Ridge
Micro2 Major Ridge (sharp) −0.24350 −0.11556 −0.01758 0.06421
Micro3 Major Ridge (round) −0.07844 0.00832 0.07987 0.03425
Micro7 Minor Ridge (sharp) −0.00361 0.11336 0.25198 0.07270

Micro12 Minor Ridge (round) −0.18980 −0.01034 0.18657 0.10481
Valley

Micro14 Major Valley (sharp) −0.13701 0.03425 0.23303 0.09773
Micro15 Major Valley (round) −0.09968 0.08097 0.24498 0.08325
Micro5 Minor Valley (sharp) −0.07213 −3.2 × 10−5 0.11751 0.04632

Micro10 Minor Valley (round) −0.16003 −0.02185 0.17120 0.08092
Break of Slope

Micro4 Angular Convex −0.01100 0.08009 0.20867 0.05505
Micro6 Angular Concave −0.46316 −0.21412 −0.01252 0.13734
Micro8 Convex and concave too close together −0.30881 −0.08370 −0.01487 0.05277

Smooth Change in Slope
Micro9 Convex −0.02343 0.14797 0.40619 0.11046

Micro11 Concave −1.19064 −0.36578 2.03376 0.63251
Micro13 Convex and concave too close together −0.52585 −0.22090 0.02616 0.15946

Landform
LF1 Convergent Shoulder −4.28159 −1.66346 2.41592 1.45241
LF2 Convergent Backslope −1.86977 0.27553 4.02760 1.89846
LF3 Convergent Footslope −4.01443 −2.83184 −1.87514 0.49353
LF4 Divergent Shoulder 0.48987 1.22543 1.99219 0.31014
LF5 Divergent Backslope −0.39145 0.35599 1.88111 0.46366
LF6 Divergent Footslope 1.65203 4.29289 6.70036 1.07773
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Table 7. Cont.

Variables Coefficients

Code Description Min Mean Max StdDev

Landcover
LC1 Forest −2.62464 −1.12012 1.43396 1.26063
LC2 Shrub −1.25680 0.69419 2.43403 1.19657
LC3 Herbaceous −7.27211 −4.94960 −0.54137 1.69933
LC4 Bare soil −6.25056 −3.49079 0.20763 2.19209
LC5 Built-up −0.89751 0.30802 1.46729 0.65149
VD Vegetation Density −2.41 × 10−4 7.00 × 10−6 2.34 × 10−4 1.04 × 10−4

Generally, in local relationship analysis research the local coefficients of each inde-
pendent variable in the GWR model are imported and visualized as a map using the GIS
environment. The coefficient values are mapped taking into account the two-tailed t value,
i.e., t values above 1.96 and −1.96 are considered significant (equal to p < 0.05). However,
in this study the local coefficient maps are summarized in one map by integrating the
four groups of variables based on the largest local coefficient values (negative or positive
values). This is because the spatial units used are microtopographic units, so the other
three variables are superimposed and the value of the feature slices included in each unit
is calculated. In this case, the value of the principal component comprehensive index of
the selected landscape metrics is calculated. The estimated values of parameters or local
coefficients on the microtopography are searched for and adjusted to each class of unit so
that misinterpretation does not occur, e.g., extracting the Micro1 coefficient values based on
the attributes of the Micro1 class microtopographic units so that outside the area has been
selected. Likewise, with the landform and land cover, only the unit containing information
from the two variables is taken for the coefficient value.

As shown in Figure 8, there are 14 classes combined with the local coefficients of the
independent variables of each group. Signs “+” and “−“ are interpreted as the relationship’s
direction. Map visualization uses a combination of colors and textures to make it easier to
read map symbols and their information. Each unit of the analysis found several variables
positively or negatively related to landslides. In other words, the characteristics and
patterns of landslides in the study area can be explored through several variables related to
the unit of analysis.

In the map in Figure 8, MT classes that show a positive relationship to landslides
are green, and tend to be spread over the central area, being most prominent in the
northeast. Class LF2, LF6, and LC2 also show a positive relationship. However, units with
no significant positive or negative relationship are clustered in the southwestern region
with white symbols. This can also be attributed to the low R2 value in the region, as shown
in Figure 7. Interestingly, the units that only show a negative relationship, namely the MT,
LC3, and LC4 classes, appear in the northern region with a grayish color symbol. Vice
versa, which only shows a positive relationship appears in the south with a dark purple
color, but only one unit, namely the LF6 class.

As shown in Table 8, the number of units that have a positive and negative relation-
ship are 190 and 248, respectively. LF6 showed the most positive relationship (131 units),
followed by MT (38 units), LC2 (16 units), and LF2 (5 units). Meanwhile, LC3 showed
the most dominant negative relationship (224 units), compared to MT (17 units) and LC4
(7 units). Then, the positively related microtopographic classes include micro9 (14 units),
micro14 (7 units), micro15 (7 units), micro7 (6 units), micro12 (3 units), and micro5 (1 unit).
Meanwhile, only micro2 (1 unit) and micro6 (3 units) have a negative relationship. Thus,
LF6 and LC3 have an important role in understanding the landslide mechanism in the
study area. Figure 9 shows a map inset focused on landslide and non-slip areas overlap-
ping the most significant micro-topographical units and classes. The current landslides
were associated with LF6, rather than MT and LC2. Regardless of the significance of the
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local relationship, the current landslides predominately occur at micro6, micro8, micro9,
and micro13.
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Table 8. The number of microtopographic units showing the most statistically significant variables in
each microtopographic class.

Microtopography Class
Significant Count of Units

Positive Sign Negative Sign

Code Description MT LF2 LC2 LF6 Sum MT LC3 LC4 Sum

Micro1 Head scarp/cliff - - - 9 9 - 12 - 12
Ridge
Micro2 Major Ridge (sharp) - 1 1 3 5 1 7 - 8
Micro3 Major Ridge (round) - - 1 5 6 - 10 - 10
Micro7 Minor Ridge (sharp) 6 1 2 8 17 - 19 - 19

Micro12 Minor Ridge (round) 3 1 - 7 11 - 16 16
Valley

Micro14 Major Valley (sharp) 7 - - 10 17 - 24 - 24
Micro15 Major Valley (round) 7 1 - 1 9 - 8 - 8
Micro5 Minor Valley (sharp) 1 - - 10 11 - 15 - 15

Micro10 Minor Valley (round) - - 1 10 11 - 13 - 13
Break of Slope

Micro4 Angular Convex - - 6 14 20 - 23 3 26
Micro6 Angular Concave - - - 12 12 3 15 - 18
Micro8 Convex and concave too close together - - 1 14 15 - 24 - 24

Smooth Change in Slope
Micro9 Convex 14 - - 6 20 - 21 1 22

Micro11 Concave - 1 1 3 5 - 4 3 7
Micro13 Convex and concave too close together - - 3 19 22 13 13 - 26

Total 38 5 16 131 190 17 224 7 248
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4. Discussion
4.1. Mapping Microtopography, Landforms, Land Cover, and Vegetation Density

Microtopographic zoning mapping can be said to be rarely discussed in the field of
geomorphology. In addition, Yang et al. used the Thiessen polygon approach to construct
karst landform zoning precisely based on the spatial proximity of peak and nadir points,
namely positive and negative landscapes [81]. In this study, microtopographic zoning was
also derived from the results of thiessen polygon-based buffering on the morphology of
the Cooke and Doornkamp system. Each mapped morphological boundary is used as a
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Thiessen polygon control point to build micro-topographic zoning. The results show that
the shape and size of the microtopographic units vary (Figure 5). The large and rounded
unit shapes indicate that the distance between morphological boundaries is farther apart
than the small and elongated unit shapes. It can also reflect the degree of geomorphic
processes to form different microtopography. In other words, different morphologies allow
different morpho processes to form different surface material characteristics [10].

Elemental landforms based on the Pennock system have been classified using high-
resolution DTM data. The radius scale for the plan and profile curvature, which is 40 m
each, is set based on more detailed spatial variability, but this is visual, so there may be
uncertainty in the classification. In addition, the Pennock method identified the slope
arrangement of the shoulder and footslope sections on both convergent and divergent
slope shapes. Unfortunately, the Pennock method seems less sensitive for identifying
the backslope. This problem is contrary to the study of Evans et al. that the Pennock
method failed to identify the arrangement of shoulder and footslope slopes on agricultural
land with low relief configurations [49]; it is also reported that the study area could not
map divergent footslope landforms but was dominated by divergent back slopes with
more complex relief configurations [82]. Thus, the differences in the problems in this
study with other studies may be caused by differences in spatial resolution, unique relief
configurations, and setting the radius parameter scale for which there is no definitive rule.

GEOBIA works well in class 1 hierarchical land cover classification with orthomosaic
imagery: forest, shrubs, herbaceous plants, open land, and built-up land. Overall, producer
accuracy and user accuracy for all classes reach above 90%. For the user, accuracy metric
value of built land is the lowest among the other classes. This may be due to several built-up
land objects having similarities in spectra, shape, and texture with forest areas, herbaceous
plants and open land. However, this problem is not significant because it basically meets
the land cover mapping requirements, which are above 85% [83].

There are several reasons why the accuracy of this land cover map is satisfactory. First,
the method offered by [60], namely the combination of GEOBIA and selection of spectral
features, shapes and textures, can classify land cover from orthomosaic imagery very well.
Furthermore, segmentation parameters such as scale, shape, and compactness are obtained
through trial and error, especially for scales set with a range of 50 to 500 in multiples of 50.
As explained in the method Section 2.3.4., the optimum scale parameter is found, namely
150. Third, the CFS method works well in selecting all features into 13 optimal features
for land cover classification in the study area. In addition, the RF classifier also performs
very well, which is even slightly superior to the study by De Luca et al. with orthomosaic
imagery equipped with near-infrared bands [61].

4.2. GWR Model Implementation with Different Independent Variable Data Transformation

Categorical data transformation for each class of independent variable has been carried
out for the needs of the GWR model. The Type I model represents numerical data based on
distance metrics microtopographic, landform and land cover variables. Then, the Type II
and Type III models represent a comprehensive index of landscape metrics for each class
of land cover and landform variables using PCA. These three types of models are crucial
for the GWR model to work well because of the conventional-based data transformation
problems, namely binary classes. However, there is a uniqueness in the Type III model,
which breaks the standardization of PCA analysis that PC1 retains most of the information
by maximizing the variance of the data from the comprehensive index of landscape metrics
compiled in the Type II model. In other words, the PC with the highest AM value has the
greatest correlation with landslides, although the eigenvalue is less than 1. Class variables
with low variation are not unimportant [84] when associated with landslide data. This case
is like the climate study by Jolliffe, in which the low variation component relates to the
response variable rather than the high variation component [85]. In addition, discarding
PCs with small eigenvalues can lead to bias [86]. Hadi and Ling also reported that PCs
selected based on the breakdown of principal components that depend only on the variation
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in variable X (i.e., the independent variable) might fail to account for regression fit because
they do not contribute anything to the response variable (or the dependent variable) [87].
It was proven in the results of this study that when the Type II and Type III models were
analyzed byboth univariate and multivariate GWR, the overall values of AICc and adj. R2

in Type III is higher than Type II (Table 6). In addition, when the Type III model on landform
and land cover is combined with the microtopography and vegetation density variables
that are modeled simultaneously, it shows a higher regression fit than the variables in the
Type I and Type II models. Meanwhile, the univariate model in Type I showed a higher
regression fit than Type II and Type III. This indicates that setting compression and selecting
landscape metric features on landform and land cover can increase the predictive power of
the GWR model for exploring local spatial relationships of landslides in the study area.

4.3. Modeling Local Spatial Relationships of Landslides

The GWR model has been analyzed to identify the local spatial relationship between
the landslide and the micro-topography, landform, land cover, and vegetation density in
the study area. The Type III model with the best regression fit among the others was chosen
as the independent variable input and the percentage of landslide area as the response
variable. The result is that most of the independent variables can explain the landslides in
the study area but not for the southwestern region. The statistical summary of parameter
estimation (Table 7) shows that almost all variables spatially have positive and negative
estimates which indicate a non-stationary relationship to landslides. The local coefficient
integration map is the result of a synthesis of all variables that have been selected based on
their significance and adjustment of feature information for each variable (namely, local
coefficients that intersect with their features). This map is more intuitive and less confusing
in examining the most significant variables, both the positive and negative relationship
direction to landslides in each unit (Figure 6).

Variables positively related to landslides include microtopography, convergent backs-
lope, divergent footslope and shrubs. In contrast, those negatively related include a small
portion of microtopography, herbaceous plants, and open land. Meanwhile, the variables
that showed the most positive and negative relationships were divergent footslopes and
herbaceous plants, respectively. Sato et al. reported that landslides in the mountains of
the northwestern Himalayas occurred relatively on convex slopes rather than concave
slopes [88]. The study by [89] reported that landslides in Changshou Valley, Baoji City in
Shaanxi Province often occur in surface relief with convex slope shapes. Pourghasemi et al.
also reported that the shape of the convex slope had a major effect on landslides in the
Jumunjin Area, South Korea [28]. Havenith et al., revealed that the reasons why landslides
occur on convex slopes include: (1) convex slopes are relatively less stable under similar
hydrogeological conditions (lower factor of safety) because a larger slope body (larger
driving force) acts on the same sliding surface (more the same resistance); and (2) they
allow for the presence of a accumulated material (colluvium), which reflects lower shear
strength [90].

This statement supports the results of this study, namely that convex slopes are closely
related to landslides in the study area. In addition, this convex slope is specifically located
at the foot of the slope with surface material that holds a higher water content than the
backslope and upper slope arrangement [48]. Then, when the water content in the surface
material increases, the pore water pressure increases, which can result in a low Factor of
Safety (increased shear stress and decreased shear strength) resulting in landslides [91].
In addition, the dynamics of surface material moisture content can be affected by rainfall
intensity. As additional information, the divergent footslope in the study area is under
an average slope of 28.8◦ ± 15.2◦, thereby increasing the potential for landslides to occur.
Specifically, herbaceous plant land cover is plantation land that is negatively related to
landslides in the study area. This finding can be explained as land that was not initially
maintained, such as shrubs and grasslands; open land converted to cultivation implies
better water and land management practices that can allow for reduced slope instability [27].
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However, several other significant variables also need not be ignored; although, only a
few units.

Based on the findings of the spatial relationship of landslides with micro-topographical
and vegetation variables, it can be used as a basis for the conservation of research areas
to reduce the potential for landslides. Based on the results of the GWR, it shows that
landslides occur on convergent backslopes with surface cover in the form of shrubs. In
addition, landslides also have the potential to occur on convex slopes that are on the toe
slopes. These findings can become a model for micro-topography and vegetation-based
conservation arrangements, so that to reduce landslides the community in the study area
is not advised to plant species in the form of shrubs on steep slopes, or to carry out
intensive processing on footslopes with convex slope shapes. Herbaceous plants show a
negative relationship to landslides, so as part of the landslide conservation effort planting
of herbaceous plant species such as Rumput gajah (Pennisettrum Purpureum), Pakis (Diplazium
esculentum), Mindih (Melia azedarach L), and Waru (Hibiscus tiliaceus) can be applied. Several
herbaceous plants in the study area are conservative if planted using multi strata techniques,
thereby reducing the potential for movement of soil material.

4.4. Research Implications and Limitations

This study reveals local relationships between landslides and microtopography, land-
forms, land cover, and vegetation density. However, the novelty offered is to build a natural
unit of analysis compared to a grid basis, which is based on micro-topography derived from
morphological thiessen polygons. Pennock system-based landform element independent
variables are also taken into account. To our knowledge, they are rarely analyzed for
detailed scale landslide studies because they are indirectly related to geomorphic processes.
Land cover classification uses a reliable method that produces the best accuracy—using the
method from the study of Ma et al. applied to drone-based orthomosaic imagery, which
can be replicated for other studies. Then, three types of transformation of categorical
data on independent variables become new insights with an analytical approach for the
study of regression-based spatial modeling that can be reapplied, especially in research on
geo-environmental disasters. In addition, the last and most important thing is to offer the
output of the GWR model with a local coefficient integration map for the most significant
classification of variables related to landslides (positive or negative). This map information
can be used as a reference for landslide disaster management in the study area, namely
convergent backslope, divergent footslope, some microtopographical classes, and shrubs
that need to be watched out for in their land use and require special treatment to reduce
slope instability.

However, there are several limitations in this study, including: (1) the mapped study
area contains canopied vegetation, which is a weakness in building DTMs, so that it can
cause land surface elevation estimation errors; (2) microtopographic zoning does not have
field validation, so objectivity is still questionable because this study relies on interpretation
remote sensing; and (3) the results of the GWR model with the transformation of landscape
metric-based category data are not discussed further as to how the spatial configuration
of landforms and land cover can specifically explain landslides in the study area. For
further research, additional issues such as climate and anthropogenic factors can be added
to the GWR model to obtain more complete results and to explain landslides in the entire
study area.

5. Conclusions

Exploration of local spatial relationships between landslide occurrences in tropical
hills, especially in Taji Village, Jabung District, East Java Province, can explain the factors
that most influence landslides. A series of approaches and methods were introduced and
implemented to construct independent variables to be analyzed by GWR and produce
reliable model outputs. Microtopographical zoning is used as a unit of analysis to syn-
thesize all information on the independent variables—which incidentally have different
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spatial forms—as well as the dependent variable, namely the percentage of avalanche area.
Categorical data transformation brought independent variables to be modeled, even better
than global regression. However, the best results for the independent variables modeled
simultaneously fell to the change in landscape metric data on landform and land cover
features that had been compressed through PCA analysis, and selected component features
associated with landslide occurrence data. GWR can reveal a non-stationary relationship
between landslide events and independent variables in the study area. Information on the
local coefficients of each independent variable is integrated into a single entity based on
the significance of the t values (i.e., ≤−1.96 and ≥1.96) and the selection of features of each
variable that intersect with the microtopographic unit. The majority of the variables that
show the most positive relationship to the occurrence of landslides are divergent footslopes
where colluvial (colluvial) material accumulates from the upper slopes (i.e., the shoulders
and backslope), which have a low Factor of Safety so that the slopes are less stable. In
addition, the slopes of the footslope accommodate more water content, and when heavy
rain occurs it can increase the pore water pressure so that the Factor of Safety is lower and
there is a potential for landslides to happen, especially since the angle of the slopes in the
study area is sufficient to support this. On the other hand, it was herbaceous plants or
plantation land in the study area that surprisingly reduced the occurrence of landslides,
due to good water and land management being able to maintain slope stability longer.
The methodological approach developed and introduced in this study is reproducible and
further analyzed in other tropical hills at a detailed and regional scale prone to landslides.
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