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Abstract: Evaluating how the sources of uncertainty in solar modelling (e.g., input parameters,
developed model chain) can influence the results’ accuracy is one of the main challenges when
applied at high latitudes. In this study, a multi-stage validation workflow is implemented around
five main stages: data acquisition, data quality check, solar radiation modelling, photovoltaic energy
modelling, and experimental validation. Different data sources such as satellite observations, nu-
merical reanalysis, and on-site ground measurements are considered as inputs, while the outcomes
from each step of the model chain (e.g., decomposition modelling, transposition modelling, pho-
tovoltaic energy modelling) are compared against observations recorded from the solar radiation
network at the Norwegian University of Science and Technology (NTNU-Solarnet) in Trondheim
(Norway). In the first and second validation stages, the decomposition and transposition models with
measured input parameters show the best accuracy indicators, but they do not fulfill the validation
criteria. Conversely, in the third validation stage, the photovoltaic energy models with on-site ground
measurements as inputs are experimentally validated. In conclusion, at high latitudes, the most
accurate results are obtained when monitored solar irradiation data are used instead of satellite
observations and numerical reanalysis. Furthermore, the shortest model chain is preferred, with
equal data sources.

Keywords: decomposition modelling; transposition modelling; photovoltaic energy modelling; solar
radiation dataset; validation

1. Introduction

The interest in solar energy in Norway has steadily increased in recent years: the
installed solar power capacity grew from 15 MW in 2015 to 225 MW in 2021 [1]. The
slower adoption of solar energy systems in the region has come from the belief that Nordic
countries have low solar energy potential compared to continental Europe [2]. However,
several research studies have shown that the distribution of solar radiation throughout the
year in Nordic countries is simply different from that in continental Europe. The lower
number of daylight hours in winter is counterbalanced by greater sunlight availability
during the summer [3,4]. The angle of the sun varies significantly throughout the year;
at noon in the summer, the sun is around 50◦ above the horizon, while in the winter it is
below 10◦ [5,6]. Such variability of solar radiation has an increasing impact on the built
environment (e.g., daylighting, thermal and visual, solar energy production, stability of
energy supply grid). To accurately estimate solar potential at high latitudes, it is, therefore,
necessary to identify the most adequate model chain and solar radiation datasets to be used
as input parameters.

Several studies regarding solar analysis proposed model chains that are made using
a decomposition model, a transposition model, and an energy model [7,8]. The model
chains implemented in [9,10] are finalized to the estimation of the energy production from
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photovoltaic (PV) and solar thermal (ST) panels; while, in [11,12], the authors focused on
the variation in energy demand due to the passive and active solar strategies. Existing
solar irradiance model chains differ in their length (i.e., the number of models in the model
chain). The length of the model chain determines the results’ accuracy since each modelling
stage can be an additional source of error.

Beside the model chain, input data quality is crucial for the performance of solar
energy simulation models. Accurate input data are essential for the model to predict the
solar potential on a surface at a specific location and to evaluate the effectiveness of solar
active and passive strategies [5,13]. In this regard, the study carried out by Kenny and
Fiedler [14] assessed various gridded irradiance datasets, which are commonly used in
solar analyses, to identify the best for application in PV energy prediction in Germany. If the
data are inaccurate, the model may produce unreliable results and may be too misleading
to be used as a decision-making tool for solar system installation.

The present study aims at evaluating how the different sources of uncertainty (e.g.,
input solar irradiation datasets, number of steps in the model chain) can influence the
accuracy of the results at high latitudes. The work is part of a wider study aiming at
contributing to the transition from the currently used bidimensional solar maps [15,16],
where the visualization of solar potential is limited to the rooftop surfaces and to the three-
dimensional solar cadastres, where also buildings’ façades are assessed [17,18]. The need for
this investigation lies in the possibility of using for the validation purpose either punctual
measurements of solar irradiation or the average energy production of a PV façade/roof.
On the one hand, the punctually measured solar irradiance might be not representative
of the solar potential of the whole building element (i.e., placing the pyranometer at the
top of the façade can underestimate the reflections from the ground). On the other hand,
the average energy production required a longer model chain, which includes the energy
domain in addition to the solar irradiation domain. In previous studies about the validation
of solar irradiance models, one of these two parameters is often chosen for validation
purposes regardless of the different associated uncertainties [19,20]. The novelty of this
study is represented by the implemented multi-stage validation workflow which enables
the comparative assessment of two or more solar irradiance model chains with different
input parameters. Furthermore, this approach permits to quantify the accuracy of the
outcomes at each stage of the model chain to answer the following research questions:

• To which extent does the length of the model chain impact the accuracy of the calcu-
lated solar irradiation quantities?

• Which input data permits better prediction of solar energy at high latitudes?

These questions will be answered in the present study, which is structured as follows.
The section on materials and methods (Section 2) defines the workflow, the tools, the used
datasets, the case study, the data quality filter, and the accuracy indicators; the section
on results (Section 3) describes the quality filter applied to the reference observations
and provides an overview of the outcomes for each validation stage; the discussions
section (Section 4) presents the identified recommendations for solar modelling at high
latitudes and outlines the study limitations. The study concludes with a summary of the
most relevant findings and their impact on the further development of model chain and
application utilization in high-latitude locations (Section 5).

2. Materials and Methods
2.1. Workflow

The workflow proposed in this study is structured in five stages: (stage i) data acquisi-
tion, (stage ii) data quality check, (stage iii) solar radiation modelling, (stage iv) PV energy
modelling, and (stage v) experimental validation (Figure 1). In stage i, the data regard-
ing solar energy production, solar irradiation, and weather variables are acquired from
different sources, e.g., Solar Radiation service from Copernicus Atmosphere Monitoring
Service (ads.atmosphere.copernicus.eu, accessed on 30 January 2023) (CAMS), European
Centre for Medium-Range Weather Forecasts (cds.climate.copernicus.eu, accessed on 30
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January 2023) (ECMWF), and the solar radiation network at NTNU (NTNU-Solarnet) (see
Section 2.4). Furthermore, the input parameters of this stage are the location of the case
study (e.g., latitude, longitude), and the time interval (e.g., start date and end date of the
analysis) to be investigated.
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Figure 1. Overview of the workflow followed in this study. The five stages (e.g., data acquisition,
data quality check, solar radiation modelling, PV energy modelling, experimental validation) are
highlighted with different colors, while block typologies (e.g., measured value, user-defined value,
output/input, activity/process) are reported at the bottom.

A Python script is created to retrieve datasets from relevant databases and merge them
into a single data-frame called “solar datasets”. In particular, the Application Programming
Interface (API) of the Climate Data Store (CDS) of Copernicus Europe is used to retrieve data
from ECMWF; while the pvlib.iotools.get_cams function from pvlib-python package [21]
enables downloading data from CAMS. The measured solar irradiation values from the
installed sensors of the NTNU-Solarnet are imported manually from the .csv files.

In stage ii, data recorded by the NTNU-Solarnet is categorized based on the quality
check method outlined in Section 2.5. Each datapoint is assigned a quality flag (QF),
which is then utilized to screen the recorded data by excluding erroneous measurements
from validation.

Stage iii and stage iv are the main steps of the solar irradiance model chain: the
decomposition and the transposition modelling are included in stage iii, while stage iv
focuses on the simulation of the PV energy generation outputs. The GHI is split by the
decomposition model into diffuse horizontal irradiation (DHI) and direct normal irradiation
(DNI). Then, the direct and the diffuse fractions are exploited by the transposition model to
calculate the global tilted irradiation (GTI) (stage iii). Finally, the GTI is converted into solar
energy impinging on the PV modules, and it is used to quantify the PV energy generation
outputs, in stage iv. Alongside GTI, the features of the PV panel (e.g., tilt angle, azimuth
angle, area, efficiency of the panel and the inverter) are defined as input parameters in this
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stage. Moreover, temperature-dependent losses [22] and soiling issues [23] are considered
in the calculation, as described in Section 2.2. This solar irradiance model chain is applied
to the solar irradiation dataset acquired during stage i. In total, up to five solar irradiance
model chains, which are characterized by different lengths and input parameters, are run
in parallel.

During stage v, the solar irradiation variables and the PV energy generation outputs,
which are estimated in the previous stages of the model chain, are validated against
measured quantities retrieved from the NTNU-Solarnet. The two datasets (i.e., calculated
data, observed data) are compared in scatter plots: one graph is created for each variable
to be validated. Moreover, the Normalized Mean Bias Error (NMBE), the Coefficient of
Variation of the Root Mean Square Error (CV(RMSE)), and the coefficient of determination
(R2) are estimated to assess the results’ accuracy.

2.2. Tools and Model Chain

A model chain consists of a sequence of model stages that perform specific tasks. The
full-length model chain implemented in this study is made using a decomposition model,
a transposition model, and an energy model. This model chain is flexible, and its length
varies depending on the available inputs and the desired outputs. For example, if the
input values are the DNI and DHI, the decomposition modelling stage is not necessary.
Similarly, if the study aims at evaluating the solar irradiation impinging on a surface,
the model chain can be interrupted before the energy modelling stage, giving the latter a
non-requested output.

Several models are available that are well-established for hourly irradiance decom-
position methods and one-minute decomposition methods [24]. These models differ in
accuracy and for the predictors that are needed to estimate the diffuse fraction. In this study,
the Engerer4 model is exploited to decompose the GHI into DNI and DHI. The Engerer4
model is a quasi-universal model which has been implemented by Bright and Engerer [25].
They have updated the Engerer2 [26] model by recalculating the parameters with datasets
from 75 different stations worldwide. This is the most recent model from Engerer and it
calculates the kd accordingly to the equation:

kENGERER4
d = C +

1−C
1 + eβ0+β1·kt+β2·AST+β3·θ+β4·∆ktc

+ β5·kde (1)

where AST is the apparent solar time, θ is the zenith angle, ∆ktc is the deviation between
the clearness index for the clear sky (ktc) and clearness index (kt), and kde is the proportion
of kd which depends on cloud enhancement. The C and the β-coefficients are the same
as presented in [25]. Regarding the transposition models, the pvlib-python package [21],
an open-source and community-supported tool that allows managing the whole solar
irradiance model chain, is exploited. The Perez anisotropic model [27] is selected. It is
one of the most universally exploited for building performance simulation, although other
options are also available in the pvlib-python package (e.g., the isotropic model [28], the
Hay–Davies model [29], and the Reindl model [30]). The Perez model splits the diffuse
irradiance into different solar diffuse components (i.e., isotropic, circumsolar, horizontal
brightening band), and then it estimates the amount of solar irradiance impinging on the
PV modules. In particular, the total irradiance on a tilted surface is given by the following
equation [27,28]:

IT = Ih,b·Rb + Ih,d·
[
(1− F1)·

(
1 + cosβ

2

)
+ F1·

a
b
+ F1· sin β

]
+ Ih·ρ·

(
1− cosβ

2

)
(2)

where IT is the GTI, Ih,b is the direct-normal component of solar irradiance on the horizontal
surface, Rb is a variable geometric factor, Ih,d is the DHI, β is the surface tilt angle from the
horizon, Ih is the GHI, and ρ is hemispherical–hemispherical ground reflectance. The F1
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and F2 factors, as well as the a and b terms, are computed as illustrated in Loutzenhiser
et al. [27].

The solar position (i.e., solar azimuth, solar zenith, apparent solar time), which is one
of the Perez model’s input parameters, is estimated with the ephemeris function included
in the pvlib-python package.

Finally, the GTI, expressed in Wh/m2, is used to predict the hourly energy amount
generated by the PV panels (PVout). The PVout is calculated with the equation from the EN
15316-4-3:2017 standard:

PVout =
GTI·Ppk· fper f

Ire f
(3)

where Ppk is the system peak power in W at reference conditions (Iref = 1000 W/m2). The
system performance factor, fperf, accounts for losses due to soiling (ϕsoil) and temperature
(ϕtemp), as well as to the specific array’s configuration (ϕarray) and the inverter’s efficiency
(ηinv). It is calculated according to the Norwegian technical guideline SN-NSPEK 3031:

fper f = IAM·
(

1− ϕsoil
100

)
·
(

1−
ϕtemp

100

)
·
(

1−
ϕarray

100

)
·ηinv
100

(4)

where IAM is the Incident Angle Modifier. The ηinv equals 96%, while the IAM is defined
based on the empirical values proposed in the standard for the Trondheim location and
the selected months. In particular, the IAM is 0.96, the ϕsoil ranges between 2% and 5%,
and the ϕarray is 5.5%. Finally, the ϕtemp depends on the cell’s temperature (Tcell), and it is
estimated as:

ϕtemp = αtemp·(Tcell − 25 ◦C) (5)

where αtemp is a temperature coefficient and equals 0.40% per Celsius degree.

2.3. Input Parameters

The weather data used in this work refers to Trondheim (Norway, lat. 63◦25′49.76′′ N).
According to the Köppen Geiger classification [31], the climate of Trondheim is classified
as continental sub-artic climate (Dfc), and it is moderately continental, with cold winters
and mild summers. The analyses are carried out for two periods that are from 24 August
2021 to 18 December 2021 and from 4 July 2022 to 11 November 2022, respectively. The
selected datasets are characterized by a time resolution ranging from one minute to one
hour depending on the source.

An overview of the used datasets and their properties (i.e., data type, time resolution,
spatial resolution, parameters) is presented in Table 1. The two periods have been selected
to assess the viability of the datasets to estimate solar irradiation and PV energy generation
outputs during clear sky days and days characterized by overcast sky conditions. Before
calculating the accuracy indicators (see Section 2.6), the datasets are resampled hourly.

Table 1. Characteristics of the datasets used in this study.

Data Source Data Type Timestep Spatial Resolution Parameters

Era5-land Reanalysis 1 h 9 km GHIEra5
CAMS Satellite data 1 min 3–5 km DHICAMS, DNICAMS, GHICAMS

Sentralbygg 1 Monitored data 1 min point DHISB, DNISB, GHISB
Test Cell Lab Monitored data 5 min point GHITCL
Test Cell Lab Monitored data 1 h point GTITCL
Test Cell Lab Monitored data 1 h point PVout

Among the datasets provided by the ECMWF, the 5 generation of numerical reanalysis
(Era5-Land) is selected. Era5-Land consists of a version of Era5 which is specifically
developed for land applications. According to the different fields of applications, the
spatial resolution of Era5-Land (9 km) is greater than the one of Era5 (around 30 km). Data
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covers a time horizon ranging from January 1950 to the present, and concern the main
parameters related to temperature, lakes, snow, soil water, radiation and heat, evaporation,
wind, pressure, and precipitation. The variables retrieved from the Copernicus Climate
Data Store for the time domain of this work are the surface solar radiation downwards
(corresponding to the GHI), both the temperature and the dewpoint temperature at two
meters from the ground, and the surface pressure. In particular, the accumulated radiation
values of Era5-Land are transformed into hourly values by subtracting the previous values
within each forecast horizon.

The CAMS Solar Radiation service integrates output from the CAMS global fore-
casting on aerosol and ozone with detailed cloud data from geostationary satellites. The
service offers historical values of GHI, DHI, and DNI (including clear and overcast sky
conditions) with a one-minute time resolution from 2004 to the present. Irradiance pa-
rameters were retrieved for the two investigated periods (August–December 2021 and
July–November 2022).

Alongside the reanalysis and satellite observation, the amounts of solar irradiance
are also measured by sensors installed in various experimental facilities at the NTNU
Gløshaugen campus. In particular, the hourly values of GHI and GTI are collected through
two pyranometers installed on the rooftop of the Test Cell Lab [32], while the GHI, the
DHI, and the DNI are measured through a sun tracker located at the top of the tower of the
Sentralbygg 1. The sun tracker follows the sun path over the horizon to orient the pyrhe-
liometer in the same direction as the sunrays and to keep in the shadow the pyranometer
which measures the DHI. The system is completed by an unshaded pyranometer which
monitors the GHI. Different time resolutions are associated with these datasets, ranging
from 1 min (GHI, DNI, and DHI from the sun tracker) to 1 h (GHI and GTI from the Test
Cell Lab). Finally, also the energy generation from the photovoltaic installed on the rooftop
of the Test Cell Lab is monitored with a time resolution of 1 h. These timeseries, together
with the solar irradiation quantities measured by the sun tracker (e.g., GHI, DHI, and DNI)
and the GTI observed in the Test Cell Lab’s rooftop, represent the reference values in the
experimental validation. These values are compared against the outputs collected by the
different solar irradiance datasets.

2.4. Solar Radiation Network at NTNU (NTNU-Solarnet)

The NTNU-Solarnet consists of a network of monitoring sensors and monitored solar
panel systems installed in the research facilities of the NTNU Gløshaugen campus (lat.
63◦25′49.76” N, long. 10◦24′16.0” E) (Figure 2). The monitoring sensors include a sun
tracker and twelve pyranometers with different orientations in space. Such an apparatus
enables collecting solar irradiation data with different time resolutions (Table 1).

In particular, the SOLYS2 sun tracker (www.kippzonen.com, accessed on 30 January
2023) is located at the top of the Sentralbygg 1, and it provides measured quantities of DNI,
DHI, and GHI. Up to eight second-class pyranometers are also integrated into the building
envelope (four in the facades and two in the roof) and into the solar pergola of the ZEB
Office Laboratory [33]. They allow measuring the GHI and the GTI on the roof (tilt angle
is 40◦), façades (tilt angle is 90◦), and both sides of the pergola (tilt angle is 60◦). Three
second-class pyranometers are located in the Test Cell Lab facility. Two of them monitor the
GHI at the ground and the roof level, respectively; while the third collects data regarding
the plane of the tilted roof (tilt angle is 43◦). The solar radiation network is completed by
various solar panel systems integrated into the envelope of the ZEB Office Laboratory and
in the roof of the Test Cell Lab and Sentralbygg 1 facilities.

The experimental data used in this study are collected by the sun tracker in the
Sentralbygg 1 and the pyranometers in the Test Cell Lab facility. Alongside these, the
monitored energy production of the polycrystalline silicon modules integrated into the
rooftop of the Test Cell Lab building is used for validating the calculated PVout. The power
optimizer unites (www.solaredge.com, accessed on 30 January 2023), which are provided
by the manufacturer, monitor, and collect data on the performance of each module.

www.kippzonen.com
www.solaredge.com
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Figure 2. Spatial distribution within the NTNU-Solarnet of the monitoring sensors, e.g., horizontally
mounted and tilted pyranometers, sun tracker, and the monitored solar active systems, e.g., photo-
voltaic (PV), building-integrated PV (BIPV), bifacial PV (BPV), solar thermal (ST), hybrid ST/PV, and
dual axis solar tracking PV. The experimental facilities of the NTNU-Solarnet that are considered in
this study are the Test Cell Lab and the Sentralbygg 1.

2.5. Data Quality Filter

The quality control procedure for solar irradiation datasets is not univocally defined
in the literature [34–36]. Nonetheless, the one proposed by Long and Shi [37], and more
recently used by the Baseline Surface Radiation Network (BSRN), is the most popular
among authors and experts working with solar irradiation data in the last years. This
protocol is also followed in this study to assign a QF to each datapoint. Data that does not
comply with the following tests’ requirements are labelled as erroneous measurements (QF
= 1); therefore, they are excluded from the validation process.

The procedure is structured into four tests. On the one hand, test one and test two
permit the identification of the data exceeding the global physically possible limits (2)–(4)
and the extremely rare limits (5)–(7). The upper and lower bounds are empirically based
on atmospheric transmittance measured worldwide [37].

− 4 W/m2 < GHI < 1.5·E0n·cos1.2θ + 100 W/m2 (6)

− 4 W/m2 < DHI < 0.95·E0n·cos1.2θ + 50 W/m2 (7)

− 4 W/m2 < DNI < E0n (8)

− 2 W/m2 < GHI < 1.2·E0n·cos1.2θ + 50 W/m2 (9)

− 2 W/m2 < DHI < 0.75·E0n·cos1.2θ + 30 W/m2 (10)

− 2 W/m2 < DNI < 0.95·E0n·cos0.2θ + 10 W/m2 (11)
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where E0n is the direct normal irradiation outside the atmosphere and θ is the zenith angle.
On the other hand, test three and test four allow for detecting issues with the measurement
equipment. In test three, the deviation of the observed GHI from the sum of the direct
horizontal irradiance (BHI) and the DHI is assessed (8). This should be lower than 8% for
θ smaller than 75◦, and lower than 15% when θ ranges between 75◦ and 93◦. Finally, the
diffuse ratio (kd) is evaluated in test four (9). However, when the measured or calculated
GHI is less than 50 W/m2 or the θ is smaller than 93◦, the last two tests are not possible.

∣∣∣∣ GHI
DHI + BHI

∣∣∣∣ <


1.08 i f θ ≤ 75◦ and DHI + BHI > 50 W/m2

1.15 i f 75◦ < θ < 93◦ and DHI + BHI > 50 W/m2

N/A i f DHI + BHI < 50 W/m2
(12)

kd <


1.05 i f θ ≤ 75◦ and DHI + BHI > 50 W/m2

1.10 i f 75◦ < θ < 93◦ and DHI + BHI > 50 W/m2

N/A i f DHI + BHI < 50 W/m2
(13)

2.6. Statistical Indicators

Several studies suggested performance indicators that can be used in radiation models
for validation purposes [38,39]. Among those, three statistical indicators were chosen:
the NMBE, the CV(RMSE), and the R2. The NMBE consists of the normalized average
of the errors of a sample space, thus allowing comparative analyses among different
models. Positive values mean that the numerical model tends to under-predict the mea-
sured parameter, and negative values indicate an overestimation. It is worth highlight-
ing that the use of NMBE alone is not recommended since this index can be subject to
cancellation errors.

The CV(RMSE) measures the variability of the errors between observed and sim-
ulated values. The CV(RMSE) is not subject to cancellation errors; thus, the AHSRAE
Guidelines [40] couple it with the NMBE index to verify the models’ accuracy.

The R2 index provides information on how close the simulated values are to the
regression line of the observed values. It ranges from 0 to 1, where 0 indicates a complete
mismatch between observed and simulated values and 1 is a perfect match.

When it comes to the calibration of the numerical model, the criteria provided by the
ASHRAE Guideline 14 are adopted (Table 2).

Table 2. Validation criteria provided by the ASHRAE Guideline 14.

Calibration Criteria

NMBE <±10%
CV(RMSE) <30%

Model recommendation

R2 >0.75

3. Results
3.1. Data Quality Check

The quality check of the solar irradiation data recorded by the sun tracker installed
in the Sentralbygg 1 at Gløshaugen campus during the two investigated periods (i.e.,
August–December 2021 and July–November 2022) is performed by assigning a QF to each
observation. Following this, the datapoints suitable to be used in the validation process
(QF = 0) are filtered out.

An overview of the recorded data and the corresponding QFs is presented in
Figures 3 and 4. The visual inspection of the diagrams suggests that a high level of
inaccuracy (QF = 1) is mostly associated (i) with low solar irradiation amounts and (ii) with
those values that have been measured during particularly overcast sky conditions. It is
worth mentioning that the monitoring system is found to be less accurate during sunrise
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hours than during sunset hours. Furthermore, more datapoints with QF = 1 are present in
DNI measurements compared to GHI and DHI measurements, particularly from September
to December.
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3.2. Multi-Stage Experimental Validation
3.2.1. Decomposition Modelling

In this section, the validation of the first step of the model chain (i.e., decomposition
modelling) is performed against the experimental data collected by the sun tracker of the
NTNU-Solarnet.

The outcomes from the decomposition model described in Section 2.2 are reported in
the scatter plots in Figure 5. In particular, the observed GHISB, DHISB, and DNISB amounts
are shown against the GHI, DHI, and DNI outputs which derive from the Test Cell Lab,
CAMS, and Era5-Land. It is worth highlighting that only the values that satisfy the data
quality check requirements are considered in the validation process.
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These results enable some preliminary considerations. Firstly, the Test Cell Lab and
CAMS datasets can predict both the GHI and the DHI better than the Era5-Land reanalysis.
Secondly, none of the datasets provides reliable outcomes when calculating the DNI. In
particular, the DNI values that are modelled on GHIEra5 and GHITCL are usually lower than
the observed quantities. Thirdly, the DNICAMS dataset presents some null values during
the hours characterized by DNISB different from zero, as can be seen by the point cloud
adjacent to the y-axis (Figure 5).

The accuracy indicators calculated for the three datasets during the first validation
stage confirmed such observations (Figure 5). The decomposition model with GHITCL as
input parameter shows NMBE values of 9.71%,−3.43%, and 39.20% for GHI, DHI, and DNI
estimations, respectively. Beside this, the CV(RMSE) ranges from 25.36% (GHI) to 48.82%
(DHI), and to 120.25% (DNI), while the R2 is always higher than 0.90, except for the DNI
(0.76). These are the accuracy indicators corresponding to the best performance, while the
worst results are obtained when Era5-Land reanalysis is used. Satellite observations (i.e.,
CAMS) were found to be accurate in estimating GHI and DHI, but not DNI. None of the
models can be validated for all solar irradiation variables (i.e., GHI, DHI, DNI) according
to the adopted validation criteria. Nonetheless, the GHI outcomes from the decomposition
model exploiting solar irradiation data from the Test Cell Lab are validated.
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3.2.2. Transposition Modelling

This section focuses on transposition modelling, presenting the second validation
stage against the observations from the pyranometer integrated into the tilted rooftop of
the Test Cell Lab. The results from the transposition model are presented in the scatter
plots in Figure 6, where the observed GTITCL is plotted against the GTICAMS, GTIEra5, and
GTISB, respectively.
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The visual inspection of the plots highlights the high accuracy of the GTI amounts
that result from the transposition of the DHISB and DNISB. On-site ground measurements
are more accurate than both satellite observations and numerical reanalysis when it comes
to calculating GTI at high-latitude locations.

Such a preliminary consideration is confirmed by the accuracy indicators reported in
Figure 6. The transposition model is found to perform best when DHISB and DNISB are
used as input parameters, resulting in an NMBE of −9.75%, a CV(RMSE) of 28.83%, and an
R2 of 0.98. The worst results are obtained when solar irradiation data from Era5-Land are
used as inputs. The validation criteria described in the ASHRAE Handbook (Table 2) are
satisfied only by the transposition model with DHISB and DNISB as inputs.

3.2.3. PV Energy Generation Modelling

The PV energy generation modelling represents the final step of the proposed model
chain in this study. In particular, the modelled PV energy generation quantities (e.g.,
PVout,Era5, PVout,CAMS, PVout,SB, PVout,TCL) are here validated against the data acquired in
the Test Cell Lab during the two investigated periods (Figure 7).

The visualization of the results in Figure 7 shows that the PVout amounts estimated
from on-site ground measurements of solar irradiance are the most accurate, regardless of
the measured solar irradiance variable (i.e., GTI or DHI and DNI). This is also demonstrated
by the accuracy indicators. In fact, the calculated NMBE values equal 9.37% (PVout,Era5),
−12.11% (PVout,CAMS), −7.45% (PVout,SB), and −2.09% (PVout,TCL), while the estimated
CV(RMSE) values are 88.27% (PVout,Era5), 73.78% (PVout,CAMS), 39.33% (PVout,SB), and
28.84% (PVout,TCL). Finally, the R2 ranges between 0.78 (PVout,Era5) and 0.98 (PVout,TCL).
According to the validation criteria applied in this study (see Section 2.6), only the PV
energy models exploiting the on-site ground measurements of GTI from the Test Cell Lab
as input can be experimentally validated. Nonetheless, the PV energy outputs modeled
from DHISB and DNISB are close to the requirements (i.e., CV(RMSE) is around 10% higher
than the 30% threshold).
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4. Discussion
4.1. Recommendations for Solar Irradiation Modelling at High Latitudes

The multi-stage validation process performed in this study allowed identifying some
recommendations regarding the length of the model chain and the number of steps, as well
as the input data for solar irradiation analysis at high latitudes. In particular, the experi-
mental validation of the decomposition, the transposition, and the PV energy generation
models highlight the importance of implementing the shortest possible model chain. In
fact, the values of the GTI estimated from the GHIEra5 (i.e., through decomposition and
transposition models), are found to be less accurate than the GTI quantities calculated
by transposing the DHICAMS and the DNICAMS. The direct and diffuse fractions from
CAMS can also predict the PVout more precisely if compared to the GHI data retrieved
from the Era5-Land dataset. This is confirmed by the residues calculated between the ob-
served and the modelled PVout quantities, which show a higher number of anomalies (i.e.,
hours characterized by significant variation from the reference value) in Era5-Land than in
CAMS (Figure 8).
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Figure 8. Residues between the PVout estimated using datasets from CAMS, Era5, Sentralbygg 1, and
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When on-site ground measurements (i.e., Sentralbygg 1, Test Cell Lab) are exploited,
the length of the model chain impacts the accuracy of results in a similar way, as demon-
strated by the indicators calculated for the PVout,SB and the PVout,TCL. In this case, the
results from the model chains using GTITCL as input are characterized by almost the highest
level of accuracy.

Regarding the input data, the outcomes from the multi-stage validation process demon-
strated that on-site ground measurements are always leading to more accurate estimations.
In fact, the GHITCL in the first validation stage (i.e., decomposition modelling), the DHISB
and the DNISB in the second validation stage (i.e., transposition modelling), and both the
GTITCL and the GTISB in the third validation stage (i.e., PV energy modelling) showed the
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highest accuracy. Therefore, the use of datasets from on-site ground measurements should
be always prioritized when performing solar irradiation analyses.

Finally, the following recommendations about solar irradiation modelling at high
latitudes are identified:

• When available, solar radiation data from a monitoring apparatus (e.g., sun tracker,
pyranometer, weather station) should be prioritized despite the length of the
model chain.

• With equal data sources (i.e., all data are from on-site ground measurements), the
shortest possible model chain should be implemented.

• Measuring GTI is a valid option since it combines the short model chain with the low
costs of the monitoring sensor (i.e., pyranometer), but it requires the installation of a
high number of sensors (i.e., one sensor for each orientation).

4.2. Limitations of the Study

In this section, the limitations of this study are outlined and commented upon. Firstly,
the two selected time intervals are not covering the whole year, with some months (and
seasons) which are not represented. Therefore, the results might be affected by the specific
weather conditions of the selected period of the year (i.e., between July and December).
However, these datasets are representative of different possible sky conditions: clear sky
conditions are prevalently observed between July and September, and overcast conditions
are more frequent between October and December. In addition, the use of datasets from
two years allowed to mitigate the impact of singularities by increasing the number of
data points.

Secondly, the use of only one combination of decomposition and transposition models
can limit the reliability of the results. In fact, the use of more effective decomposition or
transposition models could lead to lower accuracy indicators for those model chains with
GHI or DNI and DHI as input parameters. On the contrary, using a more efficient PV
energy model would have had a lower impact on the results since it is applied to every
investigated dataset.

Thirdly, the use of a data quality check scheme that is not specifically implemented
for high-latitude applications might result in the erroneous exclusion of correct datapoints
and vice versa. Applying a quality check scheme which is developed for this case study
would have resulted in more accurate filtering. However, investigating methods to ensure
high-quality data is not the core of this research; therefore, a data quality check scheme,
which is commonly used and universally recognized as valid by experts in solar radiation
modelling, has been exploited.

5. Conclusions

In this study, a multi-stage validation of the solar irradiation model chain is performed.
The outcomes from the solar irradiance decomposition and transposition models and the
PV energy generation model are validated against experimental data retrieved from the
NTNU-Solarnet. A data quality filter is applied to ensure the quality of the reference
datasets. Different data sources (e.g., satellite observations, numerical reanalysis, on-site
ground measurements) are considered as input in the model chain to assess how the
length of the model chain and the selection of the data source can impact the accuracy of
the results.

A summary of the main findings is here presented:

• In the first validation stage, the decomposition model with GHITCL as the input
parameter shows the best accuracy indicators, but it cannot reliably estimate DNI.

• None of the selected data sources for decomposition modelling permits accurately
estimating the DNI at high latitudes.

• In the second validation stage, the transposition model using the DHISB and DNISB as
inputs fulfills the validation criteria.
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• In the third validation stage, only the PV energy generation models exploiting on-site ground
measurements of GTI (i.e., GTITCL) as input parameters can be experimentally validated.

In conclusion, on-site ground-measured solar irradiation data are found to lead always
to more accurate results than both satellite observations and numerical reanalysis, despite
the length of the model chain. However, with equal data sources (i.e., all data are from
on-site ground measurements), the shortest model chain is to be preferred.

Future developments of this research study concern:

• Applying the workflow hereby proposed to other data sources as well as to other
locations, at high latitudes.

• Investigating the impact on the accuracy of the results of the model which is chosen in
each stage of the model chain (e.g., irradiance decomposition, irradiance transposition,
PV energy generation estimation).

• Performing a sensitivity analysis on the results by varying the tilt angle and the
azimuth of the PV panel.
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Abbreviations

List of abbreviations including units and nomenclature
Variables
DNI Direct normal irradiation [W·m−2]
DHI Diffuse horizontal irradiation [W·m−2]
GHI Global horizontal irradiation [W·m−2]
GTI Global tilted irradiation [W·m−2]
NMBE Normalized Mean Bias Error [%]
BHI Direct horizontal irradiance [W·m−2]
θ Zenith angle [0–180◦]
CV(RMSE) Coefficient of Variation of the Root Mean Square Error [%]
R2 Coefficient of determination [0,1]
AST Apparent Solar Time [h]
ktc Clearness index for clear sky [unitless]
kt Clearness index [unitless]
kde Proportion of diffuse ration attributable to cloud enhancement [unitless]
kd Diffuse ratio [unitless]
PVout Energy generation from the photovoltaic [Wh]
IAM Incident Angle Modifier [unitless]
Subscripts
SB Regarding the Sentralbygg 1
TCL Regarding the Test Cell Lab
CAMS Regarding CAMS
Era5 Regarding Era5-Land
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Acronyms
PV Photovoltaic
CAMS Copernicus Atmosphere Monitoring Service
ECMWF European Centre for Medium-Range Weather Forecasts
NTNU-Solarnet Solar radiation network at Norwegian University of Science and Technology
API Application Programming Interface
CDS Climate Data Store
QF Quality Flag
Dfc Sub-artic climate
Era5-Land ECMWF 5th generation reanalysis for land application
BSRN Baseline Surface Radiation Network
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
MBE Mean Bias Error
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