
Citation: Zhang, H.; Gu, P.; Cao, G.;

He, D.; Cai, B. The Impact of

Land-Use Structure on Carbon

Emission in China. Sustainability

2023, 15, 2398. https://doi.org/

10.3390/su15032398

Academic Editors: Yiyun Chen,

Yang Zhang and Zeying Lan

Received: 2 December 2022

Revised: 12 January 2023

Accepted: 17 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

The Impact of Land-Use Structure on Carbon Emission in China
Hui Zhang 1,*, Pengcheng Gu 1, Genrong Cao 1, Dongquan He 2 and Bofeng Cai 3

1 China Land Surveying and Planning Institute, Beijing 100871, China
2 China Sustainable Transportation Center, Beijing 100091, China
3 Chinese Academy of Environmental Planning, Beijing 100012, China
* Correspondence: zhanghui1@zggtkcghy.wecom.work

Abstract: Research objectives: This paper discusses how to support the realization of carbon peak
and carbon neutrality through the optimization of national spatial structures by establishing a rela-
tionship model between land-use structure and carbon emissions, and then provide theoretical and
methodological support for the formulation of relevant policies and plans, as well as the evaluation
of implementation effects. Research methods: grid analysis, GIS spatial analysis, double log linear
regression model. Results: There is a strong correlation between the spatial structure of land and
carbon emissions; the scale of construction land, especially industrial land, directly affects carbon
emissions; if the area of construction land is doubled, CO2 emissions will increase by about 1.7 times.
Conclusions: The potential of controlling carbon emission intensity through land structure at the
urban level is great, and it is feasible to control carbon emission intensity through territorial spatial
planning system. The control elements can be divided into the following levels: land supply control,
land structure adjustment, land intensity constraint, and function adjustment of existing land.

Keywords: land-use structure; carbon up to peak; carbon neutral; territorial space

1. Introduction

Land use is the spatial carrier of various human activities in urban and rural areas.
The structure of land use has an important impact on carbon emissions by affecting the
level of energy consumption activities. It is an essential and immediate demand of China to
promote the reduction of energy consumption and carbon dioxide emissions by optimizing
the structure of land use. The impact of land use/cover change (LUCC) on the carbon
balance of terrestrial ecosystems has become the focus of current research on global change
and terrestrial carbon cycling [1]. However, there is still a lack of the studies on “national
spatial land use/land use structure-carbon emission”. In recent years, domestic and foreign
scholars have carried out research on land use carbon emissions, mainly focusing on the
impact of land use change on the carbon cycle of the ecosystem [2–7], the relationship
between land use, energy consumption and carbon emissions [8–14], and low-carbon land
use models and strategies [15,16]. However, the studies only discussed carbon in terrestrial
ecosystems [17], and the influence of anthropogenic carbon emissions was only discussed
superficially [18].

Some scholars have investigated the carbon emission effect assessment and low-
carbon optimization of land use planning schemes. Zhao Rongqin found that the land-use
structure optimization scheme based on the minimization of carbon emissions can have
a greater effect on carbon emission reduction [19]. By studying the driving mechanism
and factor decomposition of land use carbon emissions, Shi believed that land use carbon
emissions were affected by many factors, among which land structure was an important
factor causing the growth of land use carbon emissions [20]. Chuai collected various sources
of big data and designed a new methodology to examine carbon emissions in Nanjing
city at a high resolution of 300 m. In addition, regional differences were compared, and
influence factors were analyzed [21]. Xia C explored urban carbon transitions caused by
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land use change spatially in Hangzhou [22]. With the territorial space carbon emission
intensity of each province and city in 2005 as the dependent variable and the territorial
development intensity of each province and city in the same year as the independent
variable, Lai Li established simple linear regression model and analyzed samples of 31
cities in the country [23]. It is concluded that due to the huge difference between the carbon
budget intensity of construction land and other land types, construction land contributes
to the vast majority of carbon emissions in the national land space.

Based on the existing relevant studies at home and abroad, it is known that current
research on the spatial land use/land-use structure and carbon emissions in the country
is limited and difficult to support the effective implementation of relevant policies. The
main consensus is that the increase in the proportion of construction land will increase the
concentration of carbon emissions, the proportion of roads and the distribution of industrial
land are related to the concentration of carbon emissions in the air, and the increase in
the proportion of cultivated land, water areas, grassland, woodland, and vegetation is
conducive to reducing the concentration of carbon emissions [24–31]. Low carbon land use
optimization can be supported by controlling the expansion of building land and increasing
the amount of land available for carbon sinks.

The main shortcomings of these previous studies include the following: (1) The
research on GHGs and land-use structure is relatively scarce, with relatively more studies
on typical specific regions and relatively weak studies on large sample cities. (2) Land
use data are mostly based on remote sensing analysis or the statistical yearbook, the data
classification is relatively coarse, and the spatial analysis accuracy is limited; (3) there
is still a lack of synergistic analysis of land-use structure and carbon emissions; (4) at
present, the relationship between air quality and land use mostly adopts a linear method.
Influenced by differences in emission intensity of land use types and location, the response
relationship between air quality and land use is complex, and a nonlinear method needs to
be used to reveal the process. The quantitative research method is relatively simple and
scientifically incorrect.

At present, technical support and work related to climate change and ecological
environment protection are still insufficient. It is urgent to carry out research on the impact
of territorial spatial land-use structure on carbon emissions. Based on the national land-
use data over the years with full coverage of land space, this paper identifies the impact
characteristics of land-use structure evolution on urban carbon emissions in the vertical
dimension, and constructs a high-resolution carbon emission grid inventory database in
the horizontal dimension. Based on the mapping law, a decision-making proposal is made
to optimize the land-use structure, thus to reduce carbon emissions and provide support
and reference for promoting low-carbon development at the urban, regional, and even
national levels from the perspective of territorial spatial planning. The study aims to
build a high-precision GIS-based data platform for coupling land-use structure and carbon
emissions and a model for correlating land-use structure and carbon emissions, as well as
to conduct a hierarchical scenario analysis for the whole country and typical regions.

2. Materials and Methods
2.1. Research Object

Urban industrial land (including cities, established towns, villages, and mining land)
and transport land (including railway land, road land, airport land, port and terminal
land, and pipeline transport land) under the national classification of construction land
are selected as the objects of study, and the industrial land in the above construction land
will be further subdivided to explore the correlation between CO2 and the structure of
construction land, as well as the subdivided industrial-type land.

2.2. Data Sources

The basic data used in this paper include the following three aspects: national land-
use structure data from 2009 to 2018, nationwide 10 km × 10 km grid carbon dioxide
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inventory data in 2015, industrial POI (point of interest) training transformation AOI (area
of interest) + smart industrial land identification data.

Specifically, the national land-use structure data in this paper are mainly based on the
results of the second national land survey. On the basis of the national standard of land-use
status classification, obtained the urban unit land-use structure data and 10 km × 10 km
precision land-use data; the carbon dioxide inventory data came from CHRED (China
high resolution emission gridded database) that organized by the Environmental Planning
Institute of the Ministry of Ecology and Environment, EDGAR (emission database for
global atmospheric research) and MEIC (multi-resolution emission inventory for China)
data; industrial POI training transformed AOI + smart industrial land identification data
are aimed at industrial land use, an in-depth analysis of the industrial land was carried
out using the location information of the polluting enterprises in the pollutant discharge
permit database of the Ministry of Ecology and Environment, and nearly 100,000 industrial
POI points were converted into the AOI (area of interest) training set. POI points are
classified as enterprises corresponding to M1, M2, and M3, and then 35 industries are
subdivided by industry, and the average land area of POI points is calculated based on
remote sensing images. The results are further aggregated to the grid industrial land-
use categories, compared and verified with the land survey data, and the coefficients are
adjusted to obtain the final industrial land-use composition of the 10 km × 10 km grid.

2.3. Methods

This paper conducts an empirical study on the correlative influence between national
territorial space and carbon emissions at the national scale. Based on the analysis of the
national territorial spatial land-use structure and the research on the grid inventory of
carbon dioxide emissions by grid analysis and GIS spatial analysis, a correlation framework
between the national territorial spatial land-use structure data and carbon dioxide emissions
is established. Also, the spatial land-use characteristics and emission characteristics of
the country are described and correlated, and a regression model (mainly double log
linear regression model) of land-use structure-carbon emissions is established to provide
support for the application of policy scenario analysis of the relationship between land use
and emissions.

Existing studies mostly take separate and independent discussions on land-use struc-
ture and carbon dioxide emissions, and lack linkage analysis. In addition, limited by the
quality of basic data, existing research mainly focuses on a certain city or region, and the
accuracy of spatial analysis is limited. This paper is the first to carry out an empirical study
at the national scale, which establishes the national territorial spatial land-use structure
data and carbon dioxide emission grid inventory data, and then carries out a multi-scale
correlation model study. Through the pilot evaluation, the study verifies the feasibility
of the model and provides policy recommendations. The technical route of this study is
shown in Figure 1.
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3. Results
3.1. National Level Construction and Land Use and Emission Characteristics
3.1.1. National Level

The types of construction land used in this study include the following: rural roads,
cities, towns, villages, mining land, railway land, highway land, airport land, port land, and
pipeline transportation land. The predominant proportion of built-up land is in villages,
towns, and highways, which account for more than 90% of the total built-up area; the
proportion of built-up land by whether it is industrial or not is 4% for industrial land, 20%
for non-industrial land, and 76% for other land.

According to the national emission distribution map (Figure 2), the distribution of
carbon dioxide emissions has obvious characteristics of “high in the east and low in the
west, high in the north and low in the south”, and the emissions in the mid-eastern regions
are significantly higher than other regions, emissions are low across the western region.
The emissions of eastern regions are significantly higher than those of the western regions.
Most of the regions with higher carbon dioxide emissions are concentrated in the eastern
and northern regions, with the emissions of Shandong being the most significant. The
emissions of Shandong alone account for 9.3% of the country. Several provinces in northern
China, such as Shandong, Inner Mongolia, Hebei, Henan, Shanxi, and Liaoning, account for
almost half of the country’s total emissions. The Tibet Autonomous Region, Xinjiang Uygur
Autonomous Region, Qinghai Province in western China are all low-emissions areas. For
example, the area of Tibet Autonomous Region is more than 70 times that of Beijing, but its
carbon dioxide emissions are less than one-thirtieth than that of Beijing.
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3.1.2. Partition Level

According to the scope of China’s economic zoning, the grids are aggregated into four
regions: the northeast, eastern, central and western regions, and statistics are made on the
composition of construction land, total CO2 emissions, and emission intensity. In terms of
total construction land, the eastern region is the highest, and the northeastern region is the
lowest; the land use intensity is the highest in the eastern region, followed by the central
region, and the western region is the lowest; in terms of land-use structure, the proportion
of villages in the central region is relatively high, and the proportion of urban land in the
eastern and northeastern regions is relatively high.

The total emission of carbon dioxide is the highest in the eastern region, followed
by the western region, and the lowest in the northeastern region; the emission intensity
(emissions/construction land area) is the highest in the eastern region, followed by the
central region, and the lowest is in the western region. The difference in quantity and
emission intensity is relatively insignificant, as shown in Figure 3.
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3.1.3. Urban Agglomeration Level

At the urban agglomeration level, five typical urban agglomerations were selected for
the study, namely, the Pearl River Delta urban agglomeration, the Beijing-Tianjin-Hebei
urban agglomeration, the Yangtze River Delta urban agglomeration, the middle reaches
of the Yangtze River, and the Chengdu-Chongqing urban agglomeration. At the urban
agglomeration scale, the aggregation is performed to count CO2 emissions, and the average
value of land-use structure data. The five major urban agglomerations possess 39% of the
country’s population and generate 50% of the country’s GDP; in terms of carbon dioxide
emissions and the scale of construction land, the five agglomerations are similar and the
Yangtze River Delta urban agglomeration is the highest among them.

In terms of the total amount of construction land and the intensity of land use, the
Yangtze River Delta region is the highest; in terms of land-use structure, the proportion
of urban construction land in the Pearl River Delta region is much higher than that of
other urban agglomerations, and the proportion of mining land in the Beijing-Tianjin-Hebei
region is relatively large. The carbon dioxide emission intensity of the urban agglomerations
also shows a similar pattern (Figure 4), the Yangtze River Delta urban agglomeration is the
highest, followed by Beijing-Tianjin-Hebei, and the Pearl River Delta urban agglomeration
is the lowest.
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3.1.4. City Level

In this paper, the 346 major cities in the country are ranked according to the CO2
emission intensity from smallest to largest (Figure 5). It can be seen that, in general, the
cities with higher land use intensity show a higher trend of CO2 emissions; in terms of
the land-use structure, the higher the proportion of urban land is high, the higher the
CO2 emissions.

3.1.5. Grid Level

The distribution of construction land at the grid level of 10 km × 10 km across the
country is shown in Figure 6, and the carbon dioxide emissions are shown in Figure 2.
Through the visualization of carbon emissions at the national level, it is found that there
are a large number of grids that do not emit CO2. In the subsequent analysis, the kilometer
grids with CO2 emissions less than 1 t are removed. Spatial placement without grids: grids
are mainly located in mountainous areas or deserts. There are 97,132 grids in the country,
and 58,229 CO2 grids remain after removal.
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With the assistance of the cumulative distribution curves of construction land and
CO2 emissions for each grid (Figure 7), it is found that 4.38% of the grids correspond to
90% of the total emissions, and the corresponding grids have a construction land area of
only about 110,000 square kilometers, accounting for 27.94% of the national construction
land and about 1.2% of the national land area. Since the vast majority of CO2 emissions are
concentrated in a few grids, it is very important to control emissions in key areas.

There are also significant differences in CO2 emissions for grids with similar land-use
structures. Among the 58,229 grids in the country, the grids with urban land area accounting
for 20–21% were selected for analysis, as shown in Figure 8. There are significant differences
in grid emissions in different regions, especially in the central region. Some grid emissions
are similar to other regions. Therefore, it is necessary to control both the land type and the
land carbon emission intensity for the carbon emission of the national land space.
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3.2. Coupling Analysis of “Land Use-Carbon Emission”

In this study, 10 km × 10 km grids were divided nationwide, and a total of about
97,000 grids were obtained, but there are a large number of grids in these grids that do not
produce or produce very little CO2 emissions. The carbon emissions visualization revealed
that such grids are mainly located in areas such as mountains or deserts where human
activity is minimal, so grids with CO2 emissions of less than 1 ton were removed from the
CO2 emissions analysis, leaving 58,229 grids.

3.2.1. The Relationship between the Area and Type of Construction Land and
CO2 Emissions

In order to intuitively analyze the relationship between the area and type of con-
struction land and CO2 emissions, this study firstly divided 58,229 grids into 20 levels
according to the level of CO2 emissions, each level is set with 2911 grids. The average area
of different construction land types in the grid is demonstrated in Figure 9. The 20 columns
in the figure represent the average construction land type and corresponding area of the
grids in different sets. The points in the black broken lines in the figure represent the
CO2 emissions of the grids with the lowest CO2 emissions in each set. It can be seen that
with the increase in the construction land area, especially the urban (city + organic town)
construction land area, the CO2 emission generally shows an upward trend. Particularly
when the construction land area accounts for more than 15% of the grid area, the CO2
emission increases rapidly with the increase in the construction land area.
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Figure 9 is obtained by plotting the average proportions of different construction sites
for the 2911 grids in the above 20 sets. The 20 columns in the figure represent the proportion
of different types of construction land in different sets. It can be seen that the CO2 emission
increases significantly with the increase in the urban area, indicating that the relationship
between urban land and CO2 emission is significant. The larger the proportion of urban
land, the more it is necessary to consider how to control CO2 emissions.

3.2.2. Double Logarithmic Model of Built-Up Land Area and Carbon Emissions

Based on the preliminary analysis of the correlation between construction land and
CO2 emissions, in order to obtain the quantitative relationship between construction land
and CO2 emissions, a variety of data analysis methods were tried, and finally it was found
that the double logarithmic linear relationship between the total area of construction land
and CO2 emissions was significant. That is, after removing the grid with the construction
land area of 0 from the 58,229 grids, the remaining 57,607 grids were subjected to a double
logarithmic linear regression of CO2 emissions per unit area and the proportion of construc-
tion land (Figure 10). The coefficient R2 = 0.5983, the linear relationship is significant, and
the obtained regression equation is:

log (y) = 1.4272log(x) + 3.9636, (1)

where y is the CO2 emission per unit area, unit t/km2; x is the proportion of construction
land in the grid.

According to this regression equation, when the scale of construction land doubles,
the corresponding CO2 emission increases by about 1.7 times, that is, the increase in
construction land promotes the accelerated growth of CO2 emissions.

According to the above method, the double logarithmic linear fitting of CO2 emissions
per unit area and the proportion of construction land was performed for 31 provincial-level
administrative regions, and the results are shown in Figure 10. Except for that of Xinjiang,
the regression coefficient of determination R2 value of 30 provinces is greater than 0.4,
and the linear fit is great. Without considering Xinjiang for the time being, according to
the regression equations of the 30 provinces, when the construction land area doubles,
the corresponding increase in carbon emissions is calculated. The results are shown in
Table 1, where large differences among provinces are found. When the construction land
is doubled, the added value of CO2 emissions in each province ranges from 1.1 times
to 3.9 times. Among them, the 10 provinces with the largest increase are Qinghai, Tibet,
Guizhou, Shandong, Shanxi, Jilin, Henan, Liaoning, Fujian, Ningxia, and the 10 provinces
with the smallest increase are Inner Mongolia, Sichuan, Hainan, Anhui, Beijing, Hubei,
Hunan, Yunnan, Gansu, and Hei Longjiang. Different provinces have different spatial land-
use structures and different levels of technological development, resulting in significant
differences in the increase in carbon emissions with construction land.
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Table 1. Double logarithmic regression results by province.

Province Regression
Coefficient

Determination
Coefficient R2

Number of
Valid Grids

The Added Value of
Carbon Emissions When
the Area of Construction

Land is Doubled

Xinjiang 0.730 0.374 4547 66%
Inner Mongolia 1.057 0.559 6801 108%

Sichuan 1.160 0.620 4024 123%
Hainan 1.240 0.448 360 136%
Anhui 1.287 0.413 1402 144%
Beijing 1.387 0.797 213 162%
Hubei 1.466 0.610 1888 176%
Hunan 1.467 0.549 2113 176%
Yunnan 1.468 0.565 3618 177%
Gansu 1.484 0.551 2763 180%

Heilongjiang 1.494 0.694 3962 182%
Guangdong 1.495 0.593 1844 182%

Zhejiang 1.527 0.706 1167 188%
Shanghai 1.548 0.541 104 192%

Chongqing 1.580 0.561 965 199%
Guangxi 1.599 0.540 2356 203%
Shaanxi 1.613 0.584 1938 206%
Hebei 1.613 0.688 1981 206%

Jiangsu 1.651 0.473 1126 214%
Jiangxi 1.664 0.565 1675 217%
Tianjin 1.668 0.596 148 218%

Ningxia 1.671 0.503 354 218%
Fujian 1.672 0.607 1325 219%

Liaoning 1.672 0.606 1520 219%
Henan 1.674 0.554 1589 219%

Jilin 1.760 0.656 1883 239%
Shanxi 1.805 0.647 1612 249%

Shandong 1.918 0.462 1600 278%
Guizhou 1.989 0.499 358 297%
Xizang 2.002 0.465 115 300%
Qinghai 2.284 0.410 2256 387%
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The double logarithmic model of construction land area and carbon emission is an
empirical model, and it is also a quantitative presentation of qualitative analysis results,
which mainly reflects the characteristics of accelerated growth of carbon emission with the
increase in construction land area. However, this model cannot well reflect the specific
factors affecting carbon emissions. Therefore, this study further explores in detail and
obtains the following coupling model.

3.2.3. Double Logarithmic Model of Land Area and Carbon Emissions by Sub-Sector

Industrial production, including the energy industry, contributes most of the anthro-
pogenic CO2 emissions. As a result, it is necessary to study the relationship between
industrial land and carbon emissions.

When the carbon emissions of industrial land in the context of industry segmentation
is studied, it is found that the fitting method using non-negative least squares is the most
robust. From the national results of the correlation analysis, it can be indicated that the
industries most closely related toCO2 are gas production and supply, electricity and heat
production and supply, warehousing and logistics, and petroleum processing, coking, and
nuclear fuel processing.

In order to further study the coupling relationship between land use and carbon
emissions in different industries, nearly 100,000 industrial POI points were converted into
AOI, and the distribution of 35 subdivided industries in the grid was obtained. After trying
a variety of data mining methods, we finally chose to use a 10 km × 10 km grid as the basic
unit to conduct multiple linear regressions between CO2 emissions and different types
of industrial land. In order to achieve the best regression effect, some industries in the
35 sub-industries were selectively merged to obtain 19 industry types as shown in Table 2.

Table 2. Industry types for multiple linear regression.

Serial Number Industry or Industry Collection

1 Gas production and supply industry
2 Electricity and heat production and supply industry
3 Water production and supply industry
4 Paper and paper products industry
5 Petroleum processing coking and nuclear fuel processing industries
6 Chemical fiber manufacturing
7 Chemical raw materials and chemical products manufacturing
8 Ferrous metal smelting and rolling industry
9 Non-metallic mineral products industry
10 Warehousing and logistics industry
11 Non-ferrous metal smelting and calendering industry
12 Animal husbandry
13 Non-ferrous metal mining and dressing industry
14 Leather, fur and feathers and their products and footwear
15 Village

The final regression equation is:

E = b0 + b1A1 + b2A2 + . . . . . . + b19A19 (2)

Among them, E is the CO2 emissions of the grid, unit t; bn is the CO2 emission
coupling coefficient (emission intensity) of the industry, unit t/km2; An is the area of the
nth industry in the grid, unit km2.

The above regressions were performed on the data of 31 provinces in mainland China,
and the multivariate linear regression equation of carbon emissions in different provinces
and industrial land were obtained. The results showed that the linear relationship was
significant. According to the regression equation of 31 provinces, a box plot of carbon
emission intensity of different industries is made, as shown in Figure 11.
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According to the “China Carbon Emissions Trading Report (2017)”, in 2009, the indus-
try with the largest carbon emission in China was the supply of electricity, gas, and water.
Judging from the results of this study, the gas, electricity, and water industries have high
carbon dioxide emission intensity, and the carbon emission intensity of different provinces
varies greatly, so their emission reduction potential is large. It can be seen from Figure 11
that other industrial lands other than water, electricity, and gas are significantly related
to carbon emissions (in ascending order of median emission intensity) paper and paper
products, petroleum processing, coking, and nuclear fuel processing industry, chemical
fiber manufacturing, chemical raw material and chemical product manufacturing, ferrous
metal smelting and rolling processing industry, non-metallic mineral product industry,
warehousing and logistics industry, non-ferrous metal smelting and rolling processing in-
dustry, animal husbandry, non-ferrous metal mining industry selection, leather, fur, feather
and its products, and footwear.

The paper industry has the highest carbon intensity. Statistics show that in 2015,
China’s paper industry accounted for 1.67% of carbon emissions. Among them, more than
80% of the emissions come from the combustion of fossil fuels, especially coal. Almost all
coal in paper making enterprises is used in small self-provided power plants and heating
boilers. The scale of power generation/heating is small, energy utilization efficiency is
low, and carbon emissions are large [32]. Therefore, the decarbonization of the paper
industry should first focus on banning/upgrading self-provided power plants/boilers, and
at the same time, other measures should be taken to reduce corporate energy consumption
and carbon emissions [33]. The carbon emission intensity of chemical fiber and leather
industries varies greatly among provinces, and the larger emissions may also be related to
self-provided power plants/boilers. Heavy industries such as petroleum, chemical, metal,
and non-metal are traditional large carbon emitters, and their corresponding land-use
emission intensity is also high. On the one hand, production capacity should be strictly
controlled and efficiency should be improved to reduce carbon emissions; on the other
hand, if deep decarbonization is to be achieved, fundamental technological changes and
carbon capture technologies are often required. The emission intensity of warehousing,
logistics, and animal husbandry land is also relatively large, and has developed rapidly
in the past decade. The studies on carbon emissions in these two industries are extremely
limited, and more in-depth research is needed in the future to establish a modern green
warehousing logistics industry and animal husbandry to reduce greenhouse gas emissions.

Excluding industrial land, village and town land, as well as transportation land and
mining land have low emission intensity, but these areas account for about 79% of total
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construction land. Hence, the industries also contribute to total emissions. As can be seen
from the overall coupling results, according to the method similar to the multiple linear
regression of the above 31 provinces, the multiple linear regression is carried out with all
the data of the 31 provinces as a whole. The results show that the linear relationship is
significant, and the multivariate linear regression equation of carbon emissions and land
use in different industries is obtained. According to this equation to analyze the coupling
relationship between construction land and carbon emissions, it is found that urban and
organic town land (referred to as urban land) accounts for 1% of the total land area, but
carbon emissions account for nearly 90% of the country’s total emissions. Among the nearly
90% of carbon emissions, the carbon emissions from industrial land (about 17% of urban
land) and the carbon emissions from non-industrial land account for about half. Therefore,
the optimization of the spatial structure of urban areas is the top priority to achieve peak
carbon dioxide emissions and carbon neutrality.

According to the overall coupling results, the multivariate linear regression equations
of the overall carbon emissions of 31 provinces and the land use of different industries are
obtained, and then the lower quartile of the statistical results of carbon emission intensity
of different industries in the 31 provinces and sub-provinces is taken as the advanced value.
The carbon emissions when the carbon emission intensity of industrial land is reduced to
the advanced value, and it is found that the overall carbon emissions of 31 provinces can be
reduced by half. It can be seen that the emission reduction potential of urban land is large,
accounting for 46% of such emission reduction. What is followed are chemicals, power,
non-metals, ferrous metals and warehousing and logistics, which account for 14%, 12%,
12%, 6%, and 5% of such reductions, respectively. These should be the key areas for carbon
emission control in the future.

3.2.4. Carbon Emissions Forecast

Based on the multiple linear regression results of the overall carbon emissions of
31 provinces across the country and land use in different industries, different control
scenarios are considered to predict carbon emissions scenarios. The five scenarios are set
as follows:

BAU Scenario (no control scenario): Similar to the past decade, 600,000 hectares of
construction land will be added each year without structural adjustment or emission
intensity controls.

Control Scenario 1: The annual increase in construction land is reduced to
210,000 hectares, but no structural adjustment or emission intensity control is carried out.

Control Scenario 2: On the basis of Control Scenario 1, adjust the land-use structure is
adjusted, and new land use for industries with excess capacity are reduced or canceled.

Control Scenario 3: On the basis of Control Scenario 2, the carbon emission intensity
of different industries in the newly added construction land is reduced, so that it can be
reduced to the advanced value of the industry year by year within five years (lower than the
lower quartile of the statistical results of carbon emission intensity of different industries in
31 provinces and sub-provinces).

Control Scenario 4: On the basis of Control Scenario 3, the carbon emissions from
previous land use are controlled and the carbon emission intensity is reduced by 0.2% year
by year.

The carbon emission forecast results under the five scenarios are shown in Figure 12.
It can be seen that with the deepening of the control, the carbon emissions will gradually
decrease, and finally achieve the carbon peak in 2030. That is to say, without considering
carbon sequestration and carbon capture, the target of peak carbon dioxide emissions can
still be achieved by 2030 through land use supply control, land-use structure adjustment,
land use intensity constraints, and functional adjustment of existing land use. The carbon
emission reduction in 2030 in the control scenario is about 14%. Figure 12 shows the specific
calculation of the carbon emission reduction effect achieved by each control measure in
2030 under different scenarios.
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According to the existing state-owned space structure, carbon emissions will continue
to grow without any control measures. The carbon emission forecast results for 2030 show
that if construction land continues to grow at an average annual growth rate of about
600,000 hectares in the past decade, and measures such as land-use structure adjustment
and carbon emission intensity constraints are not taken, then carbon dioxide emissions will
continue to grow. A 16% increase is expected in 2030 compared to 2020. Controlling the
area of new construction land can significantly reduce CO2 emissions. In the past ten years,
the construction land has maintained an annual increase of about 600,000 hectares, of which
the new industrial and mining storage land accounts for about 1/4, the new real estate
land accounts for about 1/4, and the remaining half left and right are new infrastructure
and other land. If the area of newly added construction land drops from 600,000 hectares
per year to 280,000 hectares per year, the model predicts that carbon emissions will drop
significantly. Compared with the uncontrolled scenario, emissions in 2030 will drop by
about 10%. However, under the background that the urbanization rate will continue to
increase, the control of the total amount of construction land cannot be achieved without
practical control measures. Therefore, on the basis of steady economic growth, in order to
achieve the decline or even negative growth of new construction land, it is necessary to
further tap the potential of the existing construction land, to improve the land use control
standard system, to develop and apply land-saving technologies, and to reduce the use
area of construction land per unit of GDP, etc.

Adjusting the new land-use structure can further reduce CO2 emissions. Fossil en-
ergy industry, petrochemical, chemical, metal, non-metal, and other industries have high
carbon emission intensity, and the land used for such industries should be strictly con-
trolled in the newly added land, and even zero growth of land used in some industries
should be achieved, so as to adjust the structure of new land use and reduce the carbon
emission targets.

Fossil energy can be replaced by renewable energy: according to the International
Renewable Energy Agency (IRENA), under the target of global warming of less than
2 degrees Celsius, global electricity consumption will account for half of global final energy
consumption in 2050, and 86% of the electricity from non-fossil energy. It is predicted in
the report of Goldman Sachs that renewable energy is the most important technology to
achieve decarbonization in China, and the decarbonization contribution rate can reach 50%;
it is estimated that Chinese power generation in 2060 will triple the current amount, mainly
from solar energy, wind energy, nuclear energy and hydrogen energy.
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China’s petrochemical, chemical, metal, non-metal, and other heavy industries are
facing certain problems of overcapacity and backward production capacity. The control
of the new land use in such industries is consistent with the needs of resolving excess
production capacity, eliminating backward production capacity and accelerating the release
of high-quality production capacity. It is conducive to achieving high-quality development
of the industry while reducing carbon emissions.

The carbon peak can be achieved to further control the carbon emission intensity of
new land and reduce the carbon emission intensity of existing land. Reducing the carbon
intensity of construction land has great potential to reduce emissions. For newly added
construction land, carbon emission constraints for newly added projects can be considered
with the industry advanced value. For existing construction land, the industry advanced
value can be used as the target to formulate a carbon emission intensity reduction plan.

4. Discussion

The research is based on grid scale, and different scales will have a significant impact
on the research results. This study uses a 10 km × 10 km grid as the research unit, divides
the land area of the country into more than 90,000 grids, and conducts correlation statistics
on land use and carbon emissions. The statistical results show that: the average carbon
dioxide emission intensity (y) in the grid and the proportion of construction land (x) are
fitted in double pairs, and the fitting function is log (y) = 1.4272log(x) + 3.9636, R2 = 0.5983.
If the research unit changes, the fitting function will change accordingly, so the research
conclusion in this article is expressed as “based on the statistical data display under the
grid scale of 10 km × 10 km”. Later, the author will further study the correlation between
land use and carbon emissions at different scales, and explore the establishment of a cross
scale quantitative analysis model.

There is a strong correlation between the spatial structure of land use and the concen-
tration of carbon emissions, and the refined land use planning based on environmental
capacity is imperative. Taking into account the new requirements of peak carbon dioxide
emissions by 2030 and carbon neutrality by 2060 proposed by the state, this study puts
forward the following policy recommendations: (1) We should strengthen the management
and control of national land space based on carbon emissions, and strictly control the land
supply, especially the land supply with high energy consumption, for regions and provinces
and cities with relatively large carbon emissions, relatively extensive development, and
high carbon emission intensity of construction land. (2) The new round of territorial space
planning should be based on the management and control of the nature of land functions.
We should strictly control the disorderly, blind expansion of construction land, and the
supply of high-energy-consuming industrial land in some areas, optimize the structure and
layout of land and space, guide the adjustment of industrial land structure, promote clean
and high value-added industrial upgrading, and further put forward control constraints
on the intensity of land carbon emissions. (3) In the new territorial and spatial planning
and management system, the requirements for peak carbon dioxide emissions and carbon
neutrality should be combined, and the requirements for land supply scale and structural
adjustment should be clearly put forward in the overall planning of territorial space at all
levels. The entry threshold for construction and development should be elevated. (4) We
should introduce climate change and environmental capacity constraints in the preparation
of territorial space planning, conduct special discussion and evaluation, and use it as a
planning basis. (5) The implementation evaluation and monitoring index system of carbon
emissions and capacity in the “dual evaluation” and “dual evaluation” system of land
and space planning should be included, and the land evacuation and reduction of high-
energy-consuming industries should be guided. We should build a model system for the
relationship between land space use and carbon emissions, evaluate the synergistic relation-
ship between land space use development and carbon-neutral development scenarios, and
ensure the realization of carbon-neutral scenarios. (6) We should adjust the spatial land-use
structure of the country, optimize the layout, synergize carbon sink ecosystems, set national
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carbon sink capacity targets, gradually increase carbon absorption and storage capacity,
and identify key carbon sink areas and conservation and promotion policies. Territorial
spatial planning should guide the intensive and low-carbon development model of cities.
An efficient, intensive, low-carbon, and livable urban spatial system should be created.
We should promote green travel and guide residents’ behavior towards green and low
carbon. (7) Based on the “one map” of land and space planning, we should integrate the
management and control requirements of relevant departments such as development and
reform, environmental protection, etc. We should also achieve precise management and
control of carbon emissions space under the linkage of multiple data sources.

5. Conclusions

With the establishment of a model on the relationship between spatial land-use struc-
ture and carbon emissions, this study explores how the optimization of spatial land-use
structure can support the achievement of carbon peaking and carbon neutrality, and pro-
vides theoretical support for the formulation of relevant policies and plans, as well as the
evaluation of their implementation effects. The main conclusions reached include: (1) There
is a strong correlation between the spatial structure of land and carbon emissions; the scale
of construction land, especially industrial land, directly affects carbon emissions; if the area
of construction land is doubled, CO2 emissions will increase by about 1.7 times. (2) The
analysis by province shows that the provincial land-use structure is directly related to
carbon emissions, and the correlation coefficients of different provinces vary from each
other, reflecting the distinction in carbon emissions caused by different provincial land-
use structures; the area of construction land doubled, and carbon emissions in different
provinces increased by 1.1 to 3.9 times. (3) Grids with similar land structures are selected
for analysis. The grid carbon emissions in different provinces have a certain degree of
dispersion, and the eastern region is significantly better than other regions, reflecting the
impact of technical and management factors on carbon emissions. (4) The analysis at the
city level shows that in the case of similar land GDP output, the land carbon emission
intensity is still quite different, indicating that the city level has a great potential to con-
trol the carbon emission intensity through the land structure. (5) Analysis from the type
of industrial land: the carbon emission intensity of different industries is quite different,
among which the carbon intensity of the land used for basic energy such as water, electricity,
and municipal supply is the largest, followed by the industrial land, urban living, and
production land. However, the urban living and production land covers a large area, which
should also be paid attention to; the carbon emission intensity of different regions in the
same industry is also quite different, reflecting the role of technology and management
factors in carbon emission control. The analysis results of subdivided industries can set
carbon emission benchmarks for industrial land use and provide a basis for introducing
carbon intensity indicators into future land supply. (6) It is efficient and feasible to control
carbon emissions through the territorial spatial planning system. The elements of control
can be divided into the following levels: land supply control, land-use structure adjustment,
land use intensity constraints, and functional adjustment of existing land use. These means
of control should be required and considered in future territorial and spatial planning
at all levels. (7) According to the above analysis in the research, this paper conducts a
scenario analysis of land use control in national land spatial planning. The results show
that through the above control methods, without considering carbon sinks and carbon
capture, it is still possible to achieve the national carbon peak in 2030. In 2030, compared
with the uncontrolled scenario, the emission reduction ratio will be 14%.
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