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Abstract: Crude glycerol is the main byproduct of biodiesel manufacturing from oleaginous crops
and other biomass-derived oils. Approximately 10% crude glycerol is produced with every batch
of biodiesel. Worldwide, there is a glut of glycerol and the price of it has decreased considerably.
There are real opportunities for valorizing crude glycerol into higher value-added chemicals which
can improve the economic viability of biodiesel production as an alternative fuel. Exploring new
potential applications of glycerol in various sectors is needed such as in pharmaceuticals, food and
beverages, cosmetics, and as a transportation fuel. However, crude glycerol produced directly from
biodiesel often contains impurities that hinder its direct industrial usage and thus, a refining process is
needed which is typically expensive. Hence, this review reports on current upgrading crude glycerol
technologies—thermo-, bio-, physico-, and electrochemical approaches—that valorize it into higher
value-added chemicals. Through comparison between those viable upgrading techniques, future
research directions, challenges, and advantages/disadvantage of the technologies are described.
Electrochemical technology, which is still underdeveloped in this field, is highlighted, due to its
simplicity, low maintenance cost, and it working in ambient condition, as it shows promising potential
to be applied as a major glycerol upgrading technique.

Keywords: crude glycerol; biodiesel; thermo-, electro-, and biochemical glycerol upgrading

1. Introduction

Renewable energy is a rapidly developing industry in order to reduce the dependence
on fossil fuels, oil, and natural gas as main resources for energy generation. In addition to
energy savings, the shift to a civilization powered by renewable energy sources including
waste, solar, wind, biomass, tidal, wave, and geothermal energy becomes an even more
significant option in global use of energy. Based on the International Energy Agency
(IEA) [1] report at the COP26 Climate Change Conference, it is anticipated that between
2021 and 2026, there will be a 50% increase in renewable capacity compared to the period
between 2015 and 2020 which is due to aggressive support from government policies
towards clean energy goals and the replacement of non-renewable fossil fuels. Renewable
energy sources are anticipated to increase at the quickest rate of all energy sources according
to the World Energy Outlook [2]. Furthermore, this type of energy is also expected to
dominate two-thirds of the total global primary energy supply in 2050 based on the REmap
Case, held in Abu Dhabi [3]. Municipal solid waste (MSW), including biomass and plastic
waste, is the only energy source in this spectrum that is based on carbon. Figure 1 illustrates
a breakdown of renewables in the energy sector, where the key role of bioenergy (30%) [3]
comprised of biomass industry, biomass buildings, liquid biofuels and biogas as well as
biomass power, which is mainly sourced from biomass and waste. Hence, there is much
potential for further analysis for green energy development.
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Figure 1. Percentage of total final energy consumption by renewables, according to the IRENA’s 
Remap CASE 2050 (%). Note: Excludes non-energy use. DH refers to district heat. CSP refers to 
concentrated solar power. PV refers to photovoltaic. Source: [3]. 

Crude glycerol, which is widely produced as a byproduct of biodiesel production, 
has become of particular interest as a potential feedstock to convert into value-added 
biofuels, e.g., bio ethanol [4,5], green methanol [6], bio propane [7], and hydrogen [8,9]. 
Several publications report that glycerol yield is between 10 and 20% of the overall 
amount of biodiesel synthesized. In other words, for every 100 kg of biodiesel produced, 
roughly 10 kg of glycerol is also generated [10]. According to the most recent figures 
available, European Union (EU) countries recorded annual biodiesel production increased 
from 3.7 million tons of oil in 2006 to approximately 11 million tons of oil in 2015 and 
forecasted to increase slightly by 2050 [11]. This level of production will yield more than 
1.2 million tons of crude glycerol as the main co-product. Given that crude glycerol 
exhibits poor characteristics including low heating value (16–22 MJ/kg), high oxygen 
content (52 wt.%), and poor combustion performance, the expanding biodiesel production 
in the future will undoubtedly result in an increasing supply and disposal problem. When 
disposed without proper treatment, there will be social and environmental problems, as 
along with glycerol, biodiesel washing wastewaters, methanol, and solid byproducts are 
also generated [12]. According to Nitayavardhana and Khanal [13], large scale biodiesel 
producers mainly valorized the solid bio-residues as compost or animal food whereas the 
crude glycerol was refined into pure form and utilized for commercial uses. However, the 
refinement process of crude glycerol is expensive and economically unviable [13]; as a 
result, many studies have been reported on crude glycerol upgrading into various 
valuable byproducts. Thus, researchers and industrialists believe that this approach will 
improve the economics of biodiesel by reducing its manufacturing costs. 

Thus, there is a growing number of research papers to examine alternative 
technologies to improve crude glycerol into higher quality fuels with lower capital costs 
that are environmentally benign. Interest in this subject has been growing rapidly by the 
frequency of publications from 2010 to 2022 as shown in Figure 2. The number of 
publications of upgrading crude glycerol via biological approaches is the highest, more 
than 1152 studies. From previous studies, it is mentioned that this kind of technology is 
favored because of cheap start-up and running costs as well as mild operating conditions. 

Figure 1. Percentage of total final energy consumption by renewables, according to the IRENA’s
Remap CASE 2050 (%). Note: Excludes non-energy use. DH refers to district heat. CSP refers to
concentrated solar power. PV refers to photovoltaic. Source: [3].

Crude glycerol, which is widely produced as a byproduct of biodiesel production, has
become of particular interest as a potential feedstock to convert into value-added biofuels,
e.g., bio ethanol [4,5], green methanol [6], bio propane [7], and hydrogen [8,9]. Several
publications report that glycerol yield is between 10 and 20% of the overall amount of
biodiesel synthesized. In other words, for every 100 kg of biodiesel produced, roughly
10 kg of glycerol is also generated [10]. According to the most recent figures available,
European Union (EU) countries recorded annual biodiesel production increased from
3.7 million tons of oil in 2006 to approximately 11 million tons of oil in 2015 and forecasted
to increase slightly by 2050 [11]. This level of production will yield more than 1.2 million
tons of crude glycerol as the main co-product. Given that crude glycerol exhibits poor
characteristics including low heating value (16–22 MJ/kg), high oxygen content (52 wt.%),
and poor combustion performance, the expanding biodiesel production in the future will
undoubtedly result in an increasing supply and disposal problem. When disposed without
proper treatment, there will be social and environmental problems, as along with glycerol,
biodiesel washing wastewaters, methanol, and solid byproducts are also generated [12].
According to Nitayavardhana and Khanal [13], large scale biodiesel producers mainly
valorized the solid bio-residues as compost or animal food whereas the crude glycerol was
refined into pure form and utilized for commercial uses. However, the refinement process
of crude glycerol is expensive and economically unviable [13]; as a result, many studies
have been reported on crude glycerol upgrading into various valuable byproducts. Thus,
researchers and industrialists believe that this approach will improve the economics of
biodiesel by reducing its manufacturing costs.

Thus, there is a growing number of research papers to examine alternative technolo-
gies to improve crude glycerol into higher quality fuels with lower capital costs that are
environmentally benign. Interest in this subject has been growing rapidly by the frequency
of publications from 2010 to 2022 as shown in Figure 2. The number of publications of
upgrading crude glycerol via biological approaches is the highest, more than 1152 studies.
From previous studies, it is mentioned that this kind of technology is favored because
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of cheap start-up and running costs as well as mild operating conditions. However, the
longer reaction time, high solvent usage, and complexity in handling microorganisms
which act as biocatalysts are the main drawbacks. Moreover, the number of studies using
physicochemical methods was reported as more than 479 published articles. Works relating
to esterification, transesterification, and etherification of crude glycerol were prominent
techniques to emulsify blended fuels from crude glycerol which can be directly used as
transportation fuels. However, several hindrances do affect their development including
the challenges to scale up the methodologies as batch processes to an industrial scale.
Additionally, due to the high oxygen concentration of feedstock and the time-consuming
process [14,15], esterification and transesterification are still insufficient as a single process
for upgrading crude glycerol.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 31 
 

However, the longer reaction time, high solvent usage, and complexity in handling 
microorganisms which act as biocatalysts are the main drawbacks. Moreover, the number 
of studies using physicochemical methods was reported as more than 479 published 
articles. Works relating to esterification, transesterification, and etherification of crude 
glycerol were prominent techniques to emulsify blended fuels from crude glycerol which 
can be directly used as transportation fuels. However, several hindrances do affect their 
development including the challenges to scale up the methodologies as batch processes to 
an industrial scale. Additionally, due to the high oxygen concentration of feedstock and 
the time-consuming process [14,15], esterification and transesterification are still 
insufficient as a single process for upgrading crude glycerol. 

 
Figure 2. Number of publications about crude glycerol upgrading from 2010 to 2022. The Web of 
Science (WoS) search engine was used for the data collection by using specific key words. For 
thermochemical approaches, “(gasification OR pyrolysis OR supercritical water OR catalytic 
pyrolysis OR microwave assisted pyrolysis OR steam reforming OR aqueous phase reforming) 
AND crude glycerol” was applied. For biological approaches, “(fermentation OR microbial 
conversion) AND crude glycerol” was used. For physicochemical methods, “(emulsification OR 
esterification OR transesterification OR etherification) AND crude glycerol” was applied, and for 
electrochemical techniques, “(electrochemical OR electrocatalyst OR electrooxidation) AND crude 
glycerol” was utilized for the search. 

Compared to other technologies, thermochemical technologies have been created 
and used conventionally. Almost 299 published studies have been recorded between 2010 
and 2022 that investigate the efficiency of pyrolysis, gasification, supercritical water 
reforming, and aqueous phase reforming processes in valorizing waste/crude glycerol 
into various chemicals. Thermochemical approaches have been widely used in upgrading 
crude glycerol in industrial scale. However, its relatively high process temperature and 
pressure, increased manufacturing costs, and complex maintenance costs for long-term 
uses are the current knowledge gaps within this upgrading process. Plus, to some extent, 
there are needs for additional hydrogen external supply, microwave radiation heater, and 
use of expensive catalysts depending on intended end-products, which make it less 
favorable in terms of technoeconomic availability. On the other hand, electrochemical 
techniques are currently being explored as the number of works are increasing, as 
observed in Figure 2. There are only around 46 literature studies that have been reported 

Figure 2. Number of publications about crude glycerol upgrading from 2010 to 2022. The Web
of Science (WoS) search engine was used for the data collection by using specific key words. For
thermochemical approaches, “(gasification OR pyrolysis OR supercritical water OR catalytic pyrolysis
OR microwave assisted pyrolysis OR steam reforming OR aqueous phase reforming) AND crude
glycerol” was applied. For biological approaches, “(fermentation OR microbial conversion) AND
crude glycerol” was used. For physicochemical methods, “(emulsification OR esterification OR
transesterification OR etherification) AND crude glycerol” was applied, and for electrochemical
techniques, “(electrochemical OR electrocatalyst OR electrooxidation) AND crude glycerol” was
utilized for the search.

Compared to other technologies, thermochemical technologies have been created
and used conventionally. Almost 299 published studies have been recorded between
2010 and 2022 that investigate the efficiency of pyrolysis, gasification, supercritical water
reforming, and aqueous phase reforming processes in valorizing waste/crude glycerol into
various chemicals. Thermochemical approaches have been widely used in upgrading crude
glycerol in industrial scale. However, its relatively high process temperature and pressure,
increased manufacturing costs, and complex maintenance costs for long-term uses are the
current knowledge gaps within this upgrading process. Plus, to some extent, there are
needs for additional hydrogen external supply, microwave radiation heater, and use of
expensive catalysts depending on intended end-products, which make it less favorable in
terms of technoeconomic availability. On the other hand, electrochemical techniques are
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currently being explored as the number of works are increasing, as observed in Figure 2.
There are only around 46 literature studies that have been reported which is due to this
electrochemical crude glycerol upgrading technology still being underdeveloped and facing
various issues. Thus, there is significant need to further study and compare the applicability
of each mechanism to be applied in the industrial scale of crude glycerol upgrading.

In this review, glycerol is first explained in terms of its properties and commercialized
production methodologies. In the second part, the recent works on the various upgrading
technologies of crude glycerol are discussed to present an overall view of the present
state of available technologies—thermo-, bio-, physico-, and thermochemical approaches,
their advantages and disadvantages, and pathways for improvements. Next, with the
overview, the list of end-products produced via different approaches was also recorded
and its further applications discussed. This review also aims to investigate and discuss
the highly promising methodology of the electrochemical approach which is expected to
successfully address the barriers to crude glycerol upgrading, according to the available
research studies in the literature, via its low processing cost and ambient condition with
high performance.

2. Glycerol and Its Properties

Referred to both as propane-1, 2, 3-triol and glycerin, glycerol is a basic trihydroxy
sugar alcohol, shown in Figure 3, which was identified in 1779 by Swedish scientist Carl
Wilhelm Scheele. Three hydrophilic hydroxyl groups bonded to carbon make up polyhydric
alcohol glycerol, a feature that makes it stable, with diverse reactions and functions [16].
Glycerol is currently employed in the manufacturing of a variety of food and drink products,
as a solvent for food flavors and colors, medical products, personal hygiene products, fuel
additives, and anti-freeze chemicals.
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Table 1 displays physicochemical properties of glycerol as collected from numerous
publications which shows glycerol has a high boiling point, is water-soluble, compatible
with the majority of organic and inorganic chemicals, translucent, practically colorless,
odorless, viscous, non-toxic, and hygroscopic. Additionally, glycerol has received a lot of
interest as a “green solvent” in synthetic organic chemistry due to its remarkable physical
and chemical properties.

Table 1. Physicochemical properties of glycerol [16–18].

Properties Values

Form and color Liquid and colorless
Formula weight (amu) 92.09

Density at 20 ◦C (g/cm3) 1.26
Melting point (◦C) 18
Boiling point (◦C) 290

Thermal conductivity (W/m/K) 0.29
Ignition temperature/flash point (◦C) 177

Calorific value (MJ/kg) 18

Glycerol can be found in three different forms: commercially produced glycerol, pu-
rified/refined glycerol, and crude/waste glycerol. The purity of refined and synthesized
glycerol is higher than that of crude glycerol. While synthetic glycerol is produced in a sepa-
rate way, often from propene, crude and pure glycerol are byproducts of the manufacturing
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of biodiesel. According to Table 2, due to its lower degree of purity (60–80%), compared to
refined and synthetic glycerol, crude glycerol cannot be utilized in delicate products such
as food, medicine, and cosmetics [19]. Similarly, there may be significant amounts of ash,
soap, and moisture in crude glycerol. Crude glycerol has a slightly higher acidity than the
other types of glycerol. Its darker hue may be caused by the aforementioned quality as well
as a few other small contaminants.

Table 2. Comparison of commercial, refined, and crude glycerol [19].

Composition Commercial Glycerol Refined Glycerol Crude Glycerol

Glycerol content (%) 99.2–99.9 99.1–99.8 60–80
Moisture content (%) 0.14–0.29 0.1–0.8 1.5–6.5

Ash (%) <0.002 0.054 1.5–2.5
Soap (%) 0.04–0.07 0.1–0.16 3.0–5.0

pH value (acidity level) 0.04–0.07 0.10–0.16 0.7–1.3
Color (APHA) 1.8–10.3 34–45 Dark

3. Various Glycerol Resources

As biodiesel production increases in the future, the glycerol surplus that emerges
is being examined for potential uses. Today, however, a number of glycerol production
pathways have been identified, including the saponification process (traditional soap
manufacturing), obtained as a significant byproduct in the biodiesel process (the production
of fatty acid ester), waste oil products, and biodiesel technology wastewater. Each of these
pathways is produced through a different chemical reaction, as shown in Figure 4. In
addition, glycerol can also be produced through glucose hydrogenolysis and biological
fermentation, both of which are more practical and involve lower production costs [20]. The
earlier synthetic glycerol manufacturing from propylene became economically unattractive
as a result of these developments in glycerol production; in addition, rising crude oil prices
also contributed to its demise [21].
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3.1. Saponification of Soap Manufacturing

Crude glycerol has reportedly been found to contain glycerol, fatty acids, and salts
during the reaction of saponification of triglycerides, including fats and oils. Within this
reaction, the triglycerides are hydrolyzed with an alkali (sodium hydroxide (NaOH)) and
produced two main products: salts of fatty acids (commonly known as soap) and glyc-
erol [22]. The alkali breaks the ester bonds during the saponification reaction, generating
soap of alkali metal (RCOONa) and glycerol. According to Figure 4a, one molecule of
triglyceride interacts with three molecules of alkali to produce one molecule of glycerol
while creating three molecules of soap. Caustic alkali spontaneously combines with free
fatty acids in the presence of adequate mixing and agitation, instantly forming soap. A
small amount of NaCl, precipitated impurities, free alkali, soluble soap, and 35% glycerol
make up filtered soap.
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Industrial soap-making method is based on this saponification mechanism, which also
serves as the industry’s cornerstone. Glycerol typically accounts for around 10% of the
value of the soap produced during the manufacturing process of fats and oils [23]. Thus,
to optimize the economics of large-scale soap manufacture, better reaction pathways and
conditions are needed, along with effective glycerol purification.

3.2. Crude Glycerol from Transesterification of Biodiesel Production

Due to its plentiful supply and inexpensive market value of about $312 (US) or ¥44,000
(JP) per ton, crude glycerol makes an intriguing substrate for bio-production. During the
transesterification reaction within the biodiesel production, with the help of significant
catalysts, one mole of triglyceride reacts with alcohol such as methanol to produce three
moles of biodiesel and one mole of glycerol, as a byproduct. Both reactants are easily
distinguished at the end of the transesterification reaction due to their different in density
and polarity. The reaction stream separates into these two phases which are rich in glycerol
(bottom layer) and biodiesel (top layer) [24].

3.3. Hydrolysis Reactions in Oleochemical Plants

Hydrolysis of fats and oils can produce the appropriate fatty acid and glycerol. Within
this methodology, a fatty acid is liberated from the glycerol backbone of a triglyceride
during the reversible process of hydrolysis, plus, glycerol compound also generated [25].
According to Gunstone [26], the hydrolysis reaction results in the production of a light
phase made up of fatty acids and a heavy phase made up of glycerol and impurities. The
glycerol byproduct needs to be continuously eliminated and collected for the reaction to
end. The collected crude glycerol is mostly composed of glycerol, water, free fatty acids,
and other impurities such undissolved triglycerides, organic and inorganic salts, and other
organic materials. Therefore, in order to manufacture high grade glycerol, it is important to
employ purification methods to eliminate impurities from the solution, following a similar
scenario to crude glycerol yielded from saponification and transesterification process.

3.4. Biodiesel Technology Wastewater

According to Guo et al. [27], it is possible to produce glycerol from wastewater from
enzymatic biodiesel technology. In this study, wastewater that included 5% glycerol
underwent alkali treatment, vacuum distillation, and colloidal removal in order to collect
glycerol that was up to 90.43% pure. Then, glycerol triacetate was produced using high
purity glycerin and acetic acid. Glycerol and acetic acid combine to form glycerol triacetate
assisted by catalyst phosphotungstic acid [27]. Thus, a yield of more than 90% glycerol
triacetate is produced in 6 h. With this study, the issue of waste disposal during the
production of biodiesel can be resolved, and high-value market items were also produced.
Hence, this kind of effort can be a possible way to decrease the production cost of biodiesel
and increase its techno economical value.

3.5. Synthetic Glycerol

Glycerol synthetically was manufactured from propylene in a number of ways, albeit
typically not economical. The most crucial step is the epichlorohydrin procedure, which
requires chlorinating propylene to produce allyl chloride, which is then oxidized with
hypochlorite to produce dichlorohydrins, which are then reacted with a strong base to pro-
duce epichlorohydrin [17]. Glycerol is then produced by hydrolyzing this epichlorohydrin.
The production of glycerol from acrolein and propylene oxide is one of the chlorine-free
techniques using propylene [28]. Figure 5 shows the chemical reaction that happens within
synthetic glycerol production.
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Figure 5. Reaction pathways for production of synthetic glycerol. Reproduced with permission of
Ref. [17].

The market for synthetic glycerol is faltering as a result of the massive production
of glycerol derived from fats and oils via aforementioned pathways [29,30]. Synthetic
processes are therefore not profitable. Recently, glycerol derived from refined crude glycerol
has been overproduced; hence efforts are being made to transform it into various high
value-added chemicals and other chemical precursors.

4. Glycerol Upgrading

Since glycerol is available as a comparatively low-cost, high-volume biomass-derived
waste, the valorization of crude glycerol which is underutilized is necessary for the eco-
nomic viability of biodiesel manufacturing and waste fats/oil mass production. Due to
its non-toxic, edible, biodegradable, and multifunctional qualities, glycerol is one of the
top building block chemicals for organic synthesis from biomass [20]. The highly desirable
molecule glycerol is utilized to make a wide range of beneficial chemical intermediates.
Traditionally, one of the primary technologies for valorizing crude glycerol was through di-
rect combustion approach. Such practice is inconvenient due to the production of acrolein,
a hazardous combustion product of crude glycerol with low boiling point (53 ◦C) and
high autoignition temperature (234 ◦C), and excess salt content [18]. When compared to
other feedstocks, the volatile organic compound (VOC) emissions were notably greater,
albeit with swirl refractory burners. Owing to its toxic potential, the acrolein produced
throughout this technique has caused a lot of environmental concern [31]. Additionally,
this technique of valorization falls short of utilizing full prospects of crude glycerol, which
may be exploited through different high-end technologies.

In this regard, extensive research has been conducted over the past ten years on the
chemical conversion of glycerol into specialized compounds with high added value [21].
Additionally, because glycerol has a high degree of functionalization, it can be used as a
precursor for the production of a variety of common chemicals, including syngas, alkenes,
alcohols, diols, ethers, acids, esters, acrylates, and even polyglycerols by the use of a variety
of processes, involving thermochemical approaches of pyrolysis, biological techniques—
fermentation and microbial conversion, physicochemical methods of etherification, trans-
and esterification, electro oxidation, hydrogenolysis, dehydration, carboxylation, halogena-
tion, polymerization, and glycerol acetalization [32], as depicted in Figure 6. Thus, in this
section, existing glycerol upgrading technologies will be summarized and compared in
terms of its state-of-the-art, intended end-products, conversion efficiency, and their process
condition. Table 3 displays the summary of recent research and development for crude
glycerol upgrading which will be further discussed.
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Table 3. Summary of current approach for crude glycerol upgrading.

Upgrading
Technique

Reaction
Mechanism End-Products Process Condition

Process Efficiency Ref.

Advantages Disadvantages

Biochemical

Microbial
fermentation

Aerobic and
anaerobically
digestion

Bioethanol,
diols—2,3-
BDO, 1,3-PDO,
DHA, LA, SA,
PA, and H2

Enzymatic
biocatalysts—
yeast/fungi/modified
strains/bacteria/
microalgae, mild
temperature
(70–160 ◦C) and
pressure, pH 5.5–7,
stirring speed
(200–400 rpm), process
time (0.5–5 days)

High product
selectivity
(<70%),
promotes
biocatalyst,
cheaper
manufacturing
cost

Complex mi-
croorganisms’
preparation,
longer reaction
times
(1–5 days),
lower kinetic
reaction, risks
of working
with pathogenic
microbes

[33–42]
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Table 3. Cont.

Upgrading
Technique

Reaction
Mechanism End-Products Process Condition

Process Efficiency Ref.

Advantages Disadvantages

Bio-
electrochemical
fermentation

Anaerobic
reaction

1,3-PDO,
3-HPA, H2

Fed-batch mode in a
H-cell reactor,
biocathodes—
bacteria/mixed
microbial inoculum,
mild temperature and
pressure, time
(1–10 days)

Higher
production rate
compared to
non-EC
fermentation

Using pure
cultures, higher
costs. Longer
reaction times

[43–45]

Thermochemical

Pyrolysis
gasification

Dehydration Acetaldehyde,
acrolein, HA,
and H2

Fixed bed reactor,
temperature
(650–850 ◦C);
atmospheric pressure;
catalyst (acid catalysts—
metal-assisted zeolites,
MMO); residence time
(>7 s)

High
temperature
favors
syngas/H2
(80%)
Low
temperature
yields liquid
products (70%)
Shorter time

Produces CO [46–48]

Fast pyrolysis Hydrogenation,
dehydration,
decarboxyla-
tion,
deoxygenation

Bio-BTX, diols,
propylene
glycol, syngas

Temperature
(400–800 ◦C); absence
of oxygen; residence
time (0.5–3 s), external
H2 supply (for
hydrotreating),
catalysts (modified
zeolites, MMO, metal
nitrides/phosphides,
bifunctional catalysts)

High yield of
HC compound

Coking issues,
irreversible
deactivation,
high cost for
hydrotreating
process

[49,50]

Hydrothermal/
supercritical
fluids

Hydrocracking,
dehydration

C2–4 HCs, H2,
CO2, and other
syngas

Batch reactor,
temperature (>300 ◦C),
time (1–4 h), pressure
(10–30 MPa), solvent
(deionized water, CO2)

No char formed,
high H2 yields
at 380 ◦C (90%
of product gas)

Low selectivity
(39%) and yield
(40%), high cost
of organic
solvents

[9,51,52]

Carbonylation GC Temperature (>150 ◦C),
pressure (50 atm),
solvent (methanol)

100% selectivity,
high GC (90%),

[53,54]

Dehydrogenation,
keto-enol tau-
tomerization,
benzylic acid
rearrangement

Lactic acid,
propylene
glycol

Temperature (>290 ◦C),
pressure (50 atm),
solvent (water), time
(3 h), catalyst (CaO)

Other
alternative for
lactic acid
production,
high glycerol
conversion
(98%)

Low lactic acid
yields

[55,56]

SR Dehydrogenation,
dehydration

H2 and other
syngas

Fixed-bed reactor,
catalyst (Ni and
Pt-supported catalysts,
Co, Cu, and Fe),
temperature
(350–800 ◦C)

Ni catalysts
exhibit good
catalytic
behavior, high
conversion rate
(65–95%), high
selectivity
(50–82%)

Some setups
take longer
reaction time
(8–20 h),
requires proper
catalysts

[57–60]
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Table 3. Cont.

Upgrading
Technique

Reaction
Mechanism End-Products Process Condition

Process Efficiency Ref.

Advantages Disadvantages

APR Dehydrogenation,
hydrogenolysis

H2, PDO,
ethylene glycol

Ambient processing
parameters
(150–265 ◦C) at
pressures (15–70 bar),
catalysts (Pt/Ni-based
γ-Al2O3), time (1–56 h)

Low energy
consumption.
High glycerol
conversion
(70–80%), H2
yield (~20%)

Dramatical
deactivation at
high
temperature.
Longer reaction
time for high
conversion
(>25 h)

[61–64]

Microwave-
assisted
pyrolysis

Gasification Syngas
(H2, CO2)

Temperature
(300–900 ◦C),
carbonaceous catalysts
(activated carbon), gas
flow rates of
100–2000 mL/min

Higher
production of
syngas at low
temperature

High-energy
consumption

[65–67]

Physicochemical

Emulsification Microemulsion GDM,
emulsion fuel

Surfactants (RL, Span
80, Tween 80),
cosurfactants
(alkanols), temperature
(45–65 ◦C), time (>12 h)

Direct use of
fuel, improved
pour, and cloud
point

Longer reaction
time and
suitable with
low
concentration
waste

[68–70]

Trans-
esterification

Carbonylation GC Alkyl carbonates
(DMC, DEC), catalysts
(Ca-based catalysts,
hydrotalcites, biochar),
temperature
(90–120 ◦C), time (1 h),
low pressure
(30–50 mbar)

High GC yield
(90%), water
removal,
increasing
heating value
and stability

Low
end-product
yields

[14,71–73]

Catalytic
etherification

Etherification,
glycerol
condensation

tert-butyl
ethers, alkyl
glycerol ethers,
polyglycerols

Tert-butyl alcohol/
isobutylene, batch
mode, temperature
(90–260 ◦C), catalysts
(acid/base catalysts,
zeolites, silica), time
(2–24 h), pressure
(0.1 MPa)

High GC (96%)
at longer
reaction time
(24 h)

Complex
system, low
conversion
(<30%)

[74–76]

Electrochemical

Electrolysis Electro
oxidation,
hydrogenation,
and hydro
deoxygenation

DHA, CO2,
glyceric acid,
lactic acid,
acetone,
1,2-PDO,
isopropanol

Ambient temperature
and pressure;
electrocatalyst (CoOx,
Au, Pt, AuPt NPs,
Pt/C-Bi/Sb);
electrolyte (alkaline,
acidic medium),
Ambient T, and t = 4 h

High selectivity
(90–50%) and
production rate,
low processing
cost

Low oxidation
of secondary
alcohol group,
long electrolysis
time (>5 h)

[77–83]

DHA—dihydroxyacetone; HA—hydroxyacetone; CoOx—cobalt oxide; 1,2-PDO—1,2 -propanediol; 1,3-PDO—1,3-
propanediol; APR—aqueous phase reforming, SR—steam reforming; GC—glycerol carbonate; DMC—dimethyl
carbonate; DEC—diethyl carbonate; 2,3-BDO—2,3-butanediol; HDO—hydrodeoxygenation; HC—hydrocarbon;
BTX—benzene, toluene and xylenes; RL—rhamnolipid; GDM—glycerol-in-diesel microemulsion; Span 80—
sorbitan monooleate; Tween 80—sorbitan monooleate; MMO—mixed metal oxides; LA—lactic acid; SA—succinic
acid; HPA—hydroxypropionic acid.



Sustainability 2023, 15, 2979 11 of 30

4.1. Biochemical Approaches
4.1.1. Microbial Fermentation—Anaerobic and Aerobic Digestion

Crude glycerol can also be converted biologically by fermenting with various mi-
crobial biocatalysts including yeast, fungi, bacteria, mixed culture from wastewater, and
microalgae under aerobic or anaerobic conditions to produce valuable chemicals. Recent
studies have concentrated on using crude glycerol as a carbon source in microbial fer-
mentation to produce green compounds and other platform chemicals [40,69,84]. Thus,
such bioconversions via biochemical approaches with the aid of microbes are a promising
resource and subsequently enhances the techno economical value of the biodiesel industry.
Some advantages of biological conversion via aerobic or anaerobic fermentation are due
to their superior yield, selectivity, and product recovery [85]. However, due to factors
including pathogenicity, stringent anaerobic conditions, contaminants in the substrate,
and lower kinetic reaction which have resulted in longer reaction times may impair their
growth and conversion rates. Plus, the capacity for these organisms to be manufactured at
an industry scale may also hinder their further application. In this subsection, different
microbial species used in upgrading crude glycerol into various high value-added products
have been summarized as displayed in Table 4.

1. Bacteria

Clostridium, Klebsiella, Komagataella, Lactobacillus, Lipomyces, Escherichia, Candida, and
Raoultella are a few often used glycerol-consuming species of bacteria used to manufacture
valuable products either in aerobic, anaerobic, or microaerobic condition [85]. The oxidative
and reductive metabolic pathways, which also result in the formation of organic acids and
alcohols, are used to assimilate glycerol [86]. Clostridium butyricum [86–89] and pasteuri-
anam [90–92], Klebsiella oxytoca [93,94] and pneumonia [38,95–98], Citrobacter freundii [99,100]
and werkmanii [101], Lactobacillus diolivorans [102], Enterobactor sp. [39] as well as engineered
Escherichia coli [103–105] have been widely utilized in glycerol conversion into 1,2- and
1,3-PDO. From the aforementioned previous studies of various bacteria, it can be summa-
rized that high PDO yields have been recorded, approximately 0.62–1.09 mol/mol glycerol,
with inconsistent process productivity of 0.92–10.3 g/L/h [87–90,106]. Tang et al. [105]
have fabricated an engineered E. coli with additional genes for the production of 1,3-PDO,
B12-independent glycerol dehydratase (DhaB1), and its activating factor (DhaB2) from C. bu-
tyricum. The final PDO yield, productivity, and conversion rate recorded were 1.09 mol/mol,
2.61 g/L/h and 90.2% (g/g), respectively. Johnson and Rehmann [91] investigated the
effect of decreasing pH during fermentation of crude glycerol with C. pasteurianum which
led to the decreased in cell growth rate, CO2 production, and slower fermentations, thus
resulting in higher butanol and PDO yields in a continuous process.

Table 4. Recent studies on microbial fermentation of crude glycerol into valuable products based on
the type of microbes utilized.

Microbes Strain
Outcomes

Ref.
End-Products Yield (mol/mol Glycerol)

Bacteria

Clostridium butyricum VPI 1718 1,3-PDO 0.55 [87]

C. butyricum VPI 3266 1,3-PDO 0.65 [88]

C. butyricum DSM 10702 1,3-PDO 0.51 [86]

C. butyricum AKR102a 1,3-PDO 0.52 [89]

C. pasteurianum 1,3-PDO 0.17 [91]

C. pasteurianum Butanol 0.65 [92]

C. pasteurianum n-butanol 0.28 [90]

C. pasteurianum n-butanol 0.43 [106]

Clostridium sp. Strain CT7 Butanol 0.40 [107]
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Table 4. Cont.

Microbes Strain
Outcomes

Ref.
End-Products Yield (mol/mol Glycerol)

Klebsiella oxytoca 1,3-PDO 0.47 [93]

K. oxytoca 1,3-PDO 0.53 [94]

K. pneumonia DSMZ 2026 1,3-PDO 0.42 [38]

K. pneumonia mutant 1,3-PDO 0.53 [96]

K.pneumonia ATCC 8724 1,3-PDO 0.73 [98]

K.pneumonia M5al 1,3-PDO 0.53 [95]

K. pneumonia 2-butanol 0.01 [108]

Citrobacter freundii AD970 1,3-PDO 0.49 [100]

C. freundii FMCC-B294 1,3-PDO 0.48 [99]

C. werkmanii DSM17579 1,3-PDO 0.62 [101]

Lactobacillus brevis N1E9.3.3 1,3-PDO 0.89 [102]

L. reuteri CH53 1,3-PDO 0.83 [109]

L. casei NCIM 2125 Lactic acid 0.16 [110]

Enterobacter sp. Strain MU-01 1,3-PDO 0.24 [39]

E. aerogenes TISTR 1468 Ethanol 0.59 [5]

Escherichia coli 1,2-PDO 0.21 [103]

E. coli K-12 ER2925 1,3-PDO 0.90 [105]

E. coli n-butanol 0.35 [42]

E. coli D-lactic acid 0.85 [111]

E. coli L-lactic acid 0.93 [112]

E. coli AC-521 Lactic acid 0.88 [113]

E. coli SS1 Bioethanol 0.88 [37]

E. coli SS1 Ethanol 1.0 [114]

Other bacteria and mixed culture

Komagataella phafii Glpard Lactic acid 0.67 [115]

Pachysolen tannophilus Ethanol 0.56 [36]

Rhodopseudomonas palustris CGA009 H2 0.60 [116]

Paenibacillus macerans H2 0.81 [117]

Thermoanaerobacterium sp. H2 0.30 [8]

Mixed culture H2 0.52 [118]

Mixed culture H2 0.96 [41]

Fungi

Lentinula edodes SCO 0.10 [84]

Aspergillus niger Oxalic acid 0.62 [84]

Galactomyces geotrichum SCO 0.44 [119]

Thamnidium elegans SCO 0.48 [87]

Yeast

Saccharomyces cerevisiae D-lactic acid 0.80 [34]

S. cerevisiae Ethanol 0.12 [120]

Yarrowia lipolytica NG40/UV7 Citric acid 0.90 [121]

Y. lipolytica NG40/UV5 Citric acid 0.90 [122]

Y. lipolytica A-101–1.22 Citric acid 0.64 [123]

Y. lipolytica Succinic acid 0.45 [124]

Microalgae Schizochytrium limacium SR21 Docosahexanoic acid 0.23 [125]
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For lactic acid generation, engineered E. coli has been widely used in converting crude
glycerol as an alternative to nicotinamide adenine dinucleotide (NAD+) regeneration in
the absence of external electron acceptors [112]. The biological route of crude glycerol
upgrading to lactic acid assisted by microbes stimulates the development of one specific
configuration of either D- or L-, because of the excellent selectivity of lactate dehydrogenase
(LDH) [33]. Based on Mazumdar et al. [111,112], E. coli has been engineered to improve its
efficiency towards the conversion of glycerol to D- and L-lactic acid under microaerobic and
anaerobic conditions. The overall yield of 0.85 and 0.93 mol/mol glycerol has been recorded
for D- and L-lactic acid, respectively, with 34 g/L and 50 g/L of each final concentration,
whereas Hong et al. [126] utilized E. coli AC-521 to transform glycerol into lactic acid under
the aerobic condition at optimized fermentation conditions of 42 ◦C, pH 6.5, and 0.85 min−1

(KLA). The overall lactic acid concentration and glycerol consumption peaked at 88 h of
fermentation, resulting in 86.0 g/L lactic acid yield with 0.97 g/L/h productivity as well
as a yield of 0.9 mol/mol glycerol. Other than E. coli, there are also studies relating to the
utilization of L. casei NCIM 2125 [110], K. phafii Glpard [115], and yeast S. cerevisiae [34]
under fed-batch fermentation for lactic acid production.

The potential butanol producer, according to previous studies [90,106], C. pasteurianam
under optimal condition can generate 0.43 mol/mol of butanol with 0.074 g/L/h of process
productivity in 120 h using crude glycerol as a substrate. In a different study by Saini
et al. [42], E. coli was used to assist the fermentation of crude glycerol into butanol with
0.35 mol/mol of butanol yield. Several type of bacteria were also utilized in the production
of ethanol via fermentation of crude glycerol which includes E. coli SS1 [114], E. aerogenes
TISTR 1468 [5], Pachysolen tannophilus [36], and engineered K. pneumonia [108] where they
resulted in 1.00, 0.59, 0.56, and 0.89 mol/mol product yields, respectively. In addition,
there is also a study of glycerol upgrading aided by Saccharomyces cerevisiae yeast [120]
with an overall yield of 2.4 g/L ethanol recorded which proves the possibility of yeast in
ethanol production.

2. Microbial mixed cultures and other bacteria

Mixed culture communities have also been studied for their potential to upgrade crude
glycerol into other value-added products which include hydrogen gas and PHAs. Accord-
ing to the literature review, the production of H2 was dominantly covered by fermentation
of mixed culture extracted from wastewater or resulted from the mixing of rare strain types.
Theoretically, crude glycerol fermentation provides a better capacity to generate hydrogen
gas at the end of its reaction as compared to glucose fermentation due to it generating
more NADH on a 3-carbon basis where one mole of hydrogen gas per mole of excess
NADH. According to previous work, Mabutyana and Pott [116] extensively studied the
homofermentative H2 production via co-fermentation of glycerol with phenolic compounds
assisted by Rhodopseudomonas palustris under anaerobic conditions at temperature of 35 ◦C
equipped with tungsten light bulbs. According to Varrone et al. [118] and Chen et al. [41],
the application of enriched activity sludge or microbial mixed culture efficiently enhanced
the conversion of crude glycerol into H2 with an approximate yield of 0.52–0.96 mol/mol
glycerol, whereas Paenibacillus macerans [117] and Thermoanaerobacterium sp. [8], in another
study, were also utilized in the fermentation of crude glycerol to produce H2 which resulted
in 0.81 and 0.30 mol/mol of yield. In addition, crude glycerol may be used as a substrate
for anaerobic digestion to produce biogas. In the acidogenesis and acetogenesis phases, it
is degraded to volatile fatty acids (VFAs), and in the final methanogenesis stage, methane
is produced from either acetic acid, CO2, or H2 by the methanogenic community [127]. For
further development, anaerobic process optimization to produce hydrogen from crude
glycerol is very essential and needs to be explored thoroughly.

3. Fungi

Fungi are another promising biocatalyst to enhance the microbial conversion of crude
glycerol into other specific valuable products such as single-cell oil (SCO). According to
Chatzifragkou et al. [87], throughout the fermentation process, fungi tend to build up lipids
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inside their mycelia. Andre et al. [84] studied the yield of SCO and oxalic acid from the
fermentation of crude glycerol with Lentinula edodes strains and Aspergillus niger strains
in carbon-limited and nitrogen-limited conditions, respectively. The maximum yield of
lipid of 3.5 g/L and 0.1 g/g biomass was recorded. The SCO product was dominantly
composed of oleic acids. Galactomyces geotrichum and ascomycetous fungus were utilized
in SCO production of crude glycerol. Overall lipid yield of 0.44 g/g of dry biomass was
accumulated, 4 times higher than pure glycerol control, with 38.0% of glycerol conversion
throughout the process. A similar trend was also shown by Chatzifragkou et al. [87],
who produced an improvement in lipid yield of 11.6 g/L with 70% of fat in biomass via
application of eukaryotic microbes, Thamnidium elegans, for SCO production. In this study,
acetic acid and mannitol were also generated as their side-products.

4. Yeast

Succinic, citric, itaconic, and malic acids may be generated from glycerol utilizing
fungus of the genera Rhizopus, Aspergillus, and Ustilago [128,129]. However, recently, yeasts
also exhibit the promising potential to catabolize crude glycerol via an aerobic route into
citric and succinic acid. Yarrowia lipolytica exhibits the ability in upgrading crude glycerol
into citric acid under the aerobic condition with optimal process parameters [121–123].
Li et al. [124] investigated the effect of co-fermentation of crude glycerol with various
agro-residues into succinic acid under aerobic condition using Y. lipolytica. At the end of
the process, 53.6 g/L of succinic acid concentration, process productivity of 1.5 g/L/h, and
an overall yield of 0.5 mol/mol were produced.

4.1.2. Bio-Electrochemical Fermentation

Bio-electrochemical fermentation is one of the emerging metabolic pathways which
combines both biochemical and electrochemical approaches in upgrading crude glycerol.
This technology exploits microbes to catalyze redox reactions in an electrochemical reactor
under mild processing conditions [130]. Microbial catalysts on the electrode have been
utilized to enhance the electrochemical reaction as well as increase the rate and yields
of glycerol conversion. In this approach, the electric current supplied was utilized to
permit the fermentation of crude glycerol as the feedstock. By improving cells’ capacity
to regenerate NAD+ into NADH, the cathodic current will stimulate microbial reduction
processes and thus be able to change fermentation profiles. As mentioned in the previous
study [44], a crucial NAD+/NADH ratio greater than 4 has been linked to high PDO
productivity and a high specific growth rate of K. pneumoniae. However, there are still a
very small number of investigations using glycerol bio-electro fermentations within the
cathode [43–45,130,131]. Zhou et al. [130] studied the carbon and electron fluxes during the
bio-electro fermentation of crude glycerol using batch biocathodes and showed an increase
in 1,3-PDO generation, while in the study by Choi et al. [132], C. pasteurianum was used
and successfully demonstrated a shift in the microbial metabolism with improved PDO
production when an electrical potential is applied. Recently, Xafenias et al. [43] reported a
significant increase in PDO synthesis with aid of Clostridiaceae. High PDO concentrations
of 42 g/L were recorded which shows the potential of this approach to be further studied.

4.2. Thermochemical Approaches
4.2.1. Gasification Pyrolysis

Pyrolysis is a simple method of upgrading glycerol, yet it is just as significant as
other processes. This method involves pyrolyzing feedstocks under specific processing
conditions—high temperature (>600 ◦C), high pressure, in the deoxygenated environment
inside a continuous or batch reactor [47,133], resulting from the thermochemical conversion
of carbon contained in the feedstock of crude glycerol. The following processes take place
to generate gaseous end-products [134]: (1) pyrolysis and devolatilization of feedstocks at
relatively low temperature; (2) further degradation of the primary byproducts by continu-
ous heating; and (3) coking gasification which leads to the production of high value-added
syngas including carbon monoxide (CO), ethylene, methane, and hydrogen (H2).
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Dehydration and hydrogenation reactions dominantly happened throughout this
approach. In the previous work of Skoulou and Zabaniotou [48], they used mixed crude
glycerol, crude olive oil, and grains in a fixed bed reactor operating at 750–850 ◦C. Co-
gasification attempts were made to increase the amount of hydrogen produced from the
gas produced during the gasification process. According to the findings, combining crude
glycerol with olive particles at a biomass weight ratio of 49% resulted in gas emissions of
between 0.4 and 1.2 Nm3/kg [47,48]. In another work, based on Figure 7, Blass et al. [46]
employed gasification pyrolysis of glycerol with H2 in a reactor containing dehydration,
hydrogenation and upgrading stages in series with help of HZSM-5 and Pd/α-Al2O3
catalysts at a temperature of 400 ◦C to produce a mixture of acetaldehyde, acrolein and
hydroxypropanone, propanal, and olefins. Propanal condensed over Brønsted acid sites
to produce C4–5 olefins, which then underwent high conversion to produce C2–3 olefins,
which accounts for this. During this staged process, a C–C bond formed, and negligible
carbon was dissipated as CO as a byproduct. Thus, due to environmental concerns of
greenhouse gases production, industrial scaleup is limited.
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feed [46].

4.2.2. Fast Pyrolysis

Fast pyrolysis is a method that has been adopted to decompose biomass into essential
chemical feedstocks and biofuels usually with presence of catalyst. For the manufacture of
highly stable liquid fuels, the catalyst-assisted cracking process is executed at temperatures
between 400 and 800 ◦C with a short residence time of between 0.5 and 3 s [48,49,133]. The
yield and characteristics of the end-products of the process are also significantly influenced
by different types of feedstocks, environment, and particularly catalyst species [135,136].
Hence, optimizing the parameters promotes enhanced byproducts yield such hydrocarbon
oils with shorter chain (C1–12), gases, and char [137,138]. Conventionally, hydrotreating of
bio-oils and hydrocarbon wastes, derived from engine oil, transmission oil, and hydraulic
oil, which fractured into high value-added products via thermal decomposition of pyrolysis
and treated with external hydrogen gas has become a key technology in upgrading bio-oil
into transportation fuels [139]. However, from the authors’ knowledge, there are no works
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on hydrotreating of crude glycerol which may be due to its high operating costs, and it is
not worth it in waste upcycling, in term of its techno economic view.

There are several previous published works on upgrading crude glycerol via fast
pyrolysis assisted with catalysts. He et al. [49] performed catalytic fast pyrolysis of crude
glycerol into bio-based BTX in a tandem micro-reactor using ZSM-5/bentonite catalysts
which operating at 520–536 ◦C. The study resulted in only 8.1 wt.% of bio-BTX yield (15%
carbon yield) based on crude glycerol feed with fresh catalyst. In their work, the reduced
end-product yields are mainly due to coking issues. The majority of the coke (10.5 wt.%)
deposit was on the ZSM-5 planes, which not only reduced the number of Lewis and
Brønsted acid sites but also clogged the pores, deactivating the catalyst. From previous
published works, relatively poor BTX yields (2 wt.%) were also recorded, with different
catalysts—Al2O3 [140] and Pd-Ru catalysts [141]. However, in other works [142,143],
zeolites favored the production of acrolein (86%) from catalytic conversion of glycerol with
higher glycerol conversion.

4.2.3. Supercritical Fluids

One of the alternative thermochemical conversion techniques for crude glycerol uti-
lizes supercritical fluids, including water, ethanol, methanol, and CO2, as the processing
medium. This method has drawn a lot of interest recently and was demonstrated to be an
appropriate reaction medium for biomass reforming. Either with or without the assistance
of a catalyst, supercritical fluid reforming of crude glycerol and model compounds was
already explored [9,51,52,144–146]. As an additional point, crude glycerol incorporates
6.5% of water content, as stated in Table 3; thus, the prior drying step can be neglected via
this hydrothermal approach which reduced its processing cost.

Lighter weight liquid constituents and permanent gases, mixture of H2, CO, CO2,
methane, and higher hydrocarbons will be produced during this glycerol upgrading process,
with or without a catalyst. In addition, the rate of conversion, reaction selectivity, and the
nature of the gas obtained are acknowledged to be impacted by the inclusion of a catalyst–
homogenous catalysts (metal salt and acid catalysts lead to enhanced glycerol conversion
and acrolein production). The utilization of various catalysts within this approach has been
discussed in previous literature works by Markocic et al. [147] and Pavlovic et al. [148]. With
the utilization of catalysts, the energy required for the procedure is reduced and it proceeds
at lower operating temperatures and minimizes capital expenditures.

According to previous studies [52,144,147,149,150], it has been observed that the main
solvent for crude glycerol upgrading via supercritical fluid reforming is water, while
there are not many works utilizing CO2 [51], and methanol [53]. According to Marko-
cic et al. [147], utilization of water is due to the unique properties of supercritical water
itself, when temperature and pressure of the normal water both reached its critical point
(Tc = 373 ◦C, Pc = 22.1 MPa). As shown in Table 5, the essential physicochemical character-
istics of sub/supercritical water are markedly different from those of water in ambient and
vapor phase. The solubility of additional molecules of glycerol in water is thus improved
by the decreasing dielectric constant, and supercritical water takes on the characteristics
of a nonpolar solvent [151]. Other than that, reduced dynamic viscosity of supercritical
water also leads to improved diffusion coefficients of dissolved substances. Therefore,
polar, and ionic reactions as well as free radical reactions may occur at this state. In sub-
and supercritical water, crude glycerol conversion proceeds quickly, and the high solubility
of the intermediates in supercritical water prevents the development of tar and coke, and
high product yields are produced at comparatively low temperatures [149,150].
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Table 5. Physicochemical properties of water at different conditions [151].

Parameters
Water Phase or Status

Ambient Steam Subcritical Supercritical

Temperature, T (◦C) 25 100 250 373
Pressure, P (MPa) 0.1 0.1 5.0 22.1
Density, ρ (g/cm3) 1 0.0003 0.80 0.17

Dielectric constant, ε 78.5 ~1 27.1 5.9
Dynamic viscosity, η (mPas) 0.89 0.02 0.11 0.03
Heat capacity, cp (kJ/kg/K) 4.22 2.1 4.86 13.0

4.2.4. Steam Reforming

Crude glycerol can be upgraded into H2 using the steam reforming method. In steam
reforming of crude glycerol, there are four main steps—feedstocks refinement, reforming,
water-gas-shift (WGS) reaction, and end-product refining [152]. In the first step of raw
material purification, sulfur and chloride impurities are removed. Then, in a fixed-bed
reactor, the reforming process is commonly conducted. Thus, the raw material is brought
into contact with steam while being catalyzed by a heterogeneous catalyst, resulting in the
production of syngas and other gaseous byproducts. The catalytic WGS reactor collects
this gas mixture, where the CO combines with the steam to produce more H2. Finally,
high purity H2 is produced by purifying the resulting gas stream using various techniques,
including pressure swing adsorption (PSA) and/or membrane systems. This strategy is
suitable to prepare chemicals made of oxygenated hydrocarbons, including waste/bio-
glycerol. These processes may be complemented by undesirable ones, which including
methanation, dehydration, carbon precursor reactions, and dehydrogenation, depending
on the operational circumstances.

Since scaling up the steam reforming strategy to an industrial level would not neces-
sitate substantial changes to the present infrastructures used for natural gas reforming,
this method can be regarded as one of the most promising glycerol upgrading technolo-
gies [153]. Industrial steam reforming exploits γ-Al2O3 supported Ni catalysts as its catalyst
option due to their increased availability and lower cost compared to precious metal-based
catalysts [58,154–157]. Furthermore, Ni-based catalytic systems are capable of cleaving
C–C, O–H, and C–H bonds as well as the WGS reaction, with typical NiO contents of 10
to 25 wt.% [158]. WGS can eliminate the adsorbed CO from the surface of the catalyst by
converting it into CO2, the first three bonds must be broken in the reforming phase [58,156].
Due to its improved mechanical and chemical resistance, large surface area (SBET), and fa-
vorable metal dispersion, the γ-Al2O3 support is also commonly employed. However, coke
deposition and particle sintering cause some deactivation in these systems. The first occur-
rence is often attributed to the γ-Al2O3 acidic characteristic, whereas sintering is attributed,
among other aspects, to metal phases and γ-Al2O3 hydrothermal disturbances [58,159].
Within steam reforming operation parameters, these changes are often connected to the
transition of γ-Al2O3 into other stable phases.

4.2.5. Aqueous Phase Reforming

With a similar objective as steam reforming technology, the catalytic method of aque-
ous phase reforming was developed to convert oxygenated hydrocarbons generated from
biomass into H2-rich gas. However, when compared to other catalytic thermochemical
approaches such as pyrolysis, gasification, or steam reforming, aqueous phase reforming
exhibited various advantages [160,161]. Aqueous phase reforming chemically converts the
liquid phase-feedstocks at ambient processing conditions, low temperature, around 150
to 300 ◦C, due to the partial evaporation of the water. Operating pressure, approximately
1.5–7 MPa, is used during the reformation of crude glycerol, such that ample pressure was
exerted to allow the H2-rich effluent to be in situ filtered via swing adsorption approach
or, in some cases, using membrane technology which addresses its storage issue and ef-



Sustainability 2023, 15, 2979 18 of 30

ficiently isolated CO2 from the main products. With extremely low CO concentrations
(100–1000 ppm), it is possible to generate H2 gas in a batch reactor assisted with metal
catalysts, produced higher amount of H2 as compared to the existing steam reforming
technique. In conclusion, this approach functions at minimal pressure, at a low temperature,
and with less costly technology [152]. Additionally, they are simple to integrate into safe,
environmentally friendly energy production systems.

4.2.6. Microwave-Assisted Pyrolysis

The microwave-assisted pyrolysis process uses a distinct technology of microwave
radiation, as an indirect heat source, to pyrolyze waste materials and/or biomass as shown
in Figure 8 [136,137]. The microwave absorbent must be capable of absorbing microwave
energy and heat to the requisite temperature in order to pyrolyze waste [162]. Based on
a study by Leong et al. [66], using a carbonaceous catalyst and temperatures between
300–800 ◦C, a microwave heating technique utilized to convert crude glycerol collected
from biodiesel plants into biofuels. The product yields in each phase of such a process is
determined by the processing conditions including residence time, process temperature,
and type of catalysts employed during the reaction, all of which affect the reaction system
and relative activation energy. From previous studies [65–67,162], it is observed that there
was a decreased total mass of gaseous products due to the catalyst’s inclination toward
hydrogen gas selectivity. Other than that, temperature reduction and longer residence times
increased the overall energy production. The findings demonstrated that crude glycerol
has the potential to produce syngas and bio-oil for use in bioenergy [67].
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4.3. Physicochemical Techniques
4.3.1. Esterification

Esterification is a reversible chemical reaction, thus adding an excess of one reagent
might tip the balance in favor of the desired products through acetylation reaction. The
acetylation, as shown in Figure 9, is another potential method for converting biodiesel-
derived glycerol [54,163–165]. The mono-, di-, and triacetyl esthers that are produced have
several industrial uses. The mono- and diacetylated esters, or mono- and diacetin, are
employed as fuel additives in diesel engines cryogenics, and as fuel sources to synthesize
biodegradable polyesters, whereas triacetin, a triacetylated derivative, is primarily uti-
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lized in various sectors including food and beverages, cosmetics, as fuel additives and in
pharmaceutical applications.
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Based on the above figure, the three-step method for the complete glycerol esterifi-
cation reaction results in mono-, di-, and triacetin formation [166]. With the assistance of
an acid catalyst, the mechanism for glycerol’s reaction with acetic acid primarily entails
a first protonation encouraged by the acid catalyst upon that oxygen electronic pair of
the acetic acid, preceded by a succession of nucleophilic attacks on the hydrophilic group
of glycerol to generate monoacetin and water. A third acetic acid molecule can be com-
bined with diacetin to create triacetin, a compound having three acyl groups, and a fourth
electrophilic acetic acid molecule can be combined with monoacetin to create monoacetin
and water. From previous works, the presence of catalysts is essential for enhancing these
reactions’ selectivity to produce the three acetins and speeding up the reaction [165,167]. In
another work, using a laboratory-made carbon-based catalyst by sulfonating carbonized
sucrose, Sanchez et al. [168] examined the esterification of glycerol. The results indicated
a high selectivity to triacetin, approximately 50%, at 105 ◦C for 4 h. On the other hand,
Khayoon and Hameed [169] studied the effect of utilization of different catalyst, sulfonated
carbon catalysts with high glycerol conversion (90%) and found comparable selectivity
of about 40, 30, and 35% for mono-, di-, and triacetin, respectively, under 3 h reaction at
processing temperature of 120 ◦C. According to the aforementioned findings, sulfonated
carbon catalysts may serve as a promising acid catalyst replacement for enhancing glycerol
esterification operations.

4.3.2. Transesterification

The process of allowing crude glycerol to chemically react with alcohol is known as
transesterification or alcoholysis [15]. Methanol and ethanol are the alcohols that are used
in this process the most frequently since they are affordable and widely accessible. This
process has been widely used to turn triglycerides into esters and to lessen the viscosity
of crude glycerol. Catalytic and noncatalytic transesterification are two methods that may
be used to carry out transesterification. Industrially, transesterification employs an acyl
acceptor of dimethyl carbonate (DMC) assisted with a heterogeneous catalyst that mainly
yields glycerol carbonate, as well as methanol as a byproduct [22,54]. Potassium or calcium
carbonate (K2CO3 or CaCO3) and hydroxides (KOH or Ca (OH)2) are two candidates of
homogeneous catalysts that can be utilized in the process. Isahak et al. [170] and Ochoa-
Gomez et al. [171] utilized catalysts which improved the conversion ratios and higher
glycerol carbonate yields (about 95%) with shortened reaction times.

4.3.3. Catalytic Etherification

Glycerol can be transformed into branching, oxygen-containing components during
the etherification process by reacting with either alcohols or alkenes [19]. Tert-butyl ethers,
one of the reaction products, has the potential to be exploited as lucrative fuel additives. A
lot of studies have been done on this etherification of crude glycerol [74,76,172]. In order to
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improve the yields and selectivity of the end-products, various type of catalysts have been
investigated with its significant affects. Heterogeneous catalysts such zeolites [173,174],
mesoporous silica [175,176], and metal oxides as well as homogenous catalysts have been
widely investigated. The commercially strong acid ion-exchange resin Amberlyst 15 has
proven to be the most effective heterogeneous catalyst to date, whereas p-toluenesulfonic
acid has proven to be the most effective homogeneous catalyst. Klepácová et al. [174]
conducted a thorough investigation into the catalytic selectivity and activity of large-pore
zeolites and Amberlyst 15-type ion-exchange resins on the tert-butylation of glycerol with
isobutylene and tert-butyl alcohol. According to Karinen and Krause [177], approximately
five ether products can be produced during the liquid-phase etherification of isobutene
and glycerol which assisted with an acidic ion-exchange resin catalyst, in addition to side
products in the form of C8–16 hydrocarbons.

There are various advantages of utilizing heterogenous catalysts in this approach;
it is low in cost, reusable, able to be recovered following the reaction process, and eas-
ily separated from the reaction [178,179]. Thus, heterogenous catalysts are anticipated
to replace traditional homogeneous catalysts in the near future for both financial and
environmental reasons.

4.4. Electrochemical Approaches—Electrolysis

Glycerol derived byproducts manufacturing using an innovative and straightforward
process called electrochemical conversion of glycerol has not received enough attention
in prior studies [180]. In contrast to electrochemical reductions, which can take place in
an aqueous medium at ambient pressure and temperature with electrons acting as the
reduction equivalent (while protons are supported by protic solvents and/or by electrode),
catalytic hydrogenation reactions typically require high temperatures (250–400 ◦C) and
hydrogen pressures [181]. Electrochemical conversion of crude glycerol has been studied
because of its straightforward structure and robust functionality. When compared to
chemical methods, the electrolysis process uses less energy and operates at ambient pressure
and temperature. Moreover, renewable resources such as solar energy have the potential to
replace fossil fuel derived electricity [181]. Adjusting selectivity and boosting efficiency in a
thermochemical process requires changing temperatures and pressures, which significantly
raises operating costs. When compared to chemical technologies, electrochemical processes
do not need to be equipped with pressure or heat equipment within the system, thus, lead
to lesser operating costs and smaller space required for industrial scale setup.

Additionally, from published literature, there are several main processing parameters
including the electrical characteristics of electrodes, applied potentials, pH of the elec-
trolyte, and electrocatalyst choice which significantly altered the selectivity and product
yields [77,78,80,182–185]. Adsorption, atomic bond breaking, electronic charge transfer,
interaction between oxygenated species and alcohol fragments, and desorption of reac-
tion products are a few of the general processes that are involved in the electrochemical
conversion of alcohols [186]. Accordingly, the contact of the electrocatalyst surface with
the reactant molecules, the interaction of the catalyst surface with the molecules of the
adsorbed fragments, and the production of surface oxides all affect the overall efficiency.

Because of the distinctive advantages of electrocatalysis, the electrooxidation of glyc-
erol has attracted increased attention in recent years and is widely reported [187–189].
However, based on the literature review of previous published works, there is still a lack
of research on electroreduction of crude glycerol. Electroreduction of crude glycerol, the-
oretically, has a promising future to be discovered especially in the effort of upgrading
the crude glycerol via deoxygenation and hydrogenation pathways. This approach can
be a promising candidate to substitute the conventional thermochemical hydrotreating
technology to convert crude glycerol into lower oxygen content compounds including diols,
alcohols and alkane. As a byproduct, electrochemical upgrading technology produces H2
and pure O2 that can be used as a final product or an in situ supplement for downstream
processes [11,125].
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Electroreduction technology has a potential to be an alternative pathway for future up-
grading technology. Currently, there are several types of electrochemical reactor/cell which
apply slightly different state-of-the-art in upgrading crude glycerol as feedstocks as illus-
trated in Figure 10, which includes undivided cell, single membrane cell or two-chamber
cells or H-cell or polymer exchange membrane (PEM) cell, also known as anion/cation
exchange membrane (AEM/PEM) cell, double membrane cell, and continuous flow cell.
Within this underdeveloped pathway, crude glycerol, as the feedstock, acts as the anolyte
in electrooxidation setup, while, for electroreduction pathway, the glycerol will become
the catholyte placed in the cathode chamber. In the electroreduction of crude glycerol,
the crude glycerol is electrolyzed or reduced at the cathode which is used to ionize the
oxygen from the oxygenated organic substance. Simultaneously, the water (in divided
cell) or moisture content within the crude glycerol (in undivided cell) is electrolyzed or
oxidized at the anode into H+ ions and oxygen (O2). Thus, the residual hydrocarbon radical
in electrolyte reacts with the hydrogen proton (H+) and leads to hydrodeoxygenation or
hydrogenation reaction. Therefore, crude glycerol may be theoretically deoxygenated by
electrochemical conversion assisted with electrocatalysts to an alcoholic product, with
release of oxygen gas as O2 at anode. Release of O2 is not attainable through thermal
catalytic methods under high-pressure H2. However, there is hindrance in terms of coking
deposition at the cathode which thus reduced the reaction rate and conversion efficiency
within the system [11,82]. Thus, researchers have explored new electrochemical cell designs
with dividing the cell into two or three chambers using ion exchange membrane to address
this issue of coking formation.
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5. Future Outlooks for Crude Glycerol Upgrading

The current technology to upgrade bio-oil or crude oil into biofuels as a substitute
for conventional fuels is via full deoxygenation refining of hydrotreating process [137].
The hydrotreating approach is an established upgrading technology as it successfully
removes oxygen along with other heteroatoms (impurities) from the bio-oil and increase its
cetane number for higher quality biofuels that uses hydrogen supply under high reaction
temperatures and pressure, plus, assisted by catalysts. However, since a significant volume
of hydrogen gas must be used to allow hydrodeoxygenation reaction, a large operating
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cost may be required for this process. Furthermore, the requirement for hydrogen volume
increases when the hydro denitrogenating process is involved [137], especially for crude
glycerol and raw bio-oil.

Thus, in previous sections, the aforementioned studies were aimed to counteract this
hindrance in order to produce techno economically stable technology for crude glycerol
upgrading. To maximize the effectiveness and profitability of particular entities and keep
them competitive in the market, a number of technologies and conversion routes (such as
thermochemical, biological, physicochemical, electrochemical) have been introduced and
integrated during the past 20 years.

For enhancing crude glycerol quality and addressing existing upgrading issues, such
as high operating costs of thermochemical conversion, low conversion of physicochemical
approaches, and time-consuming microbial pathways, the electrochemical technique is
currently being explored as the number of works are increasing. The main problem with this
method is membrane fouling and glycerol instability, as well as the reaction’s ineffectiveness
due to the poor conductivity of crude glycerol [181]. However, retaining hydrogen from
the water (H2O) content during deoxygenation is the distinct advantage of electrochemical
treatment, which lowers the amount of additional hydrogen required for further upgrading.
Since this approach exhibits mild operating conditions, it has been shown to have an impact
on the quality of crude glycerol, but it cannot yet be said to be productive of usable liquid
hydrocarbons. Electrochemical applications, on the other hand, stabilize the crude glycerol
by lowering the acid and oxygen contents. Although crude glycerol to biofuel conversion
procedures via electrochemical pathways have not been shown to be efficient because of
present complexities, there is a big chance that these methods can be improved from where
they are now.

Further research and development efforts in order to advance crude glycerol upgrad-
ing technologies are as follows—exploration of integrated energy systems by combining
two or more approaches which can ensure low operating costs with high value-added
chemicals production, for example, the combination of thermochemical and electrochemical
conversion, deeper investigations of existing treatments with mild-operating process such
as electrochemical technology by utilizing artificial intelligence (AI) and machine learning
for prediction modeling and simulation as well as technoeconomic analysis (TEA) compar-
ing various available approaches for commercialization are needed. Similar approaches of
application of AI [190,191] and TEA [192,193] have been applied in bio-oil sector which is
currently widely expanding. These further works to advance the crude glycerol upgrading
are significant to compare suitable technology to be utilized according to different intended
end-products, to optimize the overall process condition, and to study its availability to be
used on a larger industrial scale with comparing its manufacturing cost with the profit that
can be earned in the future.

6. Conclusions

Crude glycerol is a promising renewable energy source which has attracted attention
from researchers, industrial players, and environmentalists for its unique properties as
chemical precursors for various applications including transportation fuels, pharmaceutical
sectors, and food/beverage use, and others. In this review, various existing crude glycerol
upgrading strategies have been summarized and discussed according to their processing
conditions and their performance to convert glycerol into high value-added chemicals via
specific chemical reaction pathways, including hydrogenation, deoxygenation, carbonyla-
tion, and dehydration. Furthermore, emerging technologies have been presented as well to
highlight the shortcomings of current crude glycerol upgrading processes.

Several significant remarks can be achieved from this review. Currently, thermochem-
ical treatment, including gasification, fast pyrolysis, liquefactions, aqueous steam and
steam reforming, and supercritical fluids reforming, shows its dominance in upgrading
processes. However, these treatments are less cost-competitive due to their demanding
process requirements, which include heat and pressure. On the other hand, as a stand-alone
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procedure, biological treatments are insufficient for upgrading crude glycerol as there is
need of complex pre- and post-treatment steps despite their advantages with low startup
costs and works under ambient condition without external heating devices. Physicochemi-
cal approaches work under mild process conditions; however, they are less efficient due
to their slower reaction rate, but they can be combined with other technology for better
conversion efficiency. Thus, looking in the future, electrochemical processes via electrooxi-
dation and reduction of crude glycerol appear as promising routes for glycerol upgrading
to be examined in the future, despite its underdevelopment, due to their mild process
conditions, low assembly and maintenance costs, higher possibility of producing biofuels
and bio-alcohol as end-products, and surplus advantage of hydrogen generation during
the deoxygenation process which further leads to lower manufacturing costs. However,
deeper investigations are still needed to prove its performance in this field as there is a
big lack of knowledge about many facets of this novel technique that must be explored,
especially in industrial applications, to provide new environmental solutions.

Author Contributions: Conceptualization, M.H.M.; methodology, M.H.M.; validation, S.C. and J.S.C.;
investigation, M.H.M.; writing—original draft preparation, M.H.M.; writing—review and editing,
S.C. and J.S.C.; supervision, S.C. and J.S.C.; project administration, J.S.C.; funding acquisition, J.S.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge the Japanese Government (Ministry of
Education, Culture, Sports, Science, and Technology (Monbukagakusho): MEXT) Scholarship for
providing financial support and Tokyo Institute of Technology (Tokyo Tech) for funding and providing
research facilities.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IEA Renewable Electricity Growth Is Accelerating Faster than Ever Worldwide, Supporting the Emergence of the New Global

Energy Economy. Available online: https://www.iea.org/news/renewable-electricity-growth-is-accelerating-faster-than-ever-
worldwide-supporting-the-emergence-of-the-new-global-energy-economy (accessed on 25 July 2022).

2. International Energy Agency. World Energy Outlook; OECD/IEA: Paris, France, 2009; ISBN 926428205X.
3. Gielen, D.; Gorini, R.; Wagner, N.; Leme, R.; Gutierrez, L.; Prakash, G.; Asmelash, E.; Janeiro, L.; Gallina, G.; Vale, G.; et al. Global

Energy Transformation: A Roadmap to 2050; IRENA: Abu Dhabi, United Arab Emirates, 2019.
4. Loaces, I.; Rodríguez, C.; Amarelle, V.; Fabiano, E.; Noya, F. Improved Glycerol to Ethanol Conversion by E. Coli Using a

Metagenomic Fragment Isolated from an Anaerobic Reactor. J. Ind. Microbiol. Biotechnol. 2016, 43, 1405–1416. [CrossRef]
5. Boonyawanich, S.; Haosagul, S.; Pisutpaisal, N. Ethanol Production from Crude glycerol Using Glucose as Co-Carbon Source.

Biomass Convers. Biorefinery 2021, 2021, 1–10.
6. Haider, M.H.; Dummer, N.F.; Knight, D.W.; Jenkins, R.L.; Howard, M.; Moulijn, J.; Taylor, S.H.; Hutchings, G.J. Efficient Green

Methanol Synthesis from Glycerol. Nat. Chem. 2015, 7, 1028–1032. [CrossRef]
7. Hulteberg, C.; Nörregård, Ö.; Brandin, J.; Leveau, A. Bio Propane: Tailoring WO3/ZrO2 Catalyst for the Dehydration of Glycerol

to Acrolein. In Proceedings of the 17th Nordic Symposium on Catalysis, Lund, Sweden, 14–16 June 2016; Lund University
Publications: Lund, Sweden, 2016.

8. Sittijunda, S.; Reungsang, A. Media Optimization for Biohydrogen Production from Crude glycerol by Anaerobic Thermophilic
Mixed Cultures. Int. J. Hydrogen Energy 2012, 37, 15473–15482. [CrossRef]

9. Yu-Wu, Q.M.; Weiss-Hortala, E.; Barna, R.; Boucard, H.; Bulza, S. Glycerol and Bioglycerol Conversion in Supercritical Water for
Hydrogen Production. Environ. Technol. 2012, 33, 2245–2255. [CrossRef] [PubMed]

10. Quispe, C.A.G.; Coronado, C.J.R.; Carvalho, J.A., Jr. Glycerol: Production, Consumption, Prices, Characterization and New
Trends in Combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [CrossRef]
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