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Abstract: Due to the trend of global warming, individuals from all walks of life have paid close
attention to how climate change affects food security. China is a sizable nation with a rich climate and
a diverse range of food crops that are of interest to researchers. Additionally, there is little mention
of agricultural technology and farm irrigation facilities in academic research on climate change and
agricultural economic growth in China. As a result, this study uses the SBM model, panel fixed
effect model, and SYS-GMM model to examine the development trend of climate change and food
security based on the panel data of Chinese provinces from 2000 to 2020. The study found that
China has maintained an average annual growth rate of 4.3% in agricultural total factor productivity
(TFP) in recent years, despite the impact of extreme weather. The average annual precipitation has
a depressing influence on the TFP in agriculture, while the average annual temperature has the
opposite effect. The farm irrigation facilities and agricultural technology’s moderating impact is
mostly shown in how well they attenuate the impact of climate change on the TFP in agriculture.
Food crops have thereby improved their ability to survive natural risks and attain higher yields
as a result of advancements in agricultural technology and increasing investment in contemporary
farm irrigation facilities. The study’s conclusions are used in the article to make the suggestion that
strengthening climate change adaptation is necessary to ensure food security. The strategic policy
of “storing grain in technology and storing grain in the soil” and the advancement of contemporary
agricultural technology must be put into reality while the management system for grain reserves is
being improved.

Keywords: climate change; farm irrigation facilities; agriculture total factor productivity (TFP);
technical advancement

1. Introduction

The sustainability of agricultural development, which is essential for human survival,
has been severely threatened by climate change [1]. The average annual surface temperature
in China is increasing due to global warming at a rate of 0.23 ◦C every ten years. The
distribution of temperature and precipitation over space and time will continue to vary
due to climate change, which will also increase the frequency and severity of extreme
events, including torrential rainstorms, floods, droughts, and insect outbreaks [2]. China
has been able to feed 22% of the world’s people on only 8% of the planet’s territory while
using a high-input, high-pollution agricultural growth model, but at a significant cost to
resources and the environment. China’s agriculture will need to adapt to a more effective,
resource-efficient, and environmentally friendly development model in the future against
the backdrop of high-quality and sustainable agricultural development as agricultural
modernization progresses. Increasing agriculture’s total factor productivity (TFP), which
is often calculated as the ratio of the total agricultural output to total factor input, is the
key to maintaining agricultural economic growth [3]. However, because of how it affects
agricultural production and input levels, climate change, particularly extreme weather,
has raised a great deal of uncertainty regarding the improvement of the agricultural TFP,
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making it necessary to find a solution [4]. Smallholder farmers can adopt a variety of
adaptive strategies in response to climate change, including crop restructuring, more
irrigation, and variety selection. However, it is insufficient to rely solely on farmers to
take adaptive action [5]. Therefore, it is only possible to make up for the shortcomings
of smallholder farmers in adapting to climate change by properly understanding the
policy perspective.

Academics have conducted a great deal of research on agricultural TFP, farm irrigation
systems, and climate change. First off, there are numerous studies on the effects of climate
change on agricultural output in the body of existing literature, and this literature holds a
dominant position [6–9]. Additionally, the effects of climate change on agricultural output
are mainly detrimental [10]. There is still no agreement among academics regarding the
effects of climate change on agricultural productivity due to the significant geographical
differences in these effects. In addition, the model that uses unit yield as the explanatory
variable allows researchers to examine how climate change affects various crop yields, but
it falls short in its understanding of input-output efficiency [11,12].

Based on the difference in climate change indicators, Villavicencio et al. [13] examined
the impacts of climate change on the TFP in U.S. agriculture from two perspectives: tem-
perature and precipitation. The results show that annual precipitation had a significant
positive effect on the TFP, but the precipitation density had a significant negative effect
on the TFP, and temperature change did not have a significant impact on the TFP in most
regions. Liang et al. [14] analyzed the effects of climate change on the TFP in agriculture at
the seasonal and regional levels, showing that temperature and precipitation in different
agricultural regions and seasons accounted for 70% of the TFP changes in U.S. agriculture
from 1981 to 2010.

Based on the agricultural TFP of different industries, crops, or cash crops, further re-
search on the effects of climate change on rice yield per plant (TFP) in Japan by
Kunimitsu et al. [15] revealed that climate change has different influences on the TFP
in different regions. According to Chen and Gong [16], in the short term, extremely high
temperatures will negatively affect China’s planting industry’s TFP, leading to a greater loss
in land output. The usual growth cycle of food crops is shortened by a rise in temperature,
which also concerns the food supply and consumption due to aberrant precipitation and
incalculable harm to grain production per unit area [17,18]. Due to changes in rainfall,
evaporation, runoff, and other water-related processes, as well as the subsequent redistribu-
tion of water resources over time and geography and subsequent changes in soil moisture,
food production is impacted by inadequate water supplies [19,20].

Second, many techniques are now available to measure the change in the agricultural
TFP at various phases. The measurement results differ slightly as a result of the different
input–output indicators and periods chosen, although the TFP is infrequently considered
in studies of farm irrigation facilities. Numerous studies have been conducted on farm
irrigation facilities, the majority of which are performance-focused and use the economic
growth model as their theoretical framework. These studies examine the contribution of
farm irrigation facilities to agricultural output with a focus on the associations between
these facilities and economic growth, grain production, farmers’ income, and the envi-
ronment [21]. Scholars build performance evaluation index systems of governance and
assess their direct performance, indirect performance, and total performance using the DEA
model and network analysis following pertinent evaluation criteria such as the 3E, 4E, and
IOO models [22]. The DEA Tobit two-step approach, S-SBM model, Malmquist–Luenberger
index, three-stage DEA model, and UHSBM model were derived to provide an empirical
analysis of infrastructure supply and investment performance from both static and dynamic
perspectives, respectively. These models address the shortcomings of unintended outputs,
environmental factors, and random factors.

Additionally, the impacts of farm irrigation infrastructure on agricultural production
are mostly seen in four areas: agricultural growth, lowering production costs, fostering
structural adjustment in the agricultural business, and fostering agricultural technology
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advancement [23,24]. The Cobb–Douglas production function model typically includes
variables representing infrastructure investment for assessing the marginal effects of farm
irrigation facilities on agricultural development [25]. Some academics have recently con-
centrated on the ecological and production value of agricultural production-related farm
irrigation facilities [26]. We can assess the value of ecosystem services in terms of control-
ling greenhouse gas emissions and controlling the climate as well as conserving water,
soil, biodiversity, and the environment to further investigate the effects of farm irrigation
facilities on agricultural environmental efficiency [27–29].

The results of the literature search revealed that the majority of academics have also
talked about how climate extremes affect food production. Furthermore, it has been
established that boosting the building of farm irrigation facilities can significantly raise
the quantity and quality of food produced. The relationship between climate change,
farm irrigation facilities, and TFP in agriculture, however, has not received much attention
from researchers. In addition, many academics have overlooked the impacts of both
undesirable outputs and climate change when measuring the TFP in Chinese agriculture.
Few academics have concentrated on the effect of farm irrigation facilities on the TFP
in agriculture, notably the significance of agricultural technology, when researching the
growth processes of China’s agricultural economy.

The input structure varies greatly across China’s huge territory and wealth of resources,
climatic change, and farm irrigation facilities. Additionally, “living off the sky” continues
to be the norm in most places. It is clear that two factors need to be prioritized to improve
the agricultural TFP. To start, there are differences in the initial factor input for farm
irrigation facilities, the structure of endowments, and the rate at which various regions
develop agricultural technology. The second is the fluctuation of climatic conditions. The
production structure of agricultural economic development changes with the environment.
Thus, we need to precisely study how investments in farm irrigation facilities and climate
change affect the trajectory of the agricultural TFP.

In light of this, using inter-provincial panel data and a theoretical model of economic
growth, this study undertakes an empirical test. The SBM model is utilized in this work
to assess the influence of undesirable production on China’s agricultural TFP. In addition,
the panel fixed-effect model and SYS-GMM model are suggested to precisely investigate
the relationship between climate change, farm irrigation facilities, and China’s agricultural
TFP. On the one hand, we examine the crucial part that farm irrigation facilities play in
the process of how harsh climate impacts food production. On the other hand, in order
to supplement the already-present data on the variables impacting TFP in agriculture, the
crucial component of technological advancement is introduced. It offers practical policy
recommendations for managing the shocks brought on by climate change and guaranteeing
food security.

This study looks at the effects of climate change, agricultural technology, and farm
irrigation facilities on agricultural TFP and aims to innovate in the following areas:

(1) The impact of extreme weather on agricultural production. With global warming,
extreme meteorological disaster events such as heavy rainfall, floods as well as droughts
are frequent. The annual average surface temperature in China is rising at a rate of
0.26 ◦C/decade, bringing unpredictable changes to the spatial and temporal distribution
of temperature and precipitation and increasing challenges to sustainable agricultural
development. Therefore, this paper chooses the average annual precipitation and average
temperature as the indicators of climate change, which is different from some scholars.

(2) The impact of non-desired output, i.e., agricultural carbon emissions, is taken into
account when measuring TFP in agriculture. In addition, this method is different from
other studies, such as DEA.

(3) Introducing two intermediary variables—farm irrigation facilities and agricultural
technology—to broaden the scope of the research.
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(4) Using the most recent years of data from 2000 to 2020 for the agricultural TFP mea-
surement. Furthermore, this paper provides a scientific foundation and policy suggestions
for future food security.

To this end, this paper is organized as follows: Section 2 illustrates the study area,
methodology, models, indicator selection, and data sources used in this study. Section 3
discusses theoretical analysis and analyzes the impact of climate change and farm irrigation
facilities on the total factor productivity growth in agriculture using an econometric model.
Section 4 contains research conclusions and policy implications.

2. Materials and Methods
2.1. Study Area

The study area of the article is located in the eastern part of Asia and the west coast
of the Pacific Ocean. At present, there are 34 provincial administrative regions in China,
including 23 provinces, 5 autonomous regions, 4 municipalities directly under the central
government, and 2 special administrative regions. Due to the limitation of data availability,
this part of the empirical sample data mainly comes from relevant statistics for 31 provinces
in China. The study area is shown in Figure 1.
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Figure 1. Digital elevation model of the study area. (a) Average annual precipitation in China
from 2000 to 2020. (b) Prevalence of irrigation in China from 2000 to 2020; the ratio of the effective
irrigated area to the cultivated area is known as the prevalence of irrigation. The figure includes the
provincial boundaries (gray line). The files used to create the map are licensed under GS (2019) 1822
available at: http://www.gov.cn (accessed on 1 December 2022). The data on annual precipitation
are taken from the National Weather Data Network (http://data.cma.cn, accessed on 1 December
2022). The data on the effective irrigated area to the cultivated area are taken from the EPS database
(https://www.epsnet.com.cn, accessed on 1 December 2022), the China Statistical Yearbook, and the
China Rural Statistical Yearbook (http://www.stats.gov.cn, accessed on 1 December 2022).

There are five different types of terrain in China’s general topography: mountains,
plateaus, basins, plains, and hills. The country is high in the west and low in the east. This
offers a range of possibilities and settings for the growth of China’s industry and agriculture.
In China, the north and south experience significantly different wintertime temperatures,
and summertime highs are typical across the board. Furthermore, the distribution of yearly
precipitation is more southerly than northern, with more rain falling in the summer and
autumn and less in the winter and spring. Agricultural productivity and other things are
intimately tied to rainfall conditions.

http://www.gov.cn
http://data.cma.cn
https://www.epsnet.com.cn
http://www.stats.gov.cn
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Due to its size and the huge variations in its temperature and precipitation patterns,
China has a complex and varied climate. This makes China a good location for growing
the majority of the world’s crops. China’s climate has several elements that are helpful
for the growth of agricultural production, but it also has some disadvantages. Droughts,
floods, cold waves, and typhoons are the most common severe weather phenomena that
have a significant influence on China. These disasters frequently have a negative impact on
agricultural productivity and farmers’ lives.

2.2. Methods

The impact of undesirable outputs is not taken into account when measuring efficiency
using the conventional data envelopment analysis (DEA), which only considers economic
benefits. This ignores the issue of input–output slackness and is at odds with the actual
agricultural production process. This study employs an over-efficient SBM model with
non-desired outcomes, which explicitly incorporates the slack variables of each input and
output into the objective function. The impact of the slack variables on the measured values
is discussed as the total factor productivity (TFP) of each province in the nation is measured
using the Max DEA program from 2000 to 2020. The model expressions are as follows:

ρ∗ = min
1− 1

m ∑m
i=1

S−i
xi0

1+ 1
S1+S2

(∑
S1
j=1

Sg
j

yg
j0
+∑

S2
k=1

Sb
k

zb
k0
)

s.t.
{

x0 = Xλ + S−, yg
0 = Ygλ− Sg, zb

0 = Zbλ + Sb

S− ≥ 0, Sg ≥ 0, Sb ≥ 0, λ ≥ 0

(1)

where, in the formula, ρ∗ is the agricultural TFP, where 0 < ρ∗ ≤ 1; S−, Sg, and Sb are
the slack vectors of inputs, desired outputs, and undesired outputs, respectively. xi, yg

j ,

and zb
k are the input of i, the desired output of j, and the non-desired output vector of k,

respectively. “0” is the evaluated unit. m, S1, and S2 are the number of input, desired
output, and non-desired output elements. X, Yg, and Zb are matrices consisting of inputs,
desired outputs, and undesired outputs. λ is the weight vector. When S− = Sg = Sb = 0,
ρ∗ = 1, signifying that the decision unit is totally legitimate; otherwise, it denotes a loss
and necessitates adjusting the input and output quantities.

Malmquist’s proposal for the Malmquist Index was merged with the DEA theory to
create the intertemporally variable TFP in 1953, and the equation is as follows:

TFP =

[
Dt+1

0 (xt+1, yt+1)

Dt+1
0 (xt, yt)

×
Dt

0(xt+1, yt+1)

Dt
0(xt, yt)

]1/2

= EC× TC (2)

where the technical efficiency change index and the technical progress change index,
respectively, are denoted by the letters EC and TC. The expressions for each of these two
are as follows:

EC = SEC× PEC =
St

0(xt ,yt)

St
0(xt+1,yt+1)

× Dt
0(xt+1,yt+1)

Dt
0(xt ,yt)

TC =

[
Dt

0(xt+1,yt+1)

Dt+1
0 (xt+1,yt+1)

× Dt
0(xt ,yt)

Dt+1
0 (xt ,yt)

]1/2 (3)

where, in the formula, SEC and PEC are the scale efficiency change index and pure technical
efficiency change index, respectively. The criteria for determining EC, TC, SEC, and PEC
are the same. TFP > 1 denotes that the total factor productivity increases, TFP < 1 denotes
that the total factor productivity decreases, and TFP = 1 denotes that the total factor
productivity does not cause changes.
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2.3. Model Specification

The article analyzes the data by constructing an adjustment model and mediation
model using the panel fixed effect method and the SYS-GMM method. The text that follows
displays the model’s precise form.

2.3.1. Adjustment Model

The agricultural TFP is influenced by climate change and farm irrigation facilities. In
order to study the adjustment effect of agricultural technology, the interaction term was set
separately for precipitation and temperature using it. And, build the following model.

TFPi,t = α0 + α1 prei,t + α2temi,t + α3 f rui,t + α4xi,t + µi + εi,t

TFPi,t = α0 + α1 prei,t + α2temi,t + α3 f rui,t + α4tci,t + α5tci,t ∗ prei,t

+α6tci,t ∗ temi,t + α7xi,t + µi + εi,t,

(4)

2.3.2. Mediation Model

A dynamic process affecting the agricultural TFP is influenced by beginning conditions
as well as current factors affecting the agricultural TFP, among other things. In order to
determine how climate change and farm irrigation facilities affect the agricultural TFP,
this study attempts to control the initial conditions, incorporate the lagging term of the
agricultural TFP (TFPi,t−1) into the regression model, and build the following model.

TFPi,t = α0 + α1 prei,t + α2temi,t + α3 f rui,t + α4xi,t + µi + εi,t

TCi,t = α0 + α1 prei,t + α2temi,t + α3 f rui,t + α4xi,t + µi + εi,t

TFPi,t = α0 + α1 prei,t + α2temi,t + α3 f rui,t + α4tci,t + α5xi,t + µi + εi,t

TFPi,t = α0 + α1TFPi,t−1 + α2clii,t + α3temi,t + α4 f rui,t + α5tci,t + α6xi,t + µi + εi,t

(5)

In Formulas (4) and (5), TFPit is the agricultural TFP of province i in year t; preit
represents the climate variable of province i in year t, that is, the yearly precipitation;
temit is the average temperature; f ruit is the input of farm irrigation facilities in year t in
province i, that is, the effective irrigation area per capita; tcit is the input variable for the
Malmquist–Luenberger index in year t in province i; xit is a control variable, including the
rural road density, agricultural structure, population density, and fiscal decentralization; α
is the parameter to be estimated; µi represents the fixed effect of each province; and εi,t is
the random error term. All variables are logged to avoid heteroskedasticity in the model.

2.4. Variables
2.4.1. The Agricultural TFP

Output variables: Including the expected output and undesired output, the expected
output makes use of the grain output, whereas undesired output typically refers to non-
point-source pollutants such as chemical oxygen demand (COD), nitrogen (N), or phospho-
rus (P), as well as other pollutants or agricultural carbon emissions. This paper intends to
use agricultural carbon emissions as the undesired output.

The sources of agricultural carbon emissions have diverse characteristics. The sources
of agricultural carbon emissions have been comprehensively identified as chemical fertiliz-
ers, pesticides, agricultural diesel, agricultural film, land plowing, and irrigation power
consumption [30,31]. A method for calculating agricultural carbon emissions is built based
on the sources of carbon in agriculture that have been recognized:

E = ∑ Ei = ∑ Ti × δi (6)

where, in the formula, E is the total amount of agricultural carbon emissions, i is the type of
agricultural carbon sources, Ti is the consumption of each carbon source, and δi is the carbon
emission coefficient of each carbon source. The coefficient is 0.8956 kgC/kg, the carbon
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emission coefficient of pesticides is 4.9341 kgC/kg, the carbon emission coefficient of the
agricultural film is 5.18 kgC/kg, the carbon emission coefficient of diesel is 0.5972 kgC/kg,
the carbon emission coefficient of tillage is 312.6 kgC/hm2, and the carbon emission
coefficient of agricultural irrigation should be 25 kgC/hm2 [32,33].

Input variables: This paper only chooses seven indicators as input variables—labor,
machinery, fertilizer, pesticide, agricultural film, diesel oil, and land—in order to comply
with the empirical rule of the decision-making unit (DMU) and the number of input
variables in DEA analysis [34–36]. The mechanical power input, for example, refers to the
total power index of various agricultural machines, including tractors, balers, and seeders
used in agricultural output, etc. [37]. The labor force input is based on the number of rural
residents per unit area in each region [38]. The amount of agricultural chemical fertilizers
applied in each region (in pure volume), pesticide input (the amount of pesticides per unit
area in each region), agricultural film input (the amount of agricultural plastic film per
unit area in each region), diesel input (the amount of agricultural diesel per unit area in
each region), and land input (the effective irrigated area at the end of each region) are used
because considering that the article measures the TFP of agriculture, combined with the
common phenomenon of agricultural replanting, fallow, and abandonment in China, the
ratio of effective irrigated area to cultivated land area and crop sown area are used instead.
Agricultural land input is more accurate.

2.4.2. Climate Variables

The influence of climate change on agricultural production is mostly evident in tem-
perature and precipitation [39]. Since this paper focuses on the agricultural TFP of food
crop production, annual precipitation is used to measure the impact of climate change on
agriculture. The accumulated temperature variable, which is frequently used in agronomy,
reflects the impact of temperature on the growth and development of food crops from two
aspects: temperature and time [40]. The TFP’s impact is comparatively more consistent.
In order to quantify the impact of climate change on the agricultural TFP, this research
constructs the relationship between annual precipitation and the average temperature and
TFP [41].

2.4.3. Farm Irrigation Facilities

At present, scholars usually utilize two types of indicators, monetary and physical,
for measurement. However, monetary indicators tend to depart from the true worth of
infrastructure since they are usually direct sums of investment volumes, while physical
indicators are similarly incorrect due to variances in units of measurement. Usually, the
more accurate way is to utilize the perpetual inventory method to estimate agricultural
irrigation facilities, but the selection of the depreciation rate and initial capital stock has
a significant impact on the inventory results [42,43]. Therefore, experts have varying
estimations of farm irrigation facilities. Therefore, based on synthesizing the available
research literature, this work selects the effective irrigated area as an index to measure the
input of farm irrigation infrastructure.

2.4.4. Control Variables

Several factors affect grain output, farmers’ income, and economic development level.
In order to objectively evaluate the impact of climate change and farm irrigation facilities
on the agricultural TFP, combined with previous research and actual conditions, the model
also selected the agricultural structure, and seven disaster factors that have a significant
impact on the agricultural TFP are used as control variables (see Table 1).
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Table 1. Index system for evaluation of agricultural infrastructure governance efficiency.

First-Level Indicator Secondary Indicators Specific Description

Explained variable tfp Agricultural total factor productivity

Explanatory variables pre Average annual precipitation
tem Average temperature

Moderator
fru Effective irrigation area per capita
tc Malmquist index

Control variable

aff Affected area/crop sown area
cap Water conservancy investment

eng Food consumption expenditure/rural
household consumption expenditure

fer Fertilizer application per unit area
by region

fil Usage of agricultural plastic film per
unit area by region

inv Water conservancy investment
wat Waterlogging area per capita

Note: The table is organized by the author.

2.5. Data Sources and Statistical Analysis

The time range of the above variables is from 2000 to 2020. The source data are
primarily taken from the EPS database (https://www.epsnet.com.cn, accessed on 1 De-
cember 2022), the China Statistical Yearbook, and the China Rural Statistical Yearbook (http:
//www.stats.gov.cn, accessed on 1 December 2022).

The economic data of agricultural inputs and outputs as well as climate data for
each province from 2000 to 2020 were compiled into a table in accordance with pertinent
databases and statistical yearbooks. A descriptive statistical analysis was then carried out
for each indicator’s data, and the results are shown in Table 2.

Table 2. Descriptive statistics of different variables in China from 2000 to 2020.

Variables Mean Standard Deviation Minimum Value Maximum Value

tfp 1.01682 0. 0936045 0. 7184745 1.30906
pre 1384.856 2262.111 167 15,574.63
tem 13.84364 5.379699 2.998849 24.80421
fru 1062.781 775.7506 217.1962 4066.159
tc 1.012202 0.1122717 0.6795132 1.363629
aff 0.2085708 0.145902 0 0.6460758
cap 407.8922 308.2451 38.0959 1598.9
eng 0.3802011 0.0760678 0.259 0.56
fer 579.413 264.1651 170.0166 1396.03
fil 31.38759 30.8204 4.710912 148.1515

inv 1218.027 1278.347 52.809 5638.867
wat 3644.95 4690.888 24.46483 21,561.78

Note: Data compiled by the authors.

3. Results
3.1. Trend and Regional Analysis of Agricultural Total Factor Productivity (TFP)

The agricultural TFP for the entire country is calculated in this research using the Max
DEA software and the super-efficiency SBM model, incorporating unexpected production.
The dynamic trajectory of the agricultural TFP in various grain-producing regions is
considerably diverse from 2000 to 2020, as illustrated in Figure 2. The primary regions for
producing grain have an upward tendency overall. The agricultural TFP in this region has
been in a good and steady state for a long time, and the agricultural output has resulted in
some economic gains, except in 2003, when the governance efficiency was lower than 0.5;
the agricultural TFP in the main grain-selling locations varies substantially.

https://www.epsnet.com.cn
http://www.stats.gov.cn
http://www.stats.gov.cn
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Figure 2. Internal mechanism of farm irrigation facilities affecting the agricultural TFP operation
diagram. (China can be divided into three categories, including grain production areas, grain
marketing areas, and grain balance areas. Of these, there are 13 grain production areas, including
Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, Henan, Shandong, Jiangsu, Anhui, Jiangxi,
Hubei, Hunan, and Sichuan; 7 grain marketing areas, including Beijing, Tianjin, Shanghai, Zhejiang,
Fujian, Guangdong, and Hainan; and 11 grain balance areas, including Shanxi, Ningxia, Qinghai,
Gansu, Tibet, Yunnan, Guizhou, Chongqing, Guangxi, Shaanxi, and Xinjiang).

The other 25 Chinese provinces increased positively between 2000 and 2020, as indi-
cated in Table 3, except for Guangdong, Hainan, Guizhou, and Shaanxi, where the TFP was
less than 1. The fact that it was larger than 0.970 and that Jilin Province had the highest
score and Guizhou Province had the lowest index among them showed that TFP in China
was still progressing well. Additionally, the average annual growth rate of the agricultural
TFP in the 29 provinces was 4.3%, slightly higher than the findings of the other scholar.
The ability to tolerate natural risks has increased grain production in recent years, despite
the impact of harsh weather. This is because investments in modern irrigation and water
conservation facilities have increased due to technological advancement. However, the
precise causes demand further investigation.

Ningxia and Shanghai had the lowest indexes, both of which were not high, showing
that further advancement in agricultural technology is needed to accelerate the devel-
opment of modern agriculture. Less than half of the provinces reached above 1 on the
technological progress and change index (TC) from 2000 to 2020, with the lowest indexes
being low values in both cases. Only four provinces had an index of technical efficiency
change (EC) below 1, which was consistent with the TFP comparison result and showed
that China’s agricultural technological level was in good shape. There are 11 provinces
in which all three major indexes are larger than 1, and EC is primarily responsible for the
rise in TFP, according to the three major indexes. It is clear that in order to raise the local
TFP, each province in the nation should concentrate on raising its technological level and
increasing its investment in agricultural production.

The national agricultural total factor productivity (TFP) value, which accounts for
inputs from farmland and water facilities, can be seen in Figure 3. It fluctuated from 0.821
in 2000 to 1.040 in 2004 and then from 2005 to 2020, except in 2005, 2009, 2010, and 2014,
wherein the TFP remained above 1. The average TFP showed an upward trend from 2000
to 2004 and an upward trend from 2005 to 2020, with the smaller fluctuations being brought
on by the varying trend of the technological progress change index (TC). The technical
efficiency index (EC) is influenced by both the scale efficiency change index (SEC) and the
pure technical efficiency change index (PEC), with the mean value of the pure technical
efficiency change index (PEC) trending more similarly while the scale efficiency change
index has a different trend. Additionally, the mean value of total factor productivity (TFP)
and mean value of the technical efficiency index (EC) are relatively similar (SEC). This
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suggests that the technical efficiency index (EC) and the pure technical efficiency index of
change have a significant impact on the total factor productivity (TFP) in agriculture (PEC).

Table 3. TFP of agriculture in China from 2000 to 2020.

Province TFP EC TC

Hebei Province 1.028 1.030 0.997
The Nei Monggol Autonomous Region 1.012 1.004 1.007
Liaoning Province 1.056 1.063 0.993
Jilin Province 1.328 1.326 1.001
Heilongjiang Province 1.014 1.016 0.998
Jiangsu Province 1.230 1.225 1.004
Anhui Province 1.019 1.021 0.999
Jiangxi Province 1.008 1.003 1.005
Shandong Province 1.064 1.067 0.998
Henan Province 1.034 1.033 1.001
Hubei province 1.025 1.024 1.001
Hunan Province 1.026 1.025 1.001
Sichuan Province 1.025 1.023 1.002
Beijing 1.071 1.046 1.024
Tianjin 1.116 1.127 0.990
Shanghai 1.006 1.023 0.984
Zhejiang Province 1.112 1.108 1.003
Fujian Province 1.000 0.990 1.010
Guangdong Province 0.998 1.012 0.987
Hainan 0.980 0.962 1.019
Shanxi Province 1.041 1.048 0.994
The Guangxi Zhuang Autonomous Region 1.015 1.017 0.998
Guizhou Province 0.978 0.991 0.987
Yunnan Province 1.017 1.023 0.994
Shaanxi Province 0.998 0.932 1.071
Gansu Province 1.010 1.018 0.992
Qinghai Province 1.028 1.033 0.995
The Ningxia Hui Autonomous Region 1.023 1.040 0.984
The Xinjiang Uygur Autonomous Region 1.009 1.002 1.007

Note: Data are calculated by Max DEA software. TFP = EC × TC = PEC × SEC × TC.

3.2. Analysis of the Impact of Climate Change on the Agricultural TFP

The Hausman test findings for model (1) in Table 4 indicate that the panel fixed effect
model is preferable to the mixed regression and random effect models. In terms of the
regression results of the explanatory variables, while precipitation has played a negative,
but not significant, role on the agricultural TFP, temperature has a significant positive effect
on the agricultural TFP. The reason is that precipitation irregularity increases the likelihood
of geological disasters such as floods and damage to food production, transportation, and
other links, endangering food supply and utilization. The annual precipitation varies
greatly across the entire nation and exhibits an upward trend, with four peaks occurring
in 2010, 2012, 2016, and 2020, so it is not significant. In comparison to other years, 2016
had much more precipitation, whereas the highest amount of precipitation in 2011 was
very low (as shown in Figure 4). Data analysis demonstrates that China’s average annual
accumulated temperature of 13 to 15 ◦C in the range of floating, in general, is rising. In 2007,
2017, and 2019, there were three relatively obvious annual accumulated temperature peaks,
and in 2012, there were the most resources; climate change is the most direct characteristic
of climate warming. For crops well north, the winter cold brings beneficial effects, resulting
in increased grain production [44].
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The moderating factors were decentralized to prevent multicollinearity, and the mod-
erating effect was examined using the panel fixed-effect model. The panel fixed-effect
model outperformed the random-effect model, according to the Hausman test. Accord-
ing to model (2)’s findings, the temperature had a positive main effect coefficient on the
agricultural TFP, whereas precipitation had a negative main effect coefficient. Agricultural
technology served as a moderating factor that attenuated some of the negative effects of
rising precipitation on the agricultural TFP. The coefficient of the interaction term between
agricultural technology and precipitation was positive but insignificant. With the advance-
ment of science and technology, factors such as breeding technology, greenhouses, and the
widespread use of agricultural technology have significantly reduced the impact of natural
disasters on food production and improved the security of grain production [45–47]. These
factors, along with climate change brought on by a lack of resources such as water, heat,
and other resources, have contributed to global warming [48]. The negligible coefficient of
the interaction term between agricultural technology and precipitation, however, may have
two causes. On the one hand, there is an irregular tendency in the current precipitation
situation in China. According to research, a 20% decrease in rainfall will render useless any
technology used to boost the productivity of food crops. Agricultural technology has a
limited ability to reduce precipitation. On the other hand, the regulation effect of irrigation
technology on precipitation instability may be weakened due to the early construction and
heavy damage of farm irrigation facilities and the serious abandonment of mechanical
wells caused by the beginning of the groundwater protection plan, which is consistent with
the small regression coefficient of the interaction term between climate change and the
input of farm irrigation facilities mentioned above [49].
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Table 4. Estimation results of climate change on the agricultural TFP.

Variables (1) (2)

lnpre −0.0160 *
(−1.80)

−0.00997
(−1.17)

tem 0.0264 **
(2.16)

0.0289 **
(2.52)

lnfru 0.108 ***
(3.05)

0.0818 **
(2.47)

lncap 0.0331
(1.33)

0.0452 *
(1.93)

lnaff −0.370 *** −0.266 ***
(−6.47) (−4.74)

lneng 0.0563
(1.10)

0.0275
(0.57)

lnfer −0.0756 **
(−2.06)

−0.0661 *
(−1.92)

lninv −0.0177 *
(−1.68)

−0.0124
(−1.25)

lnfil −0.0115
(−1.10)

−0.0143
(−1.44)

lnwat 0.0120
(0.39)

0.0150
(0.52)

tc 0.324 ***
(7.80)

c_lncli_tc 0.0315
(0.55)

c_tem_tc −0.0401 ***
(−3.95)

_cons −0.504
(−1.20)

−0.954
(−2.38)

N 522 522
adj. R2 0.0658 0.1825

Note: ***, **, and * denote significance levels of 1%, 5%, and 10%, respectively, with standard errors in parentheses;
the same below.
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Agricultural technology, as a moderator variable, significantly reduces the temperature
rise’s positive influence on the agricultural TFP due to the sharp rise in temperature and
aggravation of drought, plant diseases, and insect pests; it also affects the crop quality,
causes an increase in extreme weather, and poses a threat to agricultural production [50].
Agricultural technology and a temperature interaction coefficient under the 1% level are
significantly negative.

The paper offers a simple theoretical model to explain the influence of climate change
on the agricultural TFP and the function of farm irrigation facilities based on the afore-
mentioned literature review. Agriculture is considered to conform to the standard C-D
production function form:

Y = AF (K, L) (7)

where Y stands for the agricultural output; A stands for the agricultural TFP; and K and L
stand for the capital and labor inputs for agricultural production, respectively.

In addition, A = θT, that is, A is a function of factor allocation (θ) and agricultural
technological progress (T). Farm irrigation facilities do, however, have a ceiling effect
(θ ≤ 1) that reduces the efficiency with which agricultural output elements are distributed.
Therefore, T’ (f) = 0, θ′(f) ≥ 0, θ′ ′(f) ≤ 0, and f stands for farm irrigation facilities.

This paper analyses the impact of climate factors on the agricultural TFP, which is
denoted by cli. The formula is as follows:

dA
dcli

=
∂A
∂cli

+
∂A

∂θ( f )T( f )
·∂θ( f )

∂cli
·∂T( f )

∂cli
=

∂A
∂cli

+
∂A
∂ f
· ∂ f
∂cli

, (8)

The influence of climate change on the agricultural TFP is dependent on two factors:
the direct effect of climate on the TFP and the indirect effect of climate change on the TFP,
which is the input of farm irrigation facilities on the effectiveness of factor allocation θ and
technical advancement.

Conclusion 1: Technological progress plays a regulatory role.

3.3. Analysis of the Impact of Farm Irrigation Facilities on the Agricultural TFP

The panel fixed effect model is used in this study to investigate the relationship
between farm irrigation facilities, technological advancement, and the agricultural TFP
based on the intermediary effect. The first-order lagged TFP is used as the instrumental
variable in the systematic GMM estimate approach to show how climate change affects TFP,
and the data passed the robustness test. Table 5 displays the findings, which demonstrate
that model (6) passed the test for instrumental variables. The residual terms only possessed
a first-order serial correlation, according to the findings of the AR (1) and AR (2) tests, and
there was no second-order autocorrelation. All of the Hansen statistics’ P-values were
higher than 0.1, proving the validity of the instrumental variables.

According to the results of model (5)’s estimation, the agricultural TFP with one lag
period passed the positive significance test at the 10% level in all models, suggesting that
capital accumulation in the early stages may not have a positive impact on agricultural
economic growth in the later stages and that there may be a phenomenon known as
diminishing marginal utility. It has been demonstrated, however, that TFP does exhibit
“inertia” in time series. A continuous accumulation adjustment process is being used to
improve the agricultural TFP.

The coefficient of farm irrigation facilities in model (3) is significantly positive based
on the regression results, indicating that these facilities have a positive spillover effect on
grain production growth and that accelerating infrastructure investment is a key strategy
for enhancing the agricultural TFP. The accumulation of farm irrigation facilities is the
primary internal component of technical advancement, which is consistent with model (4)’s
finding that the coefficient of farm irrigation facilities is significantly positive. Model (5)
shows that agricultural technology and farm irrigation facilities have a significant positive
impact on the agricultural TFP, suggesting that technological advancement has a mediating
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effect. Model (6) shows that accelerated technical innovation and progress can boost the
improvement of the agricultural TFP. These results are consistent with the estimated results
of the fixed effects.

Table 5. Estimation results of farm irrigation facilities on the agricultural TFP.

Variables (3)
lntfp

(4)
tc

(5)
lntfp

(6)
lntfp

lnpre −0.0160 *
(−1.80)

−0.00108
(−0.12)

−0.0157 *
(−1.85)

−0.0189
(−1.47)

tem 0.0264 **
(2.16)

−0.0000847
(−0.01)

0.0264 **
(2.27)

0.0116 **
(2.20)

lnfru 0.108 ***
(3.05)

0.0879 *
(2.39)

0.0818 **
(2.42)

0.0884
(1.52)

lncap 0.0331
(1.33)

−0.0171
(−0.66)

0.0381
(1.60)

0.0405
(1.44)

lnaff −0.370 ***
(−6.47)

−0.150 *
(−2.52)

−0.326 ***
(−5.94)

−0.346 **
(−2.73)

lneng 0.0563
(1.10)

0.110 *
(2.06)

0.0239
(0.49)

−0.122 *
(−1.77)

lnfer −0.0756 **
(−2.06)

0.00322
(0.08)

−0.0765 **
(−2.19)

−0.103 *
(−2.74)

lninv −0.0177 *
(−1.68)

−0.00704
(−0.64)

−0.0156
(−1.56)

−0.0390 **
(−2.12)

lnfil −0.0115
(−1.10)

0.0266 *
(2.44)

−0.0193 *
(−1.92)

0.0000478
(0.00)

lnwat 0.0120
(0.39)

0.0338
(1.05)

0.00206
(0.07)

−0.0343
(−1.20)

tc 0.293 ***
(7.06)

0.248 *
(1.85)

L.lntfp −0.153 *
(−2.02)

_cons −0.504
(−1.20)

0.355
(0.81)

−0.608
(−1.52)

N 522 522 522 493
adj. R2 0.0658 0.0290 0.1516
AR(1) −2.84

AR(1) p-value 0.005
AR(2) −0.14

AR(2) p-value 0.888
Sargan-test 23.03
Sargan-test

p-value 0.113

Note: L.TFP is the agricultural TFP of the lag period. ***, **, and * denote significance levels of 1%, 5%, and 10%,
respectively, with standard errors in parentheses.

This research also investigates the underlying mechanisms through which the invest-
ment in farm irrigation facilities impacts the agricultural TFP. To find the solution to this
question, we can simultaneously derive the input of agricultural irrigation facilities on both
sides of Equation (8):

d2 A
dclid f

=
∂2 A

∂cli∂ f
+

∂2 A
∂2 f
· ∂ f
∂cli

, (9)

The left side of Equation (9), which can be broken down into direct impacts and indirect
effects of farm irrigation facility investment, shows how farm irrigation facility investments are
used to deal with the consequences of climate change on the agricultural TFP.

The technical effects of farm irrigation facilities primarily consist of two aspects,
as depicted in the figure: (1) horizontal effect: assuming that the agricultural technical
conditions of T1 do not change, the increase in the stock level of farmland water conservancy
facilities (as shown in Figure 5, from f1 to f2) will increase the allocation efficiency of
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agricultural production factors, and the agricultural TFP will also gradually rise; (2) growth
effect: based on the assumption that exogenous agricultural technical circumstances exist,
the agricultural TFP will steadily rise from T1 to T2, while the marginal utility will fall.
This means that a higher level of farmland and farm irrigation facilities will correlate to a
lower
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Conclusion 2: Technological progress plays an intermediary role in the process of TFP
affected by farm irrigation facilities.

3.4. Limitations and Implications

Climate change is one of the shifts the world is going through. According to this
paper’s analysis of climate change in China from 2000 to 2020, which is also in line
with the conclusions of Li et al. [51], China is currently undergoing extreme warming.
Alexander et al. [52] conducted research on extreme climate change, and the results showed
that 70% of the world’s land area exhibits a growing trend toward a continuous decline
in the number of cold night days and a continuous increase in the number of warm night
days. As a result, the Chinese region fits with the trend of global climate change. The
results of earlier investigations are more compatible with the finding that the intensity of
precipitation increases with some variations in precipitation variability [53].

Precipitation was shown to be the principal growth factor impacting grain output
and to have a suppressive effect on grain production when the effects of temperature and
precipitation on the TFP in agriculture were compared, which was in line with the findings
of Yang et al. [54]. The data analysis results revealed that, in contrast to the findings of
other studies, the rise in temperature was accompanied by an increase in the agricultural
TFP. Combining the research findings of Liu et al. and Haider et al. [55,56] on the impact of
temperature change on grain production in a particular country, it is possible to conclude
that, despite China’s ongoing warming trend, the country’s warming climate has advanced
the start of the warmer season in spring and postponed the start of the cooler season in
autumn. Crops have more time to grow, absorb sunlight, photosynthesize, and change
matter as a result. This theoretically increases their production capacity and may, in part,
result in larger grain yields.

To sum up, the analysis of this work still has numerous limitations.
Firstly, there are other elements besides climate change that have an impact on the

TFP in agriculture. Human factors are also crucial. In theory, investing in farm irrigation
facilities can increase the TFP [57]. The policymakers of farm irrigation facility investment
are unable to determine the degree of farm irrigation facility investment that is most
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appropriate for all types of climate change challenges in all places due to factors such as
food security [58,59]. How to open the “last mile” of agricultural technology promotion,
which is related to the development of digital platforms for agricultural technology services,
as well as how to allow the most cutting-edge and advanced agricultural science and
technology achievements to permeate the village, home, and field, is critical. It is essential
to obtain local government spending at this time. As a result, future research will continue
to focus more on the processes of harsh climate and the effects of anthropogenic variables
on the food supply.

Second, this study measures the effect of climatic extremes on agricultural production
using average temperature and precipitation density rather than measuring climate ex-
tremes directly. According to preliminary findings, temperature change has a large positive
impact on the agricultural output increase, while extreme precipitation weather has a
negative impact. The measurement and evaluation of extreme weather events as well as
the processes by which they affect the productivity of all factors in agriculture, however,
require more in-depth study.

Third, due to the size of the research region, there are also significant variations in
hydrothermal conditions, particularly for the many food crops that have distinct spatial
distribution patterns. Regions or types of changes affected directly by climate change vary
greatly [60]. For instance, whereas precipitation increases in South China may increase the
likelihood of agricultural disasters, precipitation increases in Northwest China will greatly
enhance agricultural output [61,62]. Therefore, future research will concentrate on how
extreme climatic change affects the agricultural TFP in various regions of China and for
various food crops.

4. Conclusions

In this study, we examined the mechanism underlying the impact of climate change on
the agricultural total factor productivity (TFP), developed a model of the moderating effect,
examined the moderating impact of farm irrigation facilities and agricultural technology,
and empirically tested the model using panel data from all provinces. The result is the
same as that used by Li et al., Alexander et al., and Yang et al. The present paper confirms
their findings using the most recent data, different methods, and more scientific indicators
of agricultural TFP measurement. The main conclusions are as follows:

(1) Similar to the findings of other studies, this paper finds that climate extremes
and farm water facilities have an impact on food output. Agriculture’s technological
advancements also have a moderating and mediating effect;

(2) In contrast to the findings of other studies, the paper discovers that China’s average
agricultural TFP between 2000 and 2020 is 4.3%, with a TFP above 1 in 25 provinces, at a
somewhat faster rate than other research. Furthermore, this paper makes the case that the
average annual cumulative temperature in China varies between 13 and 15 degrees with
a general upward trend, and the warming is beneficial for crop growth and preventing
freezing calamities, which has a large and positive impact on the agricultural TFP.

The article does, however, have certain shortcomings. Instead of relying solely on data
that are available to the public, we must do additional field research for micro-subjects in
future studies. Additionally, we must broaden our choice of indicators, particularly for
extreme climate change.

The aforementioned findings have significant policy ramifications for combating cli-
mate change and guaranteeing domestic food security: (1) in order to handle the food crisis
in the short term while strengthening the ability to foresee meteorological disasters, the
method for managing grain reserves should be strengthened in light of the constricting ef-
fect of climate change on the agricultural TFP; (2) we must aim at the moderating influence
of agricultural technology and farm irrigation systems in the process of climate change on
the agricultural TFP. On the one hand, we must firmly implement the “storing grain in
technology, storing grain in the land” strategy, “short board” swallow the infrastructure,
adjust measures to local conditions to adjust the structure of grain cropping systems and
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planting, and achieve cultivation optimization of new varieties of crops, taking the com-
prehensive technology to improve the ability to withstand natural disasters and improve
crops’ adaptability to environmental changes. On the other hand, although agricultural
technology has controlled the precipitation process, its influence has not been substantial,
indicating that China’s response to climate change and the overall rate of the agricultural
technology extension mechanism transformation still need to be improved.
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