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Abstract: Punjab Agriculture is trapped in the complex nexus of groundwater depletion and food
insecurity. The policymakers are concerned about reducing groundwater extraction at any cost for
irrigation without jeopardizing food security. In this regard, the Government of Punjab introduced
the “Punjab Preservation of Subsoil Water Act, 2009”. The present paper examines the impact of the
“Preservation of Sub Soil Water Act, 2009” on pre- and post-water levels in Punjab using the difference-
in-difference (DiD) approach. The state has witnessed a severe fall of 0.50 m per year and 0.43 m per
year for the post-monsoon and pre-monsoon season, respectively. Only 2.62 per cent of wells were in
the range of 20–40 m depth in the state in 1996, which increased to 42 per cent and 67 per cent in 2018
for the pre-monsoon period, and post monsoon period respectively, depicting an increase of 25 times.
The groundwater depth in high rice-growing(treated) districts declined by 1.53 and 1.39 m than the
low rice-growing (control) districts in the pre-monsoon and post-monsoon periods respectively post
the enactment of PPSW Act, 2009. A groundwater governance framework is urgently needed to
manage the existing and future challenges connected with the groundwater resource.

Keywords: groundwater; over-exploitation; difference-in-difference

1. Introduction

Groundwater plays an important role in sustaining life on earth as it fulfils the thirst
for water of about 1.5 to 2.8 billion people, nearly half of the world’s population and major
source of irrigation in agricultural economies. No doubt, plenty of benefits have been
accrued by the use of this resource like food, feed and fodder production for the ever-
increasing population, economic development and rural poverty reduction. Nevertheless,
its over-extraction has led to aquifer depletion in many parts of the world [1]. The stories of
global groundwater regime when percolating to regional level presents that draft exceeds
recharge at most of the places in the world. Many of the world’s intense agricultural
production regions, like California in the USA [2] and the North China plain [3] are
currently experiencing water scarcity. Irrigation has made the problem worse causing
detrimental effects on the environment (such as excessive groundwater depletion and
increased surface runoff) [4,5]. Groundwater has been depleted in many arid and semi-arid
regions due to the long-term overexploitation of groundwater [6,7]. Increased water costs,
saltwater intrusion and land subsidence are some of the harmful effects of groundwater
depletion [8–10]. Preventing groundwater depletion requires carefully regulated aquifer
recharge [11,12]. To achieve the objectives of food security and sustainable water usage,
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it is furthermore crucial to match the spatial pattern of irrigation demand and available
water resources [13–15].

Looking at the picture of groundwater-using countries, the withdrawal as a percent of
total renewable groundwater resources accounts for 109, 108, 954, 350 and 800 per cent in
Pakistan, Iran, Saudi Arabia, Egypt and Libya as estimated by FAO’s AQUASTAT database.
India tops the list with a 28.9 per cent share of global withdrawals, followed by the USA
(16.7%), Pakistan (9.1%), China (8.1%) and Iran (8.1%), respectively; making 71 per cent
with these top five abstractors (http://www.fao.org/nr/water/aquastat/main/index.stm,
accessed on 20 December 2022).

Indian agriculture is heavily dependent on access to groundwater [16]. Groundwater
has been made available primarily through a regime of either free or a highly-subsidized
provision of electricity for extracting the groundwater [17,18]. Unsurprisingly, this energy
pricing regime has resulted in an unprecedented use of electric pumps to extract ground-
water and cultivate water-intensive crops, especially in Punjab, which has led to water
tables declining steadily [19–21]. Undoubtedly, Punjab was a pioneer in India’s agricul-
tural revolution and relieved India from importing food grains from foreign countries,
allowing it to become a food-secure nation. Punjab’s agriculture is crucial for India’s food
security; currently, 26 percent of the paddy and 38 percent of the wheat are procured by
the Food Corporation of India [22]. The paddy–wheat system has largely been responsible
for rapidly declining groundwater levels in Punjab. A comprehensive set of documents
has been published by [16,23–31] on groundwater depletion in Punjab. The state has been
the country’s leading food producer on the cost of excessive groundwater extraction. The
present groundwater development in the state is 166 percent, and 79 percent of blocks are
overexploited [32]. Clean water, which comes from fresh or groundwater, is important
in a variety of economic aspects. Geography and ecology have influenced a lot of the
physical–chemical and biological properties of water [33].

Between June and October, when paddy is cultivated across Punjab, groundwater
pumping intensity, and hence, electricity consumption, is highest [34]. Although the paddy
and monsoon seasons coincide, the amount of rainfall that Punjab receives (average annual
rainfall of 635.9 mm) is insufficient, and supplemental irrigation is required [35]. Because
the surface water is incapable of satisfying agricultural demand, the groundwater is under
increasing pressure. Moreover, the aquifers also become saturated by infiltration which
consequently affects groundwater recharge in different ways. The groundwater variation is
influenced by the time lag between two rainfall sessions or by the vagaries of the monsoon [36].
The groundwater level in around 85 per cent of Punjab’s area has decreased from 1984 to
2016; while in the remaining 15 per cent, it has increased for the pre-monsoon period. The
extent of groundwater level rise or decline varied from place to place. A decline in water
level of more than 15 m occurred in around 31 per cent of the estimated area in the districts
of Barnala, Bathinda, Hoshiarpur, Jalandhar, Ludhiana, Moga, Patiala and Sangrur. In most
of the state’s territory, the water level has declined. The average annual rate of water level
decline is around 0.37 m/year for the pre-monsoon period from 1984 to 2016. On the other
hand, the state’s average annual rate of water level rise was approximately 0.19 m/year [37].
Irrigation has been the main reason for the high depletion of water levels [38].

As discussed above, the groundwater levels steadily declined in Punjab, the authorities
are concerned about reducing extraction at any cost for irrigation without jeopardizing food
security. In this concern, the Government of Punjab introduced the “Punjab Preservation
of Subsoil Water Act, 2009”. The Act forbids the sowing of paddy nurseries before May
10 and transplanting it into the main field before 10 June or any other period specified by
the government. It was projected that the postponing of the paddy crop until 10 June can
check the decrease in water level by 30 cm and save 276 million kWh power subsidy worth
Rs.1220 million [35]. The goal of this analysis was to examine the impact of PPSW Act, 2009
in arresting the groundwater decline in Punjab.

http://www.fao.org/nr/water/aquastat/main/index.stm
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2. Materials and Method
2.1. Study Period and Type of Data

In India, groundwater is used to irrigate around 45 per cent of the country’s total
cultivated land. The country’s green revolution was brought on by groundwater [39]. Pun-
jab was the locus of the green revolution. In periods of inadequate rainfall, groundwater
irrigation has guaranteed food security and enabled a significant rise in agricultural pro-
duction. Nevertheless, this development pattern is not feasible. Punjab, being an agrarian
state with a major area under rice–wheat rotation, is heavily dependent on its groundwater
resources. Due to the existing cropping pattern and efforts to enhance food grain output,
the irrigation system is under tremendous stress due to limited surface water, which is
insufficient to meet requirements resulting in stress on groundwater. Although Punjab has
gained tremendously from agricultural growth and prosperity, it has come at a significant
cost. The groundwater resources have been declining at an average rate of 53 cm/year for
the last two decades. To arrest this declining rate, the Government of Punjab had imple-
mented a sub soil preservation act in 2008 according to which farmers were not allowed
to transplant paddy before 10 June. This act become a law in 2009. However, due to the
shortening of the window period between paddy harvesting and wheat sowing, incidents
of stubble burning increased in the state. Therefore, to understand the consequence, it is
imperative to quantify the impact of sub soil preservation act on groundwater resources.

Time series data from 1999 to 2018 for 20 districts of the state were pooled to construct
a panel data. Furthermore, the time series was divided into two periods, i.e., 1999–2008
(pre-Act) and 2009–2018 (post-Act) depicting 10 years before and 10 years after the PPSW
Act 2009 to assess the impact of the Act. The period 1999–2018 was chosen for analysis as
the data for these years and for 20 districts was consistently available for all the variables
to be used in the DiD model.

Presently, the state has 22 districts, but due to the non-availability of time series data
on the two newly made districts, viz., Pathankot and Fazilka, these were merged with
their parent districts, Gurdaspur and Ferozepur, respectively [29]. The Central Ground
Water Board and Indian Meteorological Department obtained groundwater levels and
rainfall data. The data on population density were obtained from the Population Statistics
of Punjab published by the Economic and Statistical Organisation, Punjab. Time series data
for population density data were not available as a census occurs every 10 years. Census
data were unavailable during the study period, hence, interpolation and extrapolation
were carried out to make a time series. In addition, we relied on various issues of the
Statistical Abstract of Punjab for the data on canal and tube–well irrigated areas and
cropping patterns.

2.2. Hydrogeology of Punjab

Based on hydrologically and agro-climatologically, Punjab can be broadly divided into
three major zones—Kandi, Central and Southwest zones (Figure 1).
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Figure 1. Pictorial representation of the study area.

Kandi zone: The Kandi zone covers 19 per cent of the geographical area of the state.
Due to the steep slope (up to 36 per cent) and high rainfall (1100 mm), about 4.5 lakh ha
area (nine per cent of the state’s area) of this zone is severely affected by soil and water
erosion. The sub-surface aquifers of this zone are alluvial in nature and are made up of
a complex heterogeneous mass of silts, clays, gravels, fine and coarse sands. Hydraulic
conductivity ranges between 5 and 10 m/day while, the specific yield varies from 0.08 and
0.17 [40]. This zone includes Gurdaspur, Hoshiarpur, SAS Nagar, Rupnagar and SBS Nagar
districts with an average annual rainfall of 950 mm.

Central zone: The Central zone comprises 47 per cent of the geographical area of the
state with Ludhiana, Sangrur, Jalandhar, Patiala, F. Sahib, Amritsar, Tarn Taran, Moga, Ka-
purthala and Barnala districts with an average annual rainfall of 650 mm. The groundwater
is suitable for irrigation and the main cropping system is rice wheat. The aquifers of this
zone are alluvial, unconfined and are always covered by a soil crust with a thickness of
0.60–8.0 m. Hydraulic conductivity ranges between 10 and 90 m/day and specific yield
ranges between 0.08 and 0.17 [40].

Southwest zone: The Southwest zone comprises 34 per cent of the geographical area
of the state and includes Bathinda, Mansa, Faridkot, Ferozepur and Muktsar districts with
an average annual rainfall of 400 mm [41]. It is commonly known as the cotton belt of the
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state; the groundwater is brackish, 70 per cent of the area is canal irrigated, and the problem
of residual alkalinity is more serious than salinity. In this zone, subsurface geological
alluvium comprises of different layers of clay, clay combined with sand, slit, gravels and
pebbles. The hydraulic conductivity value ranges from 4 to 25 m/day and the specific yield
varies from 0.05 to 0.16 [40].

The groundwater flows from northeast to southwest. In the Kandi zone, the hydraulic
gradient is steep, ranging from 3.30 m to 5.0 m/km, whereas in the central zone, it is
0.33 m/km. Since groundwater elevation contours are broadly dispersed, groundwater
flow is slow in the Southwest zone; however, a steep gradient has been seen around
Bathinda which may be caused by the low values of lateral hydraulic conductivity and
predominant clayey formation [42].

2.3. Model Specification and Description

The study employed a difference-in-difference (DiD) approach to study the impact
of the PPSW, Act 2009. DiD is used to assess the impact of a specific intervention by
comparing the changes in outcomes over time between a group exposed to the intervention
called the treated group, and a group that is not called the control group. Before employing
DiD, we categorized high and low rice-producing districts. The districts, whose ratio of
area under the rice to the total cultivated area surpassed the sample median (0.6) for the
year 1999 were considered as high rice growing (treated) districts and the remaining low
rice growing (control) districts. In our sample, districts namely Gurdaspur, Amritsar, Tarn
Taran, Kapurthala, Ludhiana, Patiala, Sangrur, Barnala, Faridkot and Fatehgarh Sahib
were treated districts. Low rice-producing districts i.e., Jalandhar, SBS Nagar, Hoshiarpur,
Rupnagar, SAS Nagar, Ferozpur, Muktsar, Moga, Bathinda and Mansa were considered
as the controls (Table 1). If the intervention had a significant impact, then the water use
in treated districts would have been affected, and hence the water table depth in these
districts would have been impacted.

Table 1. Districts selected as treated and control in the study frame.

High Rice Growing Districts (Treated) Low Rice Growing Districts (Control)

Gurdaspur Patiala Jalandhar Ferozepur
Amritsar Sangrur SBS Nagar Muktsar

Tarn Taran Barnala Hoshiarpur Moga
Kapurthala Faridkot Rupnagar Bathinda
Ludhiana F. Sahib SAS Nagar Mansa

The DiD estimated equation is given by:

Yit = β0 + β1Act + β2Tr + β3Act×Tr + β4Rain + β5CaIrri + β6TbIrri + β7Pd + β8Cdi + Di + Tt + εit (1)

where, Yit is the groundwater level (pre-monsoon or post-monsoon) in district i at time
t. The act is a dummy variable for the Act, which takes values 1 for the post-Act period
and 0 for the pre-Act period. Tr is a treatment dummy variable which takes the value 1
for treated districts and 0 for control districts. Act×Tr is an interaction variable between
Act dummy and treatment dummy which is the parameter of interest. The coefficient β3
(interaction term) shows the Act’s impact on groundwater levels. Rain is the rainfall level
(pre-monsoon or post-monsoon). CaIrri is the ratio of canal irrigated area to total irrigated
area and TbIrri is the ratio of tube well irrigated to total irrigated area. Pd is the population
density. Cdi represents the Herfindahl crop diversification index. Di is district fixed effect
whereas; Tt is year fixed effects. εit is the error term. Unobserved factors common to all
districts in a given year were controlled by year and district fixed effects.

Coefficient β3 (interaction term) is the parameter of interest. It gives the impact of the
Act on the groundwater level. Year-specific common shocks to all districts of the state are
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soaked up by the year or time-fixed effects. Time invariant district specific omitted variables
that affect the likelihood of treatment are controlled for by including the treatment indicator.

Two variants of DiD model were employed, one for the pre-monsoon period and
the other for the post-monsoon period. The estimated equation was regressed for two
specifications for each model. Firstly, the interaction term was estimated with district and
year fixed effects, i.e., without co-variates.

Specification 1: without co-variates

Yit = β0 + β1Act + β2Tr + β3Act×Tr + Di + Tt + εit (2)

Secondly, the interaction term was estimated using all time-varying covariates such as
the ratio of canal irrigated area to total irrigated area, the ratio of tube well-irrigated area to
total irrigated area, population density and crop diversification index along with district
and year fixed effects, i.e., with co-variates.

Specification 2: with co-variates

Yit = β0 + β1Act + β2Tr + β3Act×Tr + β4Rain + β5CaIrri + β6TbIrri + β7Pd + β8Cdi + Di + Tt + εit (3)

2.4. Estimation Procedure

The stationarity of the time series was tested by applying the unit root test. The unit
root test exhibits whether the data are stationary or non-stationary and avoids spurious
regression. The Levin–Lin–Chu and Harris–Tzavalis unit-root tests were employed, and
each variable was tested for the unit root. The panel data estimation procedure uses two
approaches (random effect and fixed effect). We tried both, and then the Hausman test was
used to choose the better-suited model. The Hausman test rejected the null hypothesis of
the random effect model. Hence, the fixed effect model was applied.

We tested the key assumption of DiD estimation called the parallel trend i.e., the
outcome in the treatment and control group would follow the same time trend in the
absence of the treatment and a parallel trend would have existed between the two groups.
The parallel trend assumption was tested by both the graphical inspection of the trend
and by performing a ‘falsification test or placebo test’. The parallel trend assumption was
satisfied by both methods.

The crop diversification was measured using Herfindahl–Hirschman Index (H.H.I.),
which measures the degree of concentration in crop type was calculated using

H.H.I. = Σ
(

Areai

Total Cropped Area

)2
(4)

where Areai is the area under the ‘ith’ crop. Therefore, C.D.I. was worked out to measure the
extent of diversification by subtracting the HHI from 1. The zero value of C.D.I. indicates
specialization and approach towards one specifies an increase in diversification.

3. Results and Discussion
3.1. Pre-Monsoon, Post-Monsoon and Overall Scenario of Groundwater in Punjab

There are many challenges associated with groundwater in the state of Punjab. A large
part of the state is facing declining groundwater levels [43] due to the over-exploitation
of the water resources, while there are increasing cases of groundwater pollution due to
various human activities.

During the pre-monsoon period, i.e., the month of June, the water table in 1996 was at
a depth of 8.6 and 8.8 m in the Kandi and Central zones, respectively, while in the Southwest
zone, it was at a depth of 5.2 m (Table 2). By June 2018, the water table in these zones
reached 14.7, 21.8 and 10.4 m depth, respectively, nearly twice or thrice in two decades.

A more rigorous trend was seen in the post-monsoon period wherein the water table
declined more than twice for the Kandi and Central zones and thrice in the Southwest zone.
The reasons are very apparent increase in paddy area and number of tube wells, and a
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decrease in rainfall. The water table in the Central zone has been declining consistently,
from 8.8 m in 1996 to 12.7, 19.0 and 21.8 m in 2005, 2015 and 2018, respectively. The water
table depth in the Central zone (also called as sweet water zone) has declined 2.5 times in
the last 22 years owing to the maximum pumping out of groundwater for irrigation in this
zone which is apparent from the increase in electricity-operated tube wells.

Table 2. Water Table Depth in Punjab, Pre- and Post-Monsoon, Zone-Wise, 1996–2018 (in m).

Years

Kandi Zone
(31◦53′ N, 75◦90′ E)

Central Zone
(30◦84′ N, 75◦59′ E)

South West Zone
(30◦34′ N, 74◦76′ E)

Punjab
(30◦84′ N, 75◦41′ E)

June October June October June October June October

1996 8.34 6.83 8.84 8.96 5.23 5.10 7.57 6.96
2000 8.05 7.57 8.95 9.87 5.03 5.26 7.34 7.57
2005 10.76 9.51 12.67 14.06 6.71 6.39 10.05 9.98
2010 10.68 9.91 16.57 17.09 8.26 7.78 11.84 11.59
2011 11.344 9.12 16.47 18.52 8.03 7.84 11.95 11.26
2012 11.86 10.04 17.59 19.20 7.29 8.82 11.02 13.68
2013 12.73 11.80 18.78 20.61 8.47 8.55 13.33 13.32
2014 12.21 12.05 18.24 21.42 8.57 9.12 12.67 14.19
2015 11.91 11.97 19.02 22.31 8.91 9.05 13.28 14.44
2016 12.73 14.24 19.86 23.30 8.73 9.96 13.44 15.83
2017 13.57 13.36 21.37 24.13 9.69 10.26 14.87 15.92
2018 14.72 14.36 21.89 24.86 10.36 11.09 15.66 16.77

Average depth
(mbgl) 10.93 A 10.53 A 16.00 B 16.15 B 7.41 C 7.48 C 11.45 D 11.39 D

Zone average
depth 10.73 a 16.08 b 7.44 c

Source: Central Ground Water Board. Notes: Zones are statistically different from each other. Kandi zone with
mean water table depth of 10.73 m is different from the Central zone with a depth of 16.08 m and from the
Southwest zone, with a depth of 7.44 m; shown in the table with a, b, and c, respectively; using the Tukey–Kramer
multiple comparison test for LS means, F-statistics (F value = 35.94 p-value < 0.001) is highly significant for zones.
LS-means are not significantly different for June and October water table depths, shown in the table with A, B, C
and D, respectively.

Punjab state has witnessed a serious decline of 0.50 m per year for the post-monsoon
season, whereas the decline for the pre-monsoon season was 0.43 m per year (Figure 2)
from 1996 to 2018. This was due to increase in the area under rice from 2.18 m ha (52.06
per cent to NSA) in 1996, to 3.06 m ha (74.43 per cent to NSA) in 2018 [44]. Other reasons
include access to free power for irrigation leading to increased tube wells, assured market
for paddy and wheat, deficit rainfall, etc [25,45,46].
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Pre-monsoon and post-monsoon periods both showed a significant increase in the
proportion of wells with a water table depth between 20 and 40 m (Figures 3 and 4). For
the pre-monsoon period, in the year 1996, only 2.62 per cent of the wells were between 20
and 40 m depth; however, in the year 2018, the proportion rose to 41.88 per cent, exhibiting
a 16-fold growth. Similarly, for the post-monsoon period, the water table depth declined
by 25 times, from 2.65 per cent in 1996 to 66.67 per cent in 2018. A major portion of the
state registered a fall in the area 10–20 m range from 42.15 per cent to 17.05 per cent for the
pre-monsoon period; whereas the post-monsoon period experienced a fall from 39.50 per
cent to 19.90 percent, over the duration of 22 years (1996–2018). The wells under water table
depths completely changed from the non-critical stage to the critical stage. The percentage
of wells in the non-critical stage (water table depth of less than 10 m) was 72.67 per cent in
1996 which fell to 28.37 per cent in 2018 for the pre-monsoon period.
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Figure 3. Percentage of wells under different water table depths in Punjab, pre-monsoon 1996 to 2018.
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Figure 4. Percentage of wells under different water table depths in Punjab, post-monsoon 1996 to 2018.
Notes: There is significant effect of years on depth during pre-monsoon period with χ2 = 1288.89
(p-value < 0.001); Likewise, there is also a significant effect of years on depth during post monsoon
period with χ2 = 1373.63 (p-value < 0.001).
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3.2. Estimates of Groundwater Depletion in Punjab

Groundwater depletion was calculated as the decline in the water table multiplied
by soil porosity and region area. The estimates are based on the soil porosity of 0.20.
The total depletion of water during 1996–2018 was estimated at 93.54 km3 out of which
64.6 km3 was from the Central zone, where paddy area and tube wells are the maximum
(Table 3). In the Kandi and Southwest zones, the total depletion during 1996–2018 was
13.61 and 15.33 km3, respectively. The depletion during 1996–2007 for Southwest zone
was 6.90 km3, whereas the total depletion through the last 11 years (2007–2018) was more,
at 8.43 km3. The water depletion was mostly high during 2007–2018, estimated at 8.59,
34.02 and 8.43 km3 in the Kandi, Central and Southwest zones of Punjab, respectively. The
average annual groundwater depletion in the Central zone was 2.78 km3 during 1996–2007,
which increased to 3.09 km3 during 2007–2018; for Punjab, it was 1.28 and 1.55 km3 for
the respective periods. The average per year water depletion for Punjab was estimated at
1.42 km3, out of which 2.94 km3 was from the Central zone, during 1996–2018.

Table 3. Estimates of Total Depletion of Groundwater (in km3) in Punjab, June 1996–June 2018.

Zone
1996–2007 2007–2018 1996–2018

Total Average/Year Total Average/Year Total Average/Year

Kandi Zone 5.009 0.455 8.590 0.780 13.590 0.617
Central Zone 30.604 2.782 34.021 3.092 64.626 2.937

South West Zone 6.903 0.627 8.427 0.766 15.331 0.696
Punjab 42.516 1.288 51.038 1.546 93.547 1.416

Groundwater recharge declined in all the three zones as the area under rice cultivation
increased. With an increase in area under rice cultivation from 52.06 per cent in 1996 to
74.43 per cent of area sown in 2018; the water table depth declined from 8.06 m to 19.11 m,
indicating a decline of 11.05 m from 1996 through 2018 in Punjab (Table 4).

In the Kandi zone, the rice area increased from 48.63 per cent to 57.42 per cent of the
area sown from 1996 to 2018, respectively, which led to a decline in water table depth from
6.83 m in 1996 to 14.36 m in 2018. In the Central zone, the area under rice increased from
68.47 per cent to 85.84 per cent of the area in the same period. As a result, the decline in
water table depth was highest in the Central zone by 15.9 m as compared to the other zones.
A maximum decline was found in Sangrur, Patiala, Moga and Barnala.

The water table declined from 5.1 m to 11.1 m during the same period in the Southwest
zone. Interestingly, the increase in rice area was highest in the same zone from 366 thousand
ha in 1996 to 849 thousand ha in 2018. In the Southwest zone, a large proportion of the
cultivated area was traditionally under cotton cultivation, but decreasing yield and price
fluctuations, insect–pest attacks and climatic variations, on the one hand, and assured MSP,
stable yield and well-established market infrastructure for the rice crop on the other hand,
has recently caused a large shift in the area from cotton to paddy [23]. This resulted in a
decline in water levels in Bathinda, Mansa, Faridkot and Ferozepur.

Over time, an increase in the rice area has substantially enhanced groundwater use
during the monsoon season, causing inadequate recharge in the post-monsoon season.
Thus, the change in cropping pattern towards rice is primarily responsible for decline in
the water table depth in Punjab [47–49] and the problem in Central Punjab is more severe.
As a result, every year, Punjab’s water table has been deepening.



Sustainability 2023, 15, 2426 10 of 18

Table 4. Zone-Wise Water-Level Depth (Oct-over-Oct) and Paddy Area in Punjab, 1996 to 2018.

Districts

1996 2018

Water Level
(m)

Paddy Area
Water Level

(m)

Paddy Area

Area
Million
Hectares

% to Net
Sown Area

(NSA)

Area
Million
Hectares

% to Net
Sown Area

(NSA)

Gurdaspur
(32◦03′ N, 75◦27′ E) 4.43 0.191 65.41 7.13 0.204 79.68

Hoshiarpur
(31◦32′ N, 75◦57′ E) 8.85 0.057 26.51 17.33 0.075 36.76

SAS Nagar
(30◦70′ N, 76◦72′) 6.35 0.029 61.70 22.80 0.031 40.26

Rupnagar
(30◦57′ N, 76◦32′ E) 5.51 0.037 48.05 13.99 0.040 49.38

SBS Nagar
(31◦09′ N, 76◦04′ E) 10.05 0.042 41.58 19.93 0.060 62.50

Kandi Zone
(31◦53′ N, 75◦90′ E) 6.83 0.356 48.63 14.36 0.410 57.42

Ludhiana
(30◦55′ N, 75◦54′ E) 10.08 0.230 76.67 21.06 0.258 86.28

Sangrur
(30◦12′ N, 75◦53′ E) 7.75 0.228 70.59 34.03 0.284 90.15

Jalandhar
(31◦19′ N, 35◦18′ E) 9.92 0.112 49.12 25.54 0.171 70.37

Patiala
(30◦2′ N, 76◦25′ E) 10.24 0.209 73.34 30.28 0.233 90.66

F. Sahib
(30◦64′ N, 76◦39′ E) 9.46 0.080 77.67 23.24 0.086 84.31

Amritsar
(31◦37′ N, 74◦55′ E) 5.57 0.154 67.84 14.74 0.180 82.19

Tarn Taran
(31◦28′ N, 74◦58′ E) 8.06 0.150 68.49 18.95 0.182 83.48

Moga
(30◦82′ N, 75◦17′ E 9.60 0.108 55.67 25.80 0.181 93.29

Kapurthala
(31◦23′ N, 75◦25′ E) 9.03 0.102 75.55 18.76 0.118 88.72

Barnala
(30◦38′ N, 75◦55′ E) 10.87 0.093 73.23 34.19 0.113 91.12

Central Zone
(30◦84′ N, 75◦59′ E) 8.96 1.466 68.47 24.86 1.806 85.84

Bathinda
(30◦11′ N, 75◦00′ E) 7.82 0.039 13.08 16.73 0.160 54.6

Mansa
(29◦99′ N, 75◦39′ E) 3.72 0.050 24.51 14.85 0.107 57.83

Faridkot
(30◦59′ N, 74◦83′ E) 4.32 0.038 28.78 9.14 0.115 90.55

Ferozepur
(30◦55′ N, 74◦40′ E) 4.72 0.233 50.43 10.15 0.294 62.42

Muktsar
(30◦30′ N, 74◦43′ E) 3.96 0.006 2.56 3.71 0.173 77.23

Southwest Zone
(30◦34′ N, 74◦76′ E) 5.10 0.366 27.52 11.09 0.849 65.31

Punjab
(30◦84′ N, 75◦41′ E) 8.06 2.188 52.06 19.11 3.065 74.43

Note: Figures in parentheses indicate coordinates of every place i.e., latitude–longitude.
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3.3. Decreasing Groundwater Balance of Punjab

The cultivation of rice, a water-intensive crop, and the increase in industrialization and
urbanization have led to the rise in reliance on groundwater, which has widened the ground-
water demand and supply gap over time. This gap is visible in the decreased availability of
groundwater in the state, which decreased from 0.27 bcm in 1997 to −14.58 bcm in 2017.
The net annual draft has always been higher than the net annual recharge, thus creating a
negative groundwater balance indicating a water deficit in the state [23]. The groundwater
balance has decreased from 0.027 m ha m in 1997 to −1.063 m ha m in 2017 (Figure 5).
A marginal increase in net annual recharge and a decrease in the net annual draft were ob-
served in 2013. The net annual recharge decreased by 46.18 per cent, while the net annual draft
increased by 114.66 per cent over the period. The use of groundwater in excess of recharge
has led to a decline in the water table and has put huge pressure on groundwater resources.
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3.4. Impact of Sub Soil Water Act, 2009

Before performing the DiD analysis, per cent increase in rice area, number of electricity-
operated tube wells and electric tube well density were analysed to see the changes before
and after the Act (Table 5). The rice area post the Act showed a decline in high rice-growing
districts, whereas it increased in low rice-growing districts. The number of electricity-
operated tube wells increased by 26.93 per cent and 40.70 per cent in both the high and low
rice-growing districts, post the Act. The density of the tube wells also showed a similar
trend. The increase in the post-Act period was 29.41 per cent and 40.84 per cent in high
and low rice-growing districts, respectively. The reasons for decline in water table can be
attributed to various factors affecting the water table. The decreased recharge over the year
has also resulted in more extraction of groundwater for irrigation by the farmers. The same
has been depicted by Figures 6 and 7 for pre-monsoon and post-monsoon in the high and
low rice-growing districts.

Table 5. Percentage increase in rice area and electric tube well density in Punjab.

Particulars

High Rice Growing Districts Low Rice Growing Districts

Pre-Act (1999–2008) Post-Act (2009–2018) Pre-Act (1999–2008) Post-Act (2009–2018)

1999 2008 % In-
crease 2009 2018 % In-

crease 1999 2008 % In-
crease 2009 2018 % In-

crease

Rice area
(million hectares) 1.59 1.67 4.95 1.72 1.78 3.84 0.95 0.96 1.79 1.04 1.31 25.55

No. of electricity-operated tube
wells (millions) 0.48 0.61 25.82 0.63 0.81 26.93 0.276 0.37 34.78 0.39 0.56 40.70

Electric tube well density
(million per ha of net sown area) 0.23 0.29 28.82 0.30 0.39 29.41 0.13 0.18 34.42 0.19 0.27 40.84
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Figure 6. Pre- monsoon water levels for high and low rice growing districts of Punjab, pre-Act
(1999–2008) and post Act (2009–2018).
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Figure 7. Post-monsoon water levels for high and low rice-growing districts of Punjab, pre-Act
(1999–2008) and post Act (2009–2018).

The impact of the PPSW Act, 2009 was analysed using the DiD approach to verify the
above results. The outcome variable is groundwater depth in mbgl (metres below ground-
water level). The sign of the interaction term coefficient (Act*treatment) is interpreted
opposite as the water level is measured below the ground. Hence, a positive coefficient
of Act*treatment would be interpreted as falling groundwater depth. The Act’s effect on
groundwater levels for pre-monsoon and post-monsoon periods, respectively, have been
presented in Tables 6 and 7.

We used the DiD approach to find the coefficient value of the parameter in two ways,
firstly, estimates of interaction term with district and year fixed effects, i.e., without co-
variates. Secondly, estimates of interaction term with all time-varying covariates such as
the ratio of canal irrigated area to total irrigated area, ratio of tube well irrigated area to
total irrigated area, population density and crop diversification index along with district
and year fixed effects. Overall, the fit of both the models is good as indicated by the R2

which explains around 70 per cent the variation of both the models.
In both the models, even after implementing the policy reform, i.e., the PPSW Act,

2009, the groundwater depth has declined more in treated districts (high rice-growing).
The groundwater depth in high rice-growing districts post (2009–2018) the enactment of
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PPSW Act 2009 was 1.72 and 1.55 m deeper than the low rice-growing districts in pre-
monsoon and post-monsoon groundwater levels models, respectively (Tables 6 and 7).
Controlling demographic characteristics and other related variables such as irrigated area,
canal availability, cropping pattern and rainfall reduces the decline in groundwater to 1.53
and 1.39 mbgl in pre-monsoon and post-monsoon periods depicting the effect of these on
the groundwater regime of the region. In both the specifications i.e., with and without, the
PPSW Act, 2009 increases the groundwater depth. The groundwater levels had declined
more post the policy reform in treated districts. The coefficients are significant at 1 per cent
significance level.

Table 6. Impact of Preservation of Sub Soil Water Act, 2009 on Pre-Monsoon Groundwater Levels.

Particular Coefficient Value

without Co-Variates with Co-Variates

Act×treatment 1.72 ***
(0.44)

1.53 ***
(0.45)

Pre-monsoon rain No Yes
Ratio of canal irrigated area to

total irrigated area No Yes

Ratio of tube well irrigated
area to total irrigated area No Yes

Crop diversification index No Yes
Population density No Yes
District fixed effects Yes Yes

Year fixed effects Yes Yes
Observations 400 400

R2 0.69 0.70
Note: *** denotes significance at 1 per cent level. The figures in parentheses are standard errors.

Table 7. Impact of Preservation of Sub Soil Water Act, 2009 on Post-Monsoon Groundwater Levels.

Particular Coefficient Value

without Co-Variates with Co-Variates

Act×treatment 1.55 ***
(0.44)

1.39 ***
(0.45)

Post monsoon rain No Yes
Ratio of canal irrigated area to

total irrigated area No Yes

Ratio of tube well irrigated
area to total irrigated area No Yes

Crop diversification index No Yes
Population density No Yes
District fixed effects Yes Yes

Year fixed effects Yes Yes
Observations 400 400

R2 0.71 0.72

Notes: *** denotes significance at 1 per cent level. The figures in parentheses are standard errors; the values of R2

of without and with co-variates were taken from the Equations (2) and (3), which signifies that the explanatory
variables explained 71% and 72% of the total variation, respectively.

The groundwater level has declined at a higher rate in high rice growing districts in
comparison to low rice growing districts even after the Act’s enactment in the state. It was
observed that this Act, 2009 has sensitized people towards groundwater conservation or
awareness about the implications of water depletion. Otherwise, the rate of fall would have
been even more which got arrested due to this act.

Some evidence shows that this regulation has prevented the rate of groundwater
depletion. Using time series data from 1985 to 2011, authors [49] found an annual rise of
0.2 cm in the groundwater table after the implementation of the Act, despite the increase
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in the area under rice cultivation [50]. Another study [35] estimated a 30 cm water-saving
effect of the Act, but both these studies used different methodologies, which does not
account for selection issues.

The results are consistent with Sheetal Sekhri [51] who reported a decline in yearly
groundwater levels even after the enactment of the PPSW Act, 2009 in the paddy growing
region of Punjab and Haryana and Kishore et al. [21], who found that the PPSW Act, 2009
was unable to control the deepening of the water level in the post-treatment period.

The change in the cropping pattern towards rice is primarily responsible for the
degradation of water and soils of Punjab. The high rate of depletion has been excruciatingly
in the North China Plain (22.0 mm/year), the high plains of the USA (27.6 mm/year)
and north-western India (40 mm/year) [38,52–54]. China represents a similar picture of
water scarcity [55,56]. Rice production, which alone consumes about 50% of the freshwater
resources in China [57], is threatening its rice production as its groundwater use has
been estimated to be 40 percent higher than registered in Aquastat (FAO’s AQUASTAT
database). In many rice-growing regions, the most significant barrier to rice production
is drought stress [55]. Irrigated rice producers will be forced to diversify their method
of cropping by cultivating aerobic rice, rainfed rice, maize and other dryland crops as
scarcity of water threaten rice production in many regions of the world [58]. Over the past
20 years or more, the water tables in the hard rock aquifers of the southern Indian peninsula
and Indo–Gangetic Plains of South Asia have been declining at the rate of one meter per
year [59–62].

Falling water tables are also a serious problem in Australia, Spain and the USA. Several
countries have introduced legislation to control groundwater development and impose
restrictions on actions that can jeopardise the quality and availability of groundwater. Some
of the water acts or laws had positive impacts while others have not turned out to be a
promising solution. Australia’s Federal Water Act 2007 was introduced with the aim to
bring water allocations in the Murray–Darling Basin (MDB) back to sustainable levels and
to integrate planning and decision-making at the basin level. The Act did this by creating
the Murray–Darling Basin Authority (MDBA) and mandating it to create a basin plan
by 2019 that set sustainable limits to water diversions in the basin. However, a lack of
consistent establishment of boundaries i.e., defining the boundaries of the area so that they
align with the hydrogeological boundaries of the aquifer, led to difficulties in managing
this act [63].

This pattern shows rising competition and conflict among groundwater users as well as
the growing danger of groundwater contamination. The increased integration of legal laws
on water resources is the result of the recognition that adverse effects on groundwater may
also impact surface water. Similarly, The Water Framework Directive, adopted in 2000 in the
European Union, offers an appropriate framework to address the scarcity of water, but an
impact study reveals that many questions remain unaddressed. Similar results have been
reported for the impact assessment of Sustainable Groundwater Management Act (SGMA),
2014, legislation adopted by the state of California on groundwater extraction patterns
in the Sacramento River Hydrologic Region using the DiD regression model. The SGMA
grants local governments the power to manage groundwater sustainably and permits
limited governmental action to safeguard groundwater resources. The groundwater trends
in the treatment and control basins were not significantly different by the study. The study
found no evidence that the implementation of groundwater regulation had a measurable
difference in groundwater extraction in California, USA [64].

However, the results of legislation were encouraging in the Ogallala aquifer in the
central United States. Initially, the problem of groundwater depletion was so severe
in that the only solution left was to let the region depopulate and leave it to a grazing
ground for buffalo. However, in 2012, a law was passed that makes it possible to construct
more choices for leasing water, retiring water rights based on incentives, allocating water
over a longer period, and implementing Local Enhanced Management Areas. The most
noted achievement has been in the collective action which implemented a Local Enhanced
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Management Area (LEMA), which proved that reduced water pumping resulted in little-
to-no groundwater degradation while maintaining the net income. The fact that irrigators
who have taken part in LEMA or other conservation initiatives have conserved much more
water than their targets is even more encouraging.

The literature shows that ordinances passed involving the major stakeholders, i.e., end
users in the conservation process have been more successful than others. For example, the
Groundwater Conservation Ordinance in Niseko, Japan, 2011, established by the municipal
government, in which the water users had the accountability of replenishing groundwater.
In Japan, local governments have been autonomously safeguarding their groundwater
resources through local ordinances. Groundwater ordinances only exist at the local level,
and there is no fundamental groundwater legislation that the government has established.

The possible reasons for this groundwater overdraft could be the following: a large
number of irrigations after delayed transplanting of the paddy, free electricity to farmers
which allows for more groundwater pumping, an increase in paddy area, replacement of
centrifugal pumps into submersible pumps and deepening of already existed submersible
ones which can fetch water from deeper layers or aquifers [21,50].

4. Conclusions and Policy Implications

The groundwater system of Punjab provides food security to India, and the current
groundwater over-exploitation crisis in this region is a pressing concern, as trends in
groundwater are not very encouraging from a sustainability point of view. The cropping
pattern of paddy and wheat crops has adversely affected the water resources. Due to
the continuous rotation of the paddy and wheat cropping pattern, the water and soil of
Punjab have been degraded and depleted. The rate at which the groundwater resources are
exhausted, without a recharge, has put huge pressure on the state’s groundwater resources.
Groundwater legislations and laws passed in different countries as innovations to reverse
groundwater depletion have achieved limited success due to the open access nature of this
resource and the political economy of water management, especially in agriculture. The
same is exactly true for the Punjab state. PPSW Act, 2009 though, put a halt on declining
water tables in the state. However, the increase in paddy area from 2.7 million to 3 million,
irrigation pumps set from 1 million to 1.4 million, accompanied by the declining average
rainfall from 650 mm to 450 mm post the Act, led to a decline in groundwater level in
high rice-growing districts. The rate of decline became arrested, otherwise it would have
been even higher without the PPSW Act, 2009. The study suggests that delaying the
transplanting of the paddy, combined with other management strategies such as laser land
leveling, direct seeded rice, and sensor-based application of irrigation in rice, will lead to
more water saving in rice and hence will check the decline rate. Therefore, water saving
technologies and practices should be promoted on a large scale by incentivizing farmers
with attractive packages such as the one introduced as a pilot project in the Jalandhar
and Hoshiarpur districts of Punjab state by the department of power i.e., “Paani Bachao
Paise Kamao”, which could not reap the benefits owing to provisions of tariff-free electric
power to irrigation sector in the state and some other institutional reasons. Delaying
the transplanting of paddy necessitates more research into early maturing cultivars in
order to preserve the sowing time of wheat. The high rice-producing irrigated regions
should learn a lesson from Punjab’s water scarcity, and therefore regulate the use of
groundwater through groundwater governance which will not completely control but can
halt the pace of declining water levels and check the further depletion of this valuable
resource. The depletion of groundwater resources is among the most severe problems of
Punjab agriculture, which needs more corrective measures. That could be possible with
the effective implementation of this Act. Moreover, the government need to amend the
PPSW Act, 2009 in a systemic manner which considers each agro-climatic zone, rather than
one for the state as a whole. Additionally, a major emphasis should be on the addition
of new crops in the cropping patterns, limiting the groundwater draft or increasing the
recharge of groundwater, harvesting rainwater and using smart technological methods to
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improve irrigation efficiency and the use of treated wastewater to put a halt on the rate of
groundwater depletion.
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