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Abstract: Talent mobility is the key driving force to accelerate innovation and economic develop-
ment. Prior studies focused much attention on the mobility of scientific talents from the angle of
bibliometrics. Still, the mobility of technical talents was not thoroughly analyzed through the lens of
the complex network. In consideration of technical talents being the primary and direct labor force to
foster innovation and economic growth, in this paper, we provide a framework to measure the mobil-
ity of technical talents based on patents from the perspective of the complex network. The Technical
Talent Mobility Network (TTMN) model is constructed to measure the changes of network topology
on the levels of network, node, and edge aspects, respectively, thus deepening our understanding of
the important node and mobility channels of technical talents. We then take China’s smart logistics
as an example to verify the framework promoted, and results show the framework can reveal the
actual situation of technical talent mobility that was reported by the government gazette and related
articles. The framework proposed in this paper points out a new method and perspective to measure
technological talent mobility, which is essential to facilitate regional innovation and economic soar.
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1. Introduction

Talent mobility can promote the spread and diffusion of knowledge, facilitate re-source
integration, and bring new products and technological innovation [1–4]. As a result, how
to maximize the “spillover effect” of talent mobility [5] and boost the long-term growth
of enterprise and economic take-off [6] has become a hot research topic for researchers
and policymakers [7].

Qualitative research and quantitative research are standard methods to explore talent
mobility. The qualitative research process adopts structured [8] or semi-structured [9,10]
in-depth interviews with relevant experts and analyzes the causes or results of talent mobil-
ity from psychology, economics, and other perspectives [11,12]. Compared with qualitative
research, the application of quantitative research is universal and objective. Quantitative
research is the main method to explore talent mobility. The existing research was used
to track talent mobility through the literature databases [13–15], questionnaires [16], sta-
tistical yearbooks [17], official websites and resumes [18], etc. Then, in order to boost
the innovation process in-depth and prompt economic growth, the characteristics, in-
fluencing factors [19–23], and future tendencies [24–26] of talent mobility are analyzed.
For example, Jiang et al. (2022) proposed a fractional gray prediction model based on
change-point detection to predict the mobility of overseas talents, and they concluded
that the proportion of talents returning to China would increase steadily in the future [26].
Kongsonontornkijkul et al. (2019) constructed a theoretical framework including university
factors, industry factors, research factors, etc. to explore the critical elements that influenced
the participation decision of talents [27]. Robinson-Garcia et al. (2019) retrieved a dataset
from 2008 to 2015 in the Web of Science database and provided a classification system to
define the mobility of researchers based on their job-hopping behavior, and they found that
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researchers with directionality but no rupture with their original country accounted for the
largest proportion in all mobile scholars [14].

In recent years, the complex network has become a powerful tool for measuring
talent mobility [28,29]. It provides an opportunity to explore the real-world system from
the macroscopic level, analyzes the relationship between nodes in the network [30,31],
and reveals the primary mobility law of talents [32–34]. For example, Shi et al. (2020),
Wang et al. (2020), and Jin et al. (2021) measured the overall characteristics of the talent flow
network by using network density, average clustering coefficient [35–37], etc. Shi et al. (2020)
and Zhang et al. (2022) took advantage of degree centrality, betweenness centrality, and
other indicators [35,38] to reveal the network structure and essential nodes. Based on the
online database for the International Migration Statistics (IMS), Tranos et al. (2015) used the
annual migration flow data of 32 OECD countries from 2000 to 2009 [39], thus exploring
the importance of physical and cultural proximity to migration.

However, prior studies focused too much on scientific talents, but the mobility of tech-
nical talents needed to be thoroughly analyzed through the lens of the complex network.
The consideration of technical talents is the main and direct labor force to foster technical
innovation, transformation, and economic growth. In this study, technical talent mobility is
investigated with the help of invention patent data. Then, by adopting complex network
analysis, the framework of technical talent mobility is comprehensively constructed from
the network level, node level, and edge level. It provides a reference for optimizing enter-
prise human resources, promoting the benign advancement of the innovation ecosystem,
and accelerating the development of application-oriented fundamental research.

2. Methodology
2.1. Framework of Talent Mobility

In this section, we introduce the framework to measure talent mobility from network
characteristics. By doing this, the evolution trend of the network can be comprehensively
depicted and predicted. Table 1 shows the indicators and descriptions of the framework
in detail.

The indicators are explained as follows:
Network density (ND) reflects the overall cohesion of a network and the closeness of

the interconnection between nodes.
Global efficiency (GE) reflects the average efficiency of information transfer between

node pairs, and it is equal to the harmonic mean of the distance between two nodes.
Average path length (APL) is often used to represent the average of the shortest edges

between all nodes in the network. APL describes the separation degree of nodes in the
network.

Clustering coefficient (C) is used to gauge the degree to which nodes in a network
tend to cluster together, i.e., the familiarity between nodes.

Central potential represents the degree to which a graph shows a tendency to converge
to a specific node, which is used to describe the dependence of the whole network on the
hub node.

Compatibility is used to measure the correlation of the degree between connected
node pairs in the network.

Node betweenness centrality (CB)is used to measure the transit effect of a node on the
information flow between other nodes.

Edge betweenness centrality (CE) is used to measure the transit effect of an edge on
the information flow between other nodes.
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Table 1. Framework for measuring talent mobility.

Dimension Indicator Formula Explanation

Network-level

Network density (ND) ND = L
N(N−1)

Where L is the actual number of edges
connected between vertexes, and N is the

number of nodes in the network.

Global efficiency (GE) GE = 1
N(N−1) ∑i 6=j

1
dij

Where N is the number of nodes in the
network, and dij is the shortest path

between node i to node j.

Average path length (APL) APL = 1
N(N−1) ∑i 6=j dij

Where N is the number of nodes in the
network, and dij is the shortest path

between node i to node j. If this path does
not exist in the network, it is expressed as

dij = ∞ [40].

Clustering coefficient (C)
C(i) = A(i)

1
2 K(i)(K(i)−1)

=

2A(i)
K(i)(K(i)−1)

Where A(i) is the actual number of edges
between adjacent nodes of node i.

If node i has only one or no neighboring
node (i.e., K(i) = 1 or K(i) = 0), A(i) = 0,

and the numerator and denominator of the
formula are both 0, so C(i) = 0.

Central potential

In-degree relative
central potential (CIN

RD) CIN
RD =

∑N
i=1(CIN

RDmax−CIN
RD(i))

N−2
Where CIN

RDmax and COUT
RDmax are the

maximum values of in-degree and out-degree
relative central potential, respectively.
When COUT

RD > CIN
RD, the nodes in the

network tend to connect; when
COUT

RD < CIN
RD, the nodes in the network

shows the weak connection
or disconnection [41].

Out-degree relative
central potential (COUT

RD )
COUT

RD =
∑N

i=1(COUT
RDmax−COUT

RD (i))
N−2

Compatibility In-out degree
compatibility (rio)

rio = r(α, β) =
E−1 ∑i

[
(jαi −jα)

(
kβ

i −kβ
)]

σασβ

Where E is the total number of connected
edges; jα

i and kβ
i represent the degree of

source node α and the degree of target node
β of connected edges i, respectively,

jα = E−1 ∑i jα
i , σα =

√
E−1 ∑

i

(
jα
i − jα

)2
,

and kβ and σβ are the same as the definition
in front.

When rio > 0, the network is a collocated
network, in which high-degree nodes tend

to connect with nodes with a similarly
higher level of degree; otherwise, it is a

mismatched network, in which nodes with
higher degrees tend to connect with nodes

with lower degrees.

Node-level Node betweenness
centrality (CB) [42]

Weighted betweenness
centrality of node based
on RFWA (CRFWA

B ) [43]

CRFWA
B (i) =

∑i,j,k∈{1,2,··· ,N} SRPL(N)
jk (i)

Where SRPL(N)
jk (i) is the number of strong

relevance path length (SRPL) connecting any
nodes pair and passing through a specific

node i in the global network:

SRPL(k)
ij =

max
i,j,k∈{1,2,...,N}

{
w(k−1)

ij ,
w(k−1)

ik w(k−1)
kj

w(k−1)
ik +w(k−1)

kj

}
Where SRPL(k)

ij is the SRPL path between
nodes i and j , representing the most

efficient and effective propagation path in
the similarity weight network.

If greater than w(k−1)
ij , SRPL(k)

ij is the
maximum value, or otherwise, it is only

equal to w(k−1)
ij . When SRPL(k)

ij happens to

be equal to w(k−1)
ij , the optimal path is the

most direct propagation path between
nodes i and j , and thus it is unnecessary to

transit through another node.

Edge-level Edge betweenness
centrality (CE) [44]

Weighted between the
centrality of edge based
on RFWA (CRFWA

E ) [45]

CRFWA
E (i, j) =

∑s,i,j,t∈{1,2,··· ,N} Str(N)
st (i, j)

Where Str(N)
st is the number of links

between any node pair i and j contained in
the SRPL in the whole network.
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2.2. Network Modeling

In this section, we illustrate the network modeling process, but before it, we run the
name disambiguation process first to improve the reliability of data.

2.2.1. Name Disambiguation

Technical talents in the same company may share the same names. The purpose of
name disambiguation is to determine whether they are the same person after flowing. The
detailed procedures are as follows:

Step 1: To cluster all subgroups of inventors with the same names. First, group patents
whose inventors share the same name. In this group, patents without information about
the company will be regarded as an independent subgroup and the inventors as individual
applicants; companies and the inventors will group those with such information as the
company applicants. All subgroups with the same names can be thus obtained.

Step 2: To set the benchmark. The patent title broadly represents the inventor’s
research interest. Taking the similarity of patent titles as the similarity of inventors, the
average similarity of all company applicants is measured by the generalized Jaccard index.
It is found that 95% of the applicants have a similarity index of no less than 0.07.

Step 3: To calculate the average similarity of applicants from different companies. The
patent data in the subgroup of company applicants with the same names are paired, and
then the average similarity of the applicants is calculated.

Step 4: To classify applicants from different companies in the group. Patents of
company applicants are first sorted by application time. If the patents are applied by
inventors with the same name but affiliated with different companies in the same time
window, the inventors shall be considered diverse company applicants. If there is no time
overlap, these patents need to be merged, in particular, those with the highest similarity
and no less than 0.07.

Step 5: To obtain the data of technical talents after disambiguation.
Then, Step 3 and Step 4 are repeated until the similarity between all groups is less than 0.07,

and name disambiguation is completed.
The process of name disambiguation is shown in Figure 1.
In the above process, we assume that the knowledge reserve and professional skills of

technical talents will not change significantly, which can be used as the basis for counting
the situation of talent flow between regions. This method no longer regards the organization
and geographical location as the premise for identifying technical talents but judges them by
the field in which they apply for patents. It lays a good foundation for the implementation
of network modeling and analysis.

2.2.2. TTMN Model

Complex network analysis can be widely used in sociology, physics, ecology, and
so on. In recent years, this method has also been applied to the field of occupational
mobility and has played an important role. Based on this, this paper constructs the
TTMN model. The TTMN model is a type of weighted and directed network (WDN)
model, in which: vertexes denote provinces, autonomous regions, and municipalities;
edges and directions represent the flow and direction of technical talents between re-
gions; the edge weight embodies the number of technical talents in mobility in a specific
year. The total number of vertexes in the network is recorded as N, so the vertex set is
V = {V1, V2, · · · , VN}; the edge set is E =

{
e11, e12, · · · , eij, · · · , eN(N−1), eNN

}
; the weight

set is W =
{

w11, w12, · · · , wij, · · · , wN(N−1), wNN

}
. In the weighted network, the set of

weights W can be used in place of the set of edges E. Figure G = (V, E, W) depicts the
mobility of technical talents in each year. The conceptual diagram of the TTMN model is
shown in Figure 2.
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Figure 1. Flowchart of name disambiguation of technical talents.
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Figure 2. Conceptual diagram of the TTMN model.

The TTMN model is a WDN model with four nodes and four edges. The ver-
tex set is V = {V1, V2, V3, V4}; the edge set is E = {e14, e21, e24, e34}; the weight set is
W = {w14, w21, w24, w34}; weight represents the flow scale of technical talents. Obviously,
V2 to V1 has the largest flow scale, and V2 to V4 has the smallest flow scale. V4 only has an
inflow but no outflow of talents, while V2 and V3 have an outflow but no inflow of talents.

3. Empirical Results

In 2009, IBM introduced the concept of smart logistics for the first time, attracting
widespread attention. Scholars at home and abroad have carried out a series of explorations
on this emerging field, mainly focusing on the influencing factors [46–49] of smart logistics,
the opportunities and challenges faced by it [50,51], and the role of smart logistics in
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enterprises, industries, countries [52,53], etc. From this point of view, the practice of smart
logistics has made some achievements but still faces difficulties and challenges. Smart
logistics is different from the traditional logistics industry. It applies smart technologies
such as the Internet of Things, big data, cloud computing, and artificial intelligence to
logistics. Therefore, it needs compound technical talents with both basic knowledge
of logistics and smart logistics technology. Creating a good innovation environment is
necessary to promote the high-quality development of smart logistics. In this section, we
take China’s smart logistics as an example and employ the above framework to study the
mobility of China’s smart logistics talents.

3.1. Data Acquisition

Invention patent data are conducive to understanding the research directions and
involved fields of technical talents and possible contributions of these patents. Such infor-
mation includes applicants’ names, applicants’ companies, the time of applications, the
title of applications, etc., which can provide a foundation for tracking talents. Therefore,
by referring to the latest literature, this paper determines a set of keywords [49,54–56] that
integrate the essence of the supply chain and the characteristics of the digital economy.
Smart logistics keywords include robot, cloud computing, Internet of Things, big data,
RFID, radio frequency identification, GPS, positioning, navigation, obstacle avoidance,
infrared remote sensing, blockchain, 5G, telecommunication, VR, virtual reality, simulation,
simulation, sensor, scanner, AS/RS, stacking, access, Miniload, SCS, SSI SCHAEFER Rotary,
smart tech, automation, AGV, unmanned technology, XML, database, integration, distri-
bution, monitoring, intelligence, information, sorting, AR, stowage, packaging, pickup,
Milkrun, POS, EDI, electronic data interchange, and GIS.

Based on the above keywords, this paper downloads 133,164 smart logistics invention
patents from 2010 to 2021 through the Incopat patent platform. Before studying the
mobility of China’s smart logistics talents, this paper verifies the availability of the Incopat
patent platform with recall ratio and precision ratio. We randomly select a smart logistics
enterprise, such as SF Express. SF Express began to file patent applications in 2003, but until
2010, the number of its patent applications was small and was ignored here. According to
the annual report of SF Express, 3112 items had been obtained and declared by the end of 2020,
while 2701 patents were retrieved on the Incopat patent platform, with a recall ratio of
about 86.8%. In addition, using “warehousing” as a keyword to search on the forum,
18 of the first 20 patent data points meet the purpose of retrieval, with a precision ratio of 90%.
This shows that the Incopat patent platform has high reliability, which can be served as the
data basis for discriminating smart logistics talents and reflecting their mobility.

The annual number and geographical distribution of such invention patents are shown
in Figure 3.

As seen from the above figure, the number of invention patents in the field of smart
logistics first displayed an increasing trend, rising from 1503 in 2010 to 25,618 in 2020.
However, in 2021, due to the impact of COVID-19, invention patents decreased significantly
to 16,446. Regarding geographical distribution, these patents were mainly concentrated
in economically developed provinces along the eastern coast. The provinces/cities that
have accumulated more than 10,000 invention patents include Beijing (21,574),
Guangdong Province (21,383), Jiangsu Province (18,606), and Zhejiang Province (11,941).

The relationship between the flow scale and the growth rate of China’s smart logistics
talents in 2010–2021 is shown in Figure 4.

Noticeably, since 2010, the flow scale had shown an upward trend but remained
relatively small before 2015, when less than 3000 talents relocated. It did not reach a
peak until 2020 and then declined significantly for the first time in 2021. By contrast, the
growth rate of talent flow decreased year by year from 2010 to 2014, remained stable from
2015 to 2018, then continued to decline since 2019, and turned negative in 2021. Overall, the
growth rate of the flow of scientific and technological (S&T) talents shows an irreversible
downward trend.
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3.2. Topology Diagram of the TTMN Model

This paper defines smart logistics talents as “technical personnel who participate in
applying for smart logistics invention patents”. Figure 5 shows the topology diagram of
12 TTMN models from 2010 to 2021.

In 2010, the TTMN model included 20 nodes, i.e., a total of 20 provinces involved
in the inflow or outflow of smart logistics talents. In the following year, this number
increased to 25 provinces, and then remained above 32 provinces since 2017, indicating
that smart logistics talents have been migrating nationwide. Judging from the topological
structure changes of the TTMN model, its network density shows an obvious rising trend
year by year, indicating that the scope and frequency of flow of smart logistics talents are
constantly increasing.

This paper introduces network density, global efficiency, average distance, average
clustering coefficient, central potential and compatibility at the network level, and be-
tweenness centrality at the node level and the edge level for a similar-weight network. We
analyze the evolution variation trend of the topological structure of the TTMN model in
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time series and study the intrinsic laws and evolution characteristics of talent flow in the
field of smart logistics since the 18th National Congress of the Communist Party of China.
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3.3. Measurements of the TTMN Model

In order to show the change of the TTMN model in time series, the paper treats the
TTMN model as an unweighted network and calculates the characteristic indexes at the
network-level. The results are shown in Figure 6.
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Through the statistical analysis of the above six network feature indicators, the follow-
ing conclusions can be drawn.

First, network density showed an upward trend from 2010 to 2020 and a slight decline
with negligible impact in 2021. This indicates that smart logistics talents are increasingly
willing to relocate and have more and more diversified choices of workplaces, which has
strengthened the ties between all provinces/cities and gradually gives rise to the sharing
of technical knowledge.

Second, despite the fluctuation, global efficiency rose from 2010 to 2020. Economically
developed provinces/cities have a siphon effect on talents, stimulating talents to flow; also,
the flow of talents is also affected by national strategies and personal reality, showing the
characteristics of regionally centralized flow. In short, the accelerated talent flow in the field
of smart logistics between provinces and cities improves the wide attainment of knowledge
and enhances the effect of technology diffusion.



Sustainability 2023, 15, 2481 10 of 16

Third, average distance steadily decreased from 2010 to 2021. For provinces and cities
to obtain smart logistics technology directly or indirectly through talent flow, the difficulty
has been lessened; the time has been shortened; the accuracy has been enhanced, which will
reduce the loss of information in the process of technology diffusion and help to generate
more innovations.

Fourth, the average agglomeration coefficient went up and down yet still had a great
improvement in 2021 compared with 2010. This indicates an increased probability of smart
logistics talents forming a closed-loop flow at the provincial and municipal level, closer
cooperation between provinces and cities, and further industrial agglomeration. Combined
with the change in average distance, the TTMN model presents an increasingly prominent
small-world effect. Driven by industrial clusters, the nationwide technology diffusion
efficiency in the field of smart logistics has been improved.

Fifth, in-degree central potential and out-degree central potential were not strongly
correlated in the time frame, displaying radical changes. This demonstrates that the flow of
smart logistics talents between provinces and cities needs to be balanced, which is closely
related to the development level of the logistics industry in a specific province or city. In
addition, it can be seen that in-degree central potential and out-degree central potential
have shown a downward trend in recent years, indicating that the stability of the TTMN
model has been improved, and the industrial layout has been made more reasonable.

Sixth, an all-time negative and oscillating trend could be noticed regarding compat-
ibility from 2010 to 2021. This disassortative network, to a certain extent, indicates the
decentralized characteristics of the TTMN model, which may be related to the different
levels of appeal and prospects of the logistics industry in various provinces and cities. We
believe that regions with relatively less advanced industrial development and insufficient
talents reserve are more motivated to introduce stimulus policies and proactive talent at-
traction measures, which makes them the so-called “industrial depressions”—the popular
destinations of talent flow in a specific period.

Then, we measure the TTMN model by using the node-level indicators. The node be-
tweenness centrality of the TTMN model reflects the transfer hub function of a province/city
on the transfer path of smart logistics talents. In other words, provinces/cities with higher
CRFWA

B values have many input and output channels for smart logistics talents. According
to the structural hole theory, such provinces and cities have two advantages. The first is
the information advantage; that is, they have edges in technologies in this field through a
large inflow of smart logistics talents. The second is the control advantage; that is, they can
retain outstanding talents and eliminate those outside the process of industrial technology
iteration. These two advantages complement each other so that these provinces and cities
can achieve the Matthew effect of talent development. Table 2 lists the top five provinces
and cities in terms of the number of node centrality from 2010 to 2021.

Table 2. Node betweenness centrality of the TTMN model.

Year
No. 1 No. 2 No. 3 No. 4 No. 5

Province CRFWA
B Province CRFWA

B Province CRFWA
B Province CRFWA

B Province CRFWA
B

2010 Beijing 200 Shanghai 181 Jiangsu 123 Guangdong 71 Shaanxi 60
2011 Beijing 298 Jiangsu 243 Zhejiang 135 Guangdong 120 Shanghai 112
2012 Beijing 470 Jiangsu 302 Shanghai 280 Guangdong 105 Tianjin 82
2013 Beijing 711 Guangdong 175 Jiangsu 170 Shaanxi 142 Shanghai 123
2014 Beijing 741 Guangdong 294 Jiangsu 246 Shanghai 90 Taiwan 90
2015 Beijing 796 Jiangsu 202 Anhui 119 Guangdong 117 Shanghai 116
2016 Beijing 850 Jiangsu 157 Guangdong 153 Zhejiang 151 Shandong 93
2017 Beijing 920 Guangdong 157 Jiangsu 144 Shanghai 97 Zhejiang 96
2018 Beijing 879 Guangdong 269 Shaanxi 155 Shandong 96 Sichuan 94
2019 Beijing 815 Guangdong 270 Jiangsu 248 Shanghai 156 Shandong 127
2020 Beijing 784 Jiangsu 242 Guangdong 235 Zhejiang 95 Shanghai 64
2021 Beijing 709 Guangdong 274 Jiangsu 246 Shandong 91 Shanghai 62
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Through the statistical analysis of node betweenness centrality, this paper draws the
following conclusions.

First, on the whole, even among the top five provinces and cities, there are apparent
differences in the node betweenness centrality. Being ahead of other provinces/cities
every year, Beijing is located at the core of the TTMN model as a smart logistics talents
transfer hub with absolute talent competitive advantages and the most robust control
over other provinces/cities, presenting the dynamic of “one superpower and multi-great
powers”. With its obvious geographical advantages, Beijing boasts leading S&T resources
and a sound environment for developing the logistics industry. Beijing is not only the
center for four significant logistics and distribution methods but also is the base of many
leading logistics companies, which together bring the advantages of the cluster effect to the
development of Beijing’s logistics industry, making Beijing an important talent pathway.

Second, Guangdong Province and Jiangsu Province have relatively high node be-
tweenness centrality, taking the second and third positions in turns. Although they are
less competitive than Beijing in smart logistics talent transfer ability, these two provinces
are in a relatively core and pivotal position in the TTMN model. Guangdong Province
serves as a transportation hub in the Pearl River Delta region, with a perfect network,
many high-quality ports with considerable throughput, and an advanced economic level,
promoting the logistics industry’s rapid development. In the Yangtze River Delta region,
Jiangsu Province is at the intersection of the Belt and Road. With frequent inbound and
outbound trade, it attracts investment from domestic and foreign enterprises [57], which
expedites the expansion of its logistics industry. Therefore, the two provinces’ logistics
industry has relatively strong competitiveness, making them a critical “transfer station” for
logistics talents.

Third, Shanghai ranked around fourth or fifth in most years except for 2010 and 2012
and dropped out of the top five several times. From the view of the numerical value of
node betweenness centrality, Shanghai has been lagging behind Beijing, Guangdong Province,
and Jiangsu Province. The difference between Shanghai and Beijing has been more than
ten times in recent years. To some extent, this shows that the core position of Shanghai
in the TTMN model has been challenged. In recent years, limited by the scale effect,
Shanghai’s economic and information advantages have yet to be fully reflected. In addition,
the increase in logistics operating costs for labor and land has weakened the logistics
industry’s comprehensive competitiveness, the declining status as a transit hub for smart
logistics talents, and the gradual loss of its competitive advantages compared with Beijing,
Guangdong Province, and Jiangsu Province.

Fourth, the node betweenness centrality of other provinces/cities, except for those
mentioned in Table 2, is relatively small. These provinces/cities are located at the edge of
the TTMN model and are less affected by Beijing and other core provinces/cities. They
need more muscular control over other provinces/cities and insufficient talent exchanges
with each other and are thus not capable of being talent transfer hubs.

Finally, we measure the TTMN model by using the edge-level index. Unlike the node
betweenness centrality, the edge betweenness centrality in the TTMN model measures the
transfer function of the smart logistics talent exchanges between two provinces/cities for the
overall connectivity of the network. It bears different meanings from the frequency of smart
logistics talent exchanges. It integrates the indirect impact on the overall network, thereby
better reflecting the importance of the specific flow of smart logistics talents. Figure 7 is
a heatmap based on CRFWA

E values, and its value is calculated by the cumulative scale of
China’s smart logistics talents from 2010 to 2021.

As can be seen from Figure 7, both inward and outward flows of smart logistics
talents between Beijing and other provinces play a pivotal role. In addition, some inter-
provincial flows are also essential, including Jiangsu Province→ Taiwan (CRFWA

E = 65),
Taiwan → Macao (CRFWA

E = 33), Shanghai → Hong Kong (CRFWA
E = 32),

Taiwan→ Guangdong Province (CRFWA
E = 32), and Macao→ Zhejiang Province (CRFWA

E = 31).
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To display the important flows of smart logistics talents in China, we extract the edges
whose CRFWA

E > 27 from the TTMN model to form a new network, as shown in Figure 8.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 18 
 

Figure 7 is a heatmap based on ��
���� values, and its value is calculated by the cumula-

tive scale of China’s smart logistics talents from 2010 to 2021. 

 

Figure 7. Edge betweenness centrality of the TTMN model. 

As can be seen from Figure 7, both inward and outward flows of smart logistics tal-

ents between Beijing and other provinces play a pivotal role. In addition, some inter-pro-

vincial flows are also essential, including Jiangsu Province → Taiwan (��
���� = 65), Tai-

wan → Macao (��
���� = 33), Shanghai → Hong Kong (��

���� = 32), Taiwan → Guang-

dong Province (��
���� = 32), and Macao → Zhejiang Province (��

���� = 31). To display 

the important flows of smart logistics talents in China, we extract the edges whose 

��
���� > 27 from the TTMN model to form a new network, as shown in Figure 8. 

Figure 7. Edge betweenness centrality of the TTMN model.

Through the statistical analysis of the betweenness centrality, the following conclusions
can be drawn.

First, this network resembles a star network. Beijing is positioned in the center of the
network, in and out of which there are edges connecting other provinces/cities, indicating
that the smart logistics talent flow between Beijing and other provinces/cities is overall
mutual, which further confirms that Beijing acts as a vital hub for the transfer of smart
logistics talents. Beijing enjoys a well-developed logistics industry with cutting-edge
logistics infrastructure, large-scale and highly specialized logistics enterprises, and strong
talent attraction, which has driven technological innovation and industry progress. In
addition, the two-way promotion of talents and technology forms a virtuous circle, and the
technology diffusion and spillover effects are significant. Through the bridge of Beijing,
smart logistics talents can flow nationwide.

Second, regarding the level of interaction, Beijing has the closest ties with Shanghai,
Guangdong Province, Jiangsu Province, and Zhejiang Province. Among them, Shanghai
and Jiangsu Province are essential recipients of smart logistics talent from Beijing, and
Guangdong Province and Zhejiang Province are important senders of smart logistics talent
to Beijing. These five provinces/cities are located in the Beijing–Tianjin–Hebei urban
agglomeration, the Yangtze River Delta urban agglomeration, and the Pearl River Delta
urban agglomeration, which have unique geographical advantages and a full-fledged
logistics industry. At the same time, there is a general spillover effect regionally, and the
talent interaction between them is relatively more frequent.

Third, other key pathways include Jiangsu Province→ Taiwan (CRFWA
E = 65),

Taiwan → Macao (CRFWA
E = 33), Shanghai → Hong Kong (CRFWA

E = 32),
Taiwan→ Guangdong Province (CRFWA

E = 32), and Macao→ Zhejiang Province (CRFWA
E = 31).

These provinces/cities are all situated in the eastern part of China with geographical
proximity, which is conducive to and convenient for talent exchange. Moreover, all these
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provinces/cities have a relatively high level of economic development and enjoy sound
economic and trade ties with each other, further promoting the flow of talent.
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4. Discussion and Conclusions

Generally, when studying the mobility of scientific talents, their mobility depends
on the changes in their affiliated institutions in the data source. However, this method
only applies to technical talents and has a specific time lag and cumbersome processing.
Considering that technical talents are practical personnel, this paper focuses on their
invention patent data. It determines their liquidity with the change of applicants, which
can reduce the difficulty of data acquisition and improve data integrity to a certain extent.
In addition, in this paper, we establish a comprehensive network framework to describe
the mobility of technical talents. The framework used in this paper can not only depict a
more complete picture of China’s smart logistics talent mobility but also provide a valuable
reference for studying talent mobility in many other technical fields.

It is found that under the framework proposed in this paper, the current situation
of talent mobility in the field of China’s smart logistics has been better described. For
example, the network density, global efficiency, and average agglomeration coefficient
of the TTMN model show an overall upward trend, while the average distance shows a
downward trend. The in-degree central potential and out-degree central potential fluctuate,
with the compatibility always being negative. It reveals that talent mobility brings about
an increasingly close relationship between provinces/cities, a more prominent technology
diffusion effect, and a more balanced resource distribution. More obviously, Beijing is at
the core of the TTMN model, which has the most talent exchange channels, represented
by those Shanghai, Guangdong Province, Jiangsu Province, and Zhejiang Province. In the
context of the new scientific and technological revolution, as a cross-border integration
industry, smart logistics has become a new trend in the development of the logistics
industry, which has been highly valued by the state and mentioned many times in policy
documents such as the “Made in China 2025”. The conclusions are consistent with the actual
situation [58–60]. Nevertheless, previous research tends to have a statistical or qualitative
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description, lacks a clear measurement framework, and has little focus on the network
characteristics. The framework proposed in this paper makes up for these imperfections,
which can comprehensively depict the mobility of China’s smart logistics talents.

This study is a preliminary exploration of the mobility of technical talents from the
perspective of the complex network. It provides a reference for encouraging the rational
flow of talents and taking full advantage of human resources, but there are also some
limitations. First of all, the data source is the Incopat patent platform, which does not rule
out data omissions, such as some patents that have yet to be retrieved. Future research
can combine other patent search platforms to acquire richer data. Secondly, this study
only analyzes China’s smart logistics field empirically. To make the research framework
more universal, the combination of quantitative methods and qualitative methods can be
considered for comparative analysis in the future.
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